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Abstract: The study seeks to provide an objective foundation for NBA team rankings beyond
win-loss statistics. The research uses machine learning to examine offensive efficiency, defen-
sive efficiency, and win % from the last four NBA seasons utilizing sports analytics and big
data. The study uses PCA and K-Means clustering to classify team performance tiers. Teams
with balanced offensive and defensive measures typically rank higher in clusters, establishing
the technique as a more thorough evaluation tool. Moderate accuracy in error analysis shows
the balance between analytical depth and practical applicability. The research found that this
data-driven paradigm helps comprehend team relationships and performance, which might be
used in strategic decision-making and other sports. Refinement may incorporate time patterns
and player-specific data.
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1. Introduction

The availability of large data, improvements in computer infrastructure, and the development of ma-
chine learning have revolutionized sports analytics. Media coverage and expert studies like ESPN’s
have influenced sports team rankings and evaluations, such as win percentages and offensive/defensive
efficiency. These rankings provide useful information, however they focus largely on win-loss records
and ignore more nuanced team performance factors. Newspapers and sports media often rate teams by
win % or offensive ability, but these rankings seldom account for team performance’s intricacies. Fig-
ure 1 shows that current rankings, while useful, overlook important factors like the balance between
offensive and defensive efficiency and the association of underlying data with sustained performance
across seasons. These rankings are subjective and sometimes influenced by broad generalizations, so
they don’t accurately reflect a team’s success across the board. Big data has given sports organizations
unprecedented access to season-long insights. With advanced machine learning techniques, this data
can be used to objectively evaluate teams based on win percentage, offensive efficiency, defensive ef-
ficiency, and more complex metrics like offensive-defensive strategy interaction. These data elements
offer a more detailed study that goes beyond rankings and better represents a team’s success. This
study analyzes team performance over numerous years using machine learning methods to calculate
win percentage, offensive efficiency, and defensive efficiency to address this gap. This paper focuses
on:
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1. Compare win percentages with traditional rankings to assess how well win rates align with per-
ceived team strength.

2. Investigate the relationship between win percentage, offensive efficiency, and defensive efficiency,
highlighting the impact of each metric on overall success.

3. Explore how the difference between offensive and defensive efficiencies correlates with team per-
formance, offering a deeper understanding of the factors that drive success or failure.

To compare these characteristics to traditional rankings, we will use objective, data-driven com-
parisons and show the findings. The research seeks to go beyond media narratives to uncover what
genuinely affects team performance.

Figure 1: 2022-2023 offense efficiency ranking

2. Data pre-analysis and methodology

2.1. Getting data

Kaggle has tons of data to train our model, providing individual stats by year and teams stats by sea-
son, including regular season and play-off conference information. ESPN, an official sports website,
has annual team aggregate statistics. For this research, we utilized the “NBA Team Stats” data collec-
tion from Kaggle and ESPN official stats from each year. NBA has several seasons, but we will focus
on the last four: 2023-2024, 2022-2023, 2021-2022, 2020-2021. We chose these 4 years since we went
through covid-19, and the NBA before and after covid are really different. The NBA’s status altered
in 2018-2019 when Golden State Warriors lost their final. Superstars like Kevin Durant and Lebron
James left. Superstar-laden teams declined as superstars left for other teams to win the crown. Before
2018-2019, a team may be ranked in the top 5 then drop to a poor team owing to superstar transfers.
The player-change rate dropped after 2018-2019. This study solely considers the event following the
2018-2019 season.

Additionally, we require real-world NBA franchise regular season rankings from ESPN. These
data will not be used in 2.1 and 2.2. These data will be used in 2.3.3..

2.1.1. Normalization and selection of variables

Data screening and integrating data First, we must find the data type we want to use and change the
numerical digits into the same range. For example, each team has a win percentage and a total free
throws.

We want to determine the proportion or ratio of each team’s performance, rather than the overall
number, as numbers are typically used to indicate individual performance rather than team perfor-
mance. The NBA Team Stats dataset has a large variety of data kinds, making it difficult to assess the
team’s performance within a given data category. However, we may gain a perceptual intuition and
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compare it to other teams in the same data type by looking at the proportion. The ESPN official stats
for each year have already been preprocessed, so we merely utilize their databases.

