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Abstract: This study retrospectively analyzed 167 colorectal cancer patients from November 
2013 to February 2021 in Zhongda Hospital of Southeast University, divided into liver 
metastasis group (37 cases) and no liver metastasis group (130 cases), and the data were 
divided into training set and test set according to 7:3. The study constructed traditional 
clinical, imaging histology, pathohistology, TLS score and multimodal integration models, 
and screened features by LASSO regression. The results showed that the multimodal 
integration model had an AUC of 0.94, an accuracy of 0.927, and precision and F1 scores of 
1.000 and 0.800, respectively, which were superior to other models, with high predictive 
value and diagnostic efficacy, and its column-line diagram could be used in the clinic. 
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1. Introduction 

Colorectal cancer (CRC) is prevalent globally, with significant morbidity and mortality rates in 
China[1-2]. Most patients are diagnosed at an advanced stage due to subtle early symptoms. The liver 
is the primary site of CRC metastasis, making early detection critical for treatment and prognosis[3]. 
Radiomics and machine learning can analyze imaging to predict metastasis risk, while deep learning 
enhances pathologic diagnosis accuracy. TLS is linked to CRC liver metastasis and patient outcomes. 
We developed a multimodal model to predict liver metastasis risk in CRC using machine learning 
feature extraction, offering a novel approach for early prediction. 
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Figure 1: Schematic of the combined predictive model 

2. Methods and materials 

2.1. Patients and samples 

This study involved 167 colorectal cancer patients treated at Zhongda Hospital, Southeast University, 
from November 2013 to February 2021, who had CT scans and pathology reports. The criteria for 
inclusion were primary colorectal cancer, radical surgery, no preoperative neoadjuvant or 
transformative therapy, no other malignancies, and complete data. The study collected CT images 
and paraffin-embedded tissue samples, and extracted demographic and clinicopathologic data from 
medical records. Patients were diagnosed with liver metastases following the 2023 Chinese 
Guidelines and divided into two groups: those with and without liver metastases. 

2.2. Machine learning radiomics model development 

This study developed a radiomics model to predict liver metastasis risk in CRC patients using pre-
surgical CT images. Experts delineated tumors, processed 3D models with 3D-Slicer, and 
standardized CT images to 1mm voxel spacing. Features were extracted with Pyradiomics, screened 
via T-test and Lasso regression, and the model was built using eight ML algorithms. 

 
Figure 2: The flowchart of the proposed radiomics model 

2.3. Deep learning pathomics signiture construction 

In this study, we sectioned colorectal cancer specimens to 5 µm thickness, stained them with Harris 
hematoxylin and eosin Y, and fixed them on slides. We observed them with a Nikon microscope and 
scanned them using a HAMAMATSU NanoZoomerS360 and MIRAX Pannoramic MIDT scanner 
with a Point Grey camera. We collected hematoxylin and eosin-stained images within 7 days post-
diagnosis, labeled tumor regions with QuPath, cropped 256×256 pixel patches, preprocessed and 
normalized colors, modeled with Resnet-18, and developed pathohistological features by plotting 
histograms of predicted probabilities and labels.[4-7]. 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/119/2025.21690 

31 



 

 

 
Figure 3: An overview of established WSISA framework 

2.4. TLSs classification 

TLS presence in tumors was morphologically evaluated on H&E-stained slides[8], with dense 
lymphocyte clusters identified as TLS. CRC-associated TLS were categorized into five classes based 
on TLS location and count in the most TLS-dense H&E sections. Two pathologists independently 
assessed and classified TLS without clinical patient information. 

Table 1: The classified criteria of  colorectal cancer-associated tertiary lymphoid structures (TLSs) 

 Peritumoral TLS count Intratumoral TLS count 
Grade 0 0 0 
Grade 1 1-4 0 
Grade 2 >4 0 
Grade 3 ND 1-4 
Grade 4 ND >4 

(a)                           (b) 

 
Figure 4: Tertiary lymphoid structures (TLSs) in colorectal cancer(a)TLS score(Grades 0–4) 
(b)Peritumoral and Intratumoral TLSs (H&E Staining) 

2.5. Establishing a multimodal cohort for colorectal cancer to predict the risk of liver 
metastasis 

In the multimodal cohort, standard clinical data showed significant differences between patients with 
and without liver metastases, yet a classification model based on these (AUC = 0.73) couldn't fully 
distinguish them. We included CT scans, HE images, and TLS scores to create multimodal 
biomarkers, integrated the data into a liver metastasis prediction algorithm, and evaluated its 
predictive performance using tenfold cross-validation. 

