

Deep reinforcement learning in stock portfolios

Yue Quan

Boston University, 1 Silber Way Boston, MA 02215

yuequan@bu.edu

Abstract. This paper investigates stock portfolios by application of Deep Reinforcement

Learning (DRL) Models to achieve an optimal tactical asset allocation. The research problem is

described as an optimization scenario that seeks to maximize the portfolio risk adjusted returns

for a given portfolio asset allocation. The problem is set up with an initial capital investment

which is invested in a set of assets. The initial strategic allocation is determined, which in our

case is the equal weight allocation, and all of the capital is invested in the set of assets. At each

point in time, the assets are reallocated according to the allocation which will increase the

portfolio value. Two DRL models are implemented. The performance of the DRL models is

compared with the uniform weights portfolio. The results show that, generally, two DRL

models have higher cumulative returns.

Keywords: Deep Reinforcement Learning, Portfolio, Uniform Weights, Cumulative Return,

Tactical Asset Allocation.

1. Introduction

Deep learning is divided into a variety of ways, including supervised learning, semi supervised

learning, unsupervised learning as well as reinforcement learning. Reinforcement learning is different

from the other three learning methods. When strengthening learning training, the environment needs to

give feedback and the corresponding value. It is mainly to guide the training objects to make decisions

at each step. In addition, it guides what actions can be taken to achieve specific goals. The inspiration

of reinforcement learning comes from behaviorism theory in psychology [1]. Reinforcement learning

has some characteristics:

(1) Delay feedback. In the process of reinforcement learning and training, the trial and error

behavior of the training object gets environmental feedback. Sometimes, it may need to wait until the

whole training is over before getting a feedback.

(2) Time is an important factor in strengthening learning. A series of environmental state changes

and feedback of reinforcement learning are strongly linked with time. The whole training process of

reinforcement learning changes with time. State feedback is also changing.

(3) The current behavior affects the subsequently received data. In supervised learning and semi

supervised learning, each training data is independent. They have nothing to do with each other.

However, in reinforcement learning, the current state and the actions taken will work in concert with

the state received in the next step. In other words, there is a correlation among data [2].

Reinforcement learning can be applied in many fields. Tactical Asset Allocation (TAA) is an active

research area with a number of research focusing on optimizing the tactical allocation of assets in a

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

482

portfolio to take advantage and profit from market movements and anomalies. The main focus of

many research works has to do with development of models that can accurately capture market

movements and predict the expected future returns so as to rebalance the portfolio optimally based on

the current and future market trends.

2. Literature review

The optimization problem of Tactical Asset Allocation (TAA) is presented as a Markov Decision

Process (MDP) which can be solved by Dynamic Programming (DP) [3]. In his paper, Neuneier

formalizes this representation and proposes the use of DP or Reinforcement Learning algorithms in

solving such an optimization problem. Yang, Liu,Zhong and Walid have proposed a Deep

Reinforcement Learning (DRL) Library that uses various DRL algorithms for portfolio construction

and stock trading [4]. The methodology in this paper adopts this approach and make use of DRL

models based on the Stable Baselines library which is a library for DRL algorithms.

Chakravorty et al., have proposed in their paper that Deep Learning based Global Tactical Asset

Allocation shows the use of deep neural networks with macro-economic data in a walk-forward setting

to implement TAA [5]. They used macroeconomic indicators and price-volume features to perform

Tactical Asset Allocation and optimizing the weights using a custom utility function of a single metric.

Further research in this regard can be done by using a utility function which takes into consideration a

number of matrices for optimization. Their strategy showed a significant performance improvement

across different runs. This demonstrates the advantage of using RL models for TAA as the model

leans iteratively and improve the policy for each run.

Obeidat et. al., used a methodology for TAA based on prediction of future returns using the Long

Short Term Memory (LSTM) Neural Network [6]. The predicted future returns where then used to

optimize the asset allocation. As the main challenge with any asset allocation problem is accuracy with

which expected returns can be estimated, their model showed better performance compared to the

traditional passive approaches. However, the model performed worse in certain market trends. Also,

the rebalancing period was fixed on a monthly basis. This can be optimized by use of RL in which we

include the optimization period as part of the cost function.

3. Methodology

Deep Reinforcement Learning (DRL) model framework is shown.

Figure 1. Representation of a deep reinforcement learning framework.

A Neural Network is proposed as the agent which finds an optimal policy that acts on the state of the

environment to produce actions that maximize the reward function. We will consider a portfolio of n

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

483

number of assets with a vector of close prices at time t given by Vt. The Normalized vector of the price

is given by element-wide division of vector at time t by the vector at time t − 1:

𝑌𝑡 =
𝑉𝑡
𝑉𝑡−1

(1)

𝑌𝑡 = [1,
𝑉1,𝑡
𝑉1,𝑡−1

,
𝑉2,𝑡
𝑉2,𝑡−1

, … ,
𝑉𝑛,𝑡
𝑉𝑛,𝑡−1

]

𝑇

(2)

The portfolio vector at time t is determined by the element-wise product of the normalized price vector

and the weights at time t − 1 divide