Integrating NBA Team numbers and ESPN official numbers from each year provides fundamental
data for research:PACE, AST, TO, ORR, DRR, REBR, EFF FG%, TS% , OFF EFF , DEF EFF, Win
%, FG %, Three Point %, Free Throw %, Steals %, and Blocks %.

Finally, we will receive a dataset with 30 teams and 16 variables from 2023-2024, 2022-2023,
2021-2022, and 2020-2021.

Normalization After selecting data types and sets, we must preprocess our data.
Since our data set has so many types and their ranges are usually varied, we need to z-score

normalize it to manage the scale in each data type. Another rationale for z-score normalization. This
won’t be mentioned. We’ll cover this in 2.2.2..

Therefore, according to z-score formula: [1]

x− µ

σ
(1)

where x is original value within a data type, µ is the average number within this data type, and σ is
standard deviation within this data type. By applying this formula, we will get the standardized data
set.

2.2. Principal component analysis and K-means clustering [2]

2.2.1. Factors screening

Variable screening on our completed-integrating data set is required before principal component anal-
ysis (PCA). Because win %, OFF EFF, and DEF EFF determine if the team is a title contender in
actual NBA games. Only the top eight teams in the East and West with the highest winning per-
centage will make the playoffs, and a team’s regular-season winning percentage will determine its
standings in either the East or West and which team it plays in the first round. OFF & DEF EFFdeter-
mine a team’s performance. The easiest method to tell whether a team is good is by looking at their
standings, or win percentage. We may next assess its OFF & DEF EFF and other parameters. Overall,
win % is the most obvious and important metric in team effectiveness.

Due to their importance, these three factors will dominate PCA, obscuring other variables’ occur-
rence. We omit those three components from PCA. Instead, we’ll compare teams without those three
criteria versus those with them. Our focus will be on the data set without win % vs the one with it.
The data set without win %, OFF & DEF EFF will be compared to the one with them.

2.2.2. PCA

Why using PCA? [3]
This study comprises 30 teams, each with 16 variables to define it, and each vector has 16 digits to
represent its coordinate.

The high-dimensional 16-variable dataset makes analysis difficult and computationally intensive.
PCA reduces dimensionality by reducing variables to the primary components that capture the greatest
data variation. This reduction makes the dataset manageable while keeping vital information.

Many performance measures are linked in sports analytics. EFF FG % & TR % may affect OFF
EFF. Multicollinearity may distort statistical models and hide relationships. By converting correlated
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variables into uncorrelated principle components, PCA reduces multicollinearity and improves anal-
ysis reliability.

Machine learning systems benefit from PCA data preparation. By reducing features, PCA reduces
overfitting, processing, and accuracy in predictive models that predict team performance or other
outcomes. Although PCA reduces variables, it keeps much of the dataset’s variability. This retains
critical data for analysis, preventing simplicity from losing important data insights.

PCA will only be used for non-win %, OFF & DEF EFFstatistics. The PCA is unnecessary for
data that just includes win % and data that includes win %, OFF & DEF EFF since they contain one
or three tiny components.

2.2.3. K-means [4]

Why using K-means?
For projects that want to find trends in historical data without labels, K-Means is perfect. It may
categorize teams by performance measures alone. Clusters help rate teams by assigning them to per-
formance tiers. Comparing teams inside and across clusters is straightforward since they share com-
parable metrics. Clustering by metrics might show patterns of top-tier, mid-tier, and lower-tier teams,
helping uncover what makes them successful or unsuccessful. Also, NBA statistics generally include
scores, rebounds, assists, etc. By clustering teams using multidimensional metrics, K-Means makes it
easier to understand which stats contribute to which rankings. K-means is a useful technique to rate
teams without giving them exact standings.