3. Results 

3.1. Clinical characteristics of patients with and without liver metastases from colorectal 
cancer 

The baseline data and known metastatic outcomes of the patients in this study (see Table 2 for cohort 
characteristics) are referred to as the multimodal cohort. 
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Table 2: Clinical characteristics of patients with and without liver metastases from colorectal cancer 

Clinical characteristics Liver metastasis 
(n=37) 

No liver metastasis 
(n=130) 

Age, median (range) 65  (33-84) 63  (33-87) 
Sex, n(%)     
Male 26 (70.27) 74  (56.92) 
Female 11  (29.73) 56 (43.08) 
Tumor site, n(%)     
Right 12 (32.43) 49  (37.69) 
Left 25  (67.57) 81  (62.31) 
Pathological stage, n(%)     
Ⅰ 2 (5.411) 13 (10.00) 
Ⅱ 4  (10.81) 58  (44.62) 
Ⅲ 31 (83.78) 58 (44.62) 
Ⅳ 0 (0.00) 1 (0.77) 
Maximum diameter, n(%)     
≥5cm 21 (56.76) 57  (43.85) 
<5cm 16  (43.24) 73 (56.15) 
Differentiated degree, n(%)     
Well-differentiated 0 (0.00) 4  (3.08) 
Moderately differentiated 31  (83.78) 117  (90.00) 
Poorly differentiated 6  (16.22) 9  (6.92) 

(a)                                   (b)                       (c) 

                           
(d)                      (e) 

        
Figure 5: Clinical model performance evaluation(a)ROC curves for multiple classification models 
(b)Heatmap of model performance metrics(c)Feature importance of selected features (d)ROC curves 
for RF model(e)Confusion matrix of RF model for train and test 

We utilized eight ML algorithms (RF, SVM, LR, DT, GPB, KNN, GBM, and MLP) to develop 
the prediction model, assessing performance via Accuracy, Precision, Recall, F1 Score, AUC, and its 
95% CI. The analysis revealed that the RF model outperformed others with 86.27% accuracy and an 
AUC of 0.73, proving stable and apt for complex dataset forecasting despite a broad confidence 
interval (0.655-0.900). 

3.2. CT features are only moderately predictive of the risk of liver metastasis 

In 167 patients, 75.45% had clear disease contours. We analyzed abdominal + pelvic CT contrast 
imaging and extracted 1063 features from the radiologist's raw segmented images, including first-
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order features, shape features, GLCM, GLRLM, GLSZM, GLDM, NGTDM, LOG, and Wavelet 
features. By T-test and LassoCV, we screened 8 key features. These features show significant 
differences in patients with different metastatic outcomes and help to construct predictive models. 
Among the eight machine learning algorithms, the Gaussian plain Bayesian algorithm performed the 
best with an AUC of 0.85, but the performance varied significantly among algorithms and the stability 
needs to be improved. This suggests that CT image features can distinguish clinical endpoints, which 
are influenced by tumor texture features, and lesion-specific features are applied in multimodal 
models to assess their predictive ability. 

        (a)                       (b) 

     
Figure 6: LASSO regression for predictor screening in radiomic models(a)MSE vs.α (b) Coefficient 
path diagrams 

(a)                (b)        (c)             (d) 

   
Figure 7: Radiomic model performance evaluation(a)ROC curves for multiple classification models 
(b)Heatmap of model performance metrics(c)ROC curves for NB model(d)Confusion matrix for 
training and testing sets of NB model 

(a)                (b)                  (c) 

 
Figure 8: Feature Importance Visualization(a)Feature importance coefficients (b) Interpretable SHAP 
models(c) Distribution of each feature in the presence or absence of liver metastases 