The team scores for each factor after PCA will be used for K-means. The key to K-means is
choosing the right cluster number k. After getting the team scores for PCA, we can build a graph
showing that k = 6 or 7 is appropriate for data omitting win %, offensive and defense efficiency, and
win % just. We don’t want k to be too little or too huge, therefore k = 6 or 7 seems reasonable. If k is
too small, this classification is pointless since each group has so many teams that we can’t discern any
difference. If k is too high, that would be trivial and we can’t have group characteristics. Choosing
k = 6 or 7 makes sense. Looking at the graph, we will select k = 4 for data with just win %, OFF &
DEF EFF.

We need to apply K-means for data that “excluding win % k = 6 vs. include win % k = 4”, “ex-
cluding win % k = 7 vs. include win % k = 4”, “excluding win %, OFF & DEF EFF k = 6 vs. include
win %, OFF & DEF EFF k = 4”, and “excluding win %, OFF & DEF EFF k = 7 vs. include win %,
OFF & DEF EFF k = 4” for each year. After utilizing K-means, we will get each clustering result
based on the dataset and k that we use.

2.3. Matching and Error Analysis

After using K-means to cluster each year, we must assess its performance. Our result alone cannot
provide us the conclusion. We can’t use a result as our team rating if it’s not classified correctly after
review. How can we define K-means’ goodness? How can we define K-means to categorize teams
successfully? We will use Majority Vote Error Analysis and Quantitative Error Analysis to evaluate
K-means in this study.

After applying K-means we will receive a dataset that includes each team and their corresponding
cluster number, n, where n ∈ N, n ⩽ 7, in each dataset.

We will call the K-means dataset that exclude win % SWk
1 and the dataset that exclude win %,

OFF & DEF EFF SWODk
1 , where k ∈ 6 or 7. The data set that only include win % will be SW

2 and the
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dataset that only include win %, OFF & DEF EFF will be called SWOD
2 .

Noted: for majority vote error analysis and quantitative error analysis, we will apply these methods
for each year, which means different seasons will have different results. We will analyze different
seasons separately.

2.3.1. Constructing converting functions

Considering S1 scene:
We first construct two sets U6 = {A,B,C,D,E, F} and U7 = {A,B,C,D,E, F,G}.
We then construct two functions FW and FWOD:

– FW : There are two mapping cases under FW

1.

FW : SW6
1 → U6,



FW (1) = A, if ni = 1
FW (2) = B, if ni = 2
FW (3) = C, if ni = 3
FW (4) = D, if ni = 4
FW (5) = E, if ni = 5
FW (6) = F, if ni = 6

ni ∈ SW6
1 , i ∈ {1, 2, 3, . . . , 30} (2)

2.

FW : SW7
1 → U7,



FW (1) = A, if ni = 1
FW (2) = B, if ni = 2
FW (3) = C, if ni = 3
FW (4) = D, if ni = 4
FW (5) = E, if ni = 5
FW (6) = F, if ni = 6
FW (7) = G, if ni = 7

ni ∈ SW7
1 , i ∈ {1, 2, 3, . . . , 30} (3)

ni represents the ith team’s corresponding cluster number.
– FWOD: There are two mapping cases under FWOD

1.

FWOD : SWOD6
1 → U6,



FWOD(1) = A, if ni = 1
FWOD(2) = B, if ni = 2
FWOD(3) = C, if ni = 3
FWOD(4) = D, if ni = 4
FWOD(5) = E, if ni = 5
FWOD(6) = F, if ni = 6

ni ∈ SWOD6
1 , i ∈ {1, 2, 3, . . . , 30} (4)

2.

FWOD : SWOD7
1 → U7,



FWOD(1) = A, if ni = 1
FWOD(2) = B, if ni = 2
FWOD(3) = C, if ni = 3
FWOD(4) = D, if ni = 4
FWOD(5) = E, if ni = 5
FWOD(6) = F, if ni = 6
FWOD(7) = G, if ni = 7

ni ∈ SWOD7
1 , i ∈ {1, 2, 3, . . . , 30} (5)
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ni represents the ith team’s corresponding cluster number.
We call each capital letters corresponding group GX , where X ∈ U6 ∪ U7

Considering another S2 scene: We first construct another set L = {a, b, c, d}
We then construct two functions fW and fWOD:

–

fW : SW
2 → L,


fW (1) = a = l1, if µi = 1
fW (2) = b = l2, if µi = 2
fW (3) = c = l3, if µi = 3
fW (4) = d = l4, if µi = 4

µi ∈ SW
2 , i ∈ {1, 2, 3, . . . , 30} (6)

–

fWOD : SWOD
2 → L,


fWOD(1) = a = l1, if µi = 1
fWOD(2) = b = l2, if µi = 2
fWOD(3) = c = l3, if µi = 3
fWOD(4) = d = l4, if µi = 4

µi ∈ SWOD
2 , i ∈ {1, 2, 3, . . . , 30} (7)

µi represents the ith team’s corresponding cluster number.
We call each lower case letters to be lµi

, where lµi
∈ L.

Finally, for every ith team under each group GX , we will find i’s corresponding “lµi
”.

We let:
GX = {lµi

}

2.3.2. Majority voting process [5]

Define Targeting Mapping letter lT :
For each group GX , we find its most frequent letter lµi

. We let this letter be lT . Noted that if there
is a case that is tie, we just random choose one lµi

among the tie letters.
We then define a function:

MV : GX → {0, 1} ,MV (GXα) =

{
0, if lµi

= lT
1, if lµi

̸= lT
(8)

where α is the αth lower case letter in GX .
After implementing this function, we basically convert each GX groups that contain lower case

letters into GX groups that only contain either 0 or 1.
Calculating the sum for each GX :

ErrX =

|GX |∑
α=1

MV (GXα) (9)

Finally, we calculate the percent error:

PercM =

∑
X ErrX
N

· 100% (10)

where N = 30 in this case.
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2.3.3. Quantitative error process

The quantitative error process involves a more detailed numerical approach to evaluating cluster
quality. Instead of relying solely on the frequency of subcategories like majority voting process,this
method leverages numerical rankings and distance-based evaluations to offer a nuanced understanding
of classification performance.

In this section we need to use the regular season team standing dataset as we mentioned in 2.1.
Define Mapping axis:

For the teams that have the same lµi
, we find its corresponding team’s position ri in corresponding

regular season standing dataset. We said this set for the teams that have the same lµi
to be Tlµi

,

AvgTlµi
=

 |Tl|∑
β=1

riβ

 · 1

|Tl|
(11)

where β means the βth element in Tlµi
.

We will get an average standing for each lµi
(i.e. each “a, b, c, d”). Then we sort them from the

smallest to the largest. We assign each lower case letter a number 1, 2, 3, 4 from the lowest to the
largest. (i.e. if AvgTa < AvgTb < AvgTc < AvgTd, then a → 1, b → 2, c → 3, d → 4)

Define “distance”: For each GX , we calculate the distance for all four possible mappings of lower
case letters for every lµi

in GX .
For each mapping lm ∈ {a, b, c, d}:

DGX ,lµi
=

∑
(xµi − xlm)

2 (12)

where xµi means the corresponding sorting number on mapping axis. xlm means the corresponding
sorting number on mapping axis.

For each GX , we can compare the distances based on different mapping lm:

DXmin
= Min(DGX ,lµi

) (13)

After this process, we will get different distances between S1 and S2 for each GX .
Finally, we can calculate the total distance and percent error:

Dtotal =
∑

DXmin
(14)

PercQ =
Dtotal

N
· 100% (15)

3. Results and visualizations

3.1. PCA and visualizations of clusters

We won’t include four years’ visualization since each year will have two cases: exclude win % solely
and exclude win %, OFF & DEF EFF. We will have k=6 and k=7 examples for these two scenarios.
Putting all the visualization graphs here will take up a lot of material. Thus, in 3.1, we will show using
the 2023-2024 regular season and results.
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3.1.1. Visualization of SWk
1 with its PCA data

After we implemented PCA method, we would reduce the total factors from 16 to 5 factors in this
case. However, we can’t draw a graph that contains 5 coordinates in graph, so we split those 5 factors
into 3 factors a graph and 2 factors a graph.