3.3. Deep Learning of Pathohistological Features Can Predict Liver Metastases Well 

This study utilized the ResNet-18 model to build a pathology image classifier. Preprocessing involved 
Excel label integration, data augmentation (random flip, rotation, Gaussian blur), and a 7:3 train-
validation split. The model leveraged pre-trained weights, adjusted the fully connected layer for 
binary classification, and incorporated Dropout. It used cross-entropy loss, Adam optimization, and 
a Warmup-Cosine Decay learning rate schedule. The model achieved an AUC of 0.88, a 95% CI of 
0.874-0.894, and an accuracy of 0.855, indicating good performance. 

Table 3: Evaluation metrics of deep learning models for pathology histology 
Set AUC AUC 95% CI Accuracy Precision Recall F1 score 

Train Set 0.97 0.970-0.975 0.931 0.881 0.788 0.832 
Test Set 0.88 0.874-0.894 0.855 0.689 0.582 0.631 
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(a)             (b) 

 
Figure 9: Evaluation of Pathogenomic Model(a)ROC curves for pathohistological 
modeling(b)Confusion matrix for training and validation sets of pathohistology model 

In this study, we analyzed WSI-level feature extraction by aggregating and statistically predicting 
slice probabilities for clinical analysis. The liver metastasis group had significantly higher mean and 
max predicted probabilities than the no metastasis group, indicating more prominent tumor metastasis 
in whole-slice images. The metastasis group's local section probabilities were higher and single-
peaked, while the no-metastasis group's were lower with diverse density curves, suggesting less 
distinct metastatic features locally. 

       
Figure 10: Overall Probability Characterization of Patch 

Figure 11: Localized Patch probability distributions in the liver metastasis and no liver metastasis 
groups 

3.4. TLSs signify a favorable prognosis in colorectal cancer 

We evaluated TLS in CRC tissues via H&E staining and graded them from 0 to 4. TLS showed no 
significant correlation with gender, age, tumor site, stage, tumor size, differentiation, or Ki-67 
expression but negatively correlated with liver metastasis (P=0.041) and P53 positivity 
(P=0.029)[9,10], indicating a potential link between intratumoral TLS and liver metastasis and P53 
expression in CRC.   

              
Figure 12: Colorectal cancer-related TLS grading status  Fig.13.Relationship between TLS and liver 
metastasis, P53 

3.5. Multimodal integrated model outperforms unimodal and clinical models 

We developed a multimodal model using logistic regression with imaging, pathohistology, TLS 
scores, and gender to predict colorectal cancer liver metastasis. The model had an AUC of 0.944 and 
a 95% CI of 0.840-1.000, indicating strong classification capabilities. Using column-line plots, we 
found that lower TLS scores and higher imaging and pathohistology scores correlated with increased 
metastasis risk. The model could yield predictive probabilities up to 0.99, demonstrating high 
accuracy. 
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Table 4: Evaluation metrics for multimodal integration models 

Set AUC AUC 95% CI Accuracy Precision Recall F1 score 
Train Set 0.98 0.941-1.000 0.979 0.950 0.950 0.950 
Test Set 0.94 0.840-1.000 0.927 1.000 0.667 0.800 

(a)                     (b) 

     
Figure 14: Evaluation of multimodal integrated model(a)ROC curves for multimodal integrated 
model(b)Confusion matrix for training and validation sets of multimodal integrated model 

 
Figure 15: Column line diagram of a multimodal integration model 

4. Discussion 

This study introduced a multimodal model integrating radiomics, pathomics, and TLS scores for 
predicting colorectal cancer liver metastasis, outperforming unimodal models with an AUC of 0.94 
and accuracy of 0.927. Lower TLS scores and higher imaging and pathomics scores indicated higher 
metastasis risk. The multimodal model was more accurate, sensitive, and specific than traditional 
models, highlighting its ability to capture tumor characteristics, especially in challenging cases, and 
compensating for single-modality limitations. The study underscores the value of combining deep 
learning and traditional machine learning to offer quantifiable risk scores for early diagnosis, precise 
treatment, and management of high-risk patients. 
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