When cluster k = 6:

Figure 2: Visualization of SW6
1 with its PCA data when k = 6

When cluster k = 7:

Figure 3: Visualization of SW6
1 with its PCA data when k = 7

3.1.2. Visualization of SWODk
1 with its PCA data

In SWODk
1 , after we implemented PCA, we will reduce the total factors from 16 to 4. Therefore, we

will split these 4 factors into 2 factors a graph separately.
When cluster k = 6:

Figure 4: Visualization of SWOD6
1 with its PCA data when k = 6

When cluster k = 7:
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Figure 5: Visualization of SWOD7
1 with its PCA data when k = 7

3.2. Matching and values of error

Same as 3.1, in this section we will only show one year’s matching result and its corresponding values
of error. In this section we will choose 2021-2022 regular season to show some of the results and its
values of error.

3.2.1. Majority voting error analysis

Results of SW
1 vs. SW

2

– When cluster k = 7:

Table 1: Results of K-means when k = 7 for SW

Team Cluster number in SW
1 Cluster number in SW

2

Atlanta 1 2
Utah 5 2

Phoenix 7 3
Milwaukee 7 2

Boston 5 2
Denver 5 2

Charlotte 7 2
Memphis 3 3
Minnesota 7 2

Miami 5 2
Philadelphia 1 2

Chicago 1 2
Brooklyn 7 2

Dallas 5 2
Golden State 5 2

Toronto 2 2
San Antonio 7 1

Cleveland 5 1
Indiana 7 2

New Orleans 5 4
Washington 2 1
New York 1 1
LA Lakers 2 1
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Team Cluster number in SW
1 Cluster number in SW

2

LA Clippers 7 2
Sacramento 1 2

Portland 7 1
Houston 4 4
Detroit 6 4

Oklahoma City 4 4
Orlando 4 4

Implementing function FW and fW :
Group A (A): Atlanta: b, Boston: b, Denver: a, Miami: b
Do the same way for Group B C D E F G. We will get lT for each group: GA: b GB: a GC : c
GD: d GE: b GF : d GG: b
Implementing functions MV , ErrX , and PercM : 1+1+0+0+0+0+5

30
· 100% = 23.3%

– When k = 6, PercM = 1+1+5+0+2+0
30

· 100% = 30%

Results of SWOD
1 vs. SWOD

2

– When cluster k = 6:
lT for each group: GA: a GB: d GC : d GD: c GE: b GF : a PercM = 6+0+1+0+0+4

30
· 100% =

36.67%
– When cluster k = 7 lT for each group: GA: a GB: d GC : a GD: c GE: b GF : a GG: d PercM =

4+1+3+0+0+3+0
30

· 100% = 36.67%

3.2.2. Quantitative error analysis

In this section, we will not show the converting results since we have already showed in ?? and ??.
We will only show the the process and results in quantitative error analysis.

We need to use 2021-2022 regular season standings data in this part. Since we need to use this
dataset all the time, we just show this data in the front:
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Table 2: 2021-2022 regular season standings
Team name Standing

Phoenix Suns 1
Memphis Grizzlies 2

Miami Heat 3
Golden State Warriors 4

Dallas Mavericks 5
Boston Celtics 6

Milwaukee Bucks 7
Philadelphia 76ers 8

Utah Jazz 9
Toronto Raptors 10
Denver Nuggets 11

Minnesota Timberwolves 12
Chicago Bulls 13
Brooklyn Nets 14

Cleveland Cavaliers 15
Atlanta Hawks 16

Charlotte Hornets 17
LA Clippers 18

New York Knicks 19
New Orleans Pelicans 20
Washington Wizards 21
San Antonio Spurs 22
Los Angeles Lakers 23
Sacramento Kings 24

Portland Trail Blazers 25
Indiana Pacers 26

Oklahoma City Thunder 27
Detroit Pistons 28
Orlando Magic 29

Houston Rockets 30

Results of SW
1 vs. SW

2

Since mapping axis only has difference between different S2 (i.e. SW
2 and SWOD

2 ), within the same
S2, we can calculate the mapping axis first.

Finding Mapping axis:
Lowercase Letter “a”:
AvgTa = Washington Wizards (21) + Sacramento Kings (24) + San Antonio Spurs (22) + LA Lakers
(23) + New Orleans Pelicans (20) + New York Knicks (19) /6 = 21.5
Same way as “b”: 10.5, “c”: 1.5, “d”: 27.5.
Axis: 1 → c, 2 → b, 3 → a, 4 → d

– When cluster k = 6:
Implementing functions DGX ,lµi

, DXmin
, and Dtotal:
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Group A (A): Lowercase Letters: b, b, b, b, b, b, b, a, b

Mapping A to c (1):
1. Distances:

(a) b: (2− 1)2 = 1 (for 8 teams)
(b) a: (3− 1)2 = 4 (for 1 team)

2. Total Distance: (1× 8) + (4× 1) = 12
Do the same way for mapping A to b, c, d, then we get: 1, 8, 33. So the minimum distance for A
is 1 (mapping to b).
We then do the rest of the group B, C, D, E, F and we get the minimum distances are 1, 7, 0, 2, 0.
So PercQ = 1+1+7+0+2+0

30
· 100% = 36.67%

– When cluster k = 7:
PercQ = 10

30
· 100% = 33.3%

Results of SWOD
1 vs. SWOD

2

Axis: c → 1, a → 2, d → 3, b → 4

– When cluster k = 6:
PercQ: 6+0+1+0+0+7

30
· 100% ≈ 46.67%

– When cluster k = 7:
PercQ: 4+1+6+0+0+3+0

30
· 100% ≈ 46.67%

4. Conclusion

This data-driven study used Principal Component Analysis (PCA) and K-Means clustering to eval-
uate NBA team rankings objectively. The research used previous NBA seasons to emphasize win
percentage, offensive efficiency, and defensive efficiency, as well as multidimensional performance
measurements.

The results show that grouping NBA teams by PCA-reduced variables showed performance tiers
that standard ranking algorithms miss.

Teams with good OFF & DEF stats concentrated in top-performing groupings, matching their
high win percentages. PCA simplifies understanding and preserves variance by reducing dimension-
ality of complicated datasets. K-Means clustering effectively distinguishes team levels with k-values
of 6 or 7. Quantitative and majority voting error analysis confirmed clustering results. In various
setups, majority voting error rates varied from 23.3% to 36.67%, whereas quantitative mistakes indi-
cated clustering accuracy from 33.3% to 46.67%. These findings showed team classification’s balance
between simplicity and accuracy.

This study goes beyond win-loss statistics to assess NBA team performance with a sophisticated
analytical methodology. The findings improve sports analytics by helping assess teams and make
strategic decisions. For larger applications, future study might incorporate player-specific metrics or
apply similar methods to other sports leagues.

5. Pros and cons

Pros:

1. Objectivity: This method minimized biases inherent in traditional rankings by relying on data-
driven analysis.
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2. Multidimensionality: Incorporating diverse metrics provided a comprehensive understanding of
team performance.

3. Scalability: The approach can be applied across multiple seasons or extended to other sports
leagues.

Cons:

1. Simplification of metrics: The exclusion of key metrics like win percentage during PCA analysis,
while necessary for reducing redundancy, may overlook some intuitive aspects of team rankings.

2. Cluster rigidity: The K-Means clustering method assumes predefined cluster numbers (k), which
may not always align perfectly with real-world team dynamics.

3. Error sensitivity: Results depend on the quality of the dataset and preprocessing steps like normal-
ization, making the method sensitive to data imperfections.

6. Future directions

1. Hierarchical Clustering: Future work could explore hierarchical clustering [6] to identify nested
group structures, offering insights into relationships between team tiers.

2. Incorporating Temporal Analysis: A time-series approach could be employed to track team per-
formance trends over several seasons.

3. Integration of Player-Level Data: Adding individual player metrics, such as player efficiency rat-
ings and injury history, could enhance the analysis of team dynamics.

4. Enhanced Validation Techniques: Cross-validation methods or comparison with alternative clus-
tering algorithms (e.g., DBSCAN [7] or Gaussian Mixture Models [8]) could strengthen the ro-
bustness of findings.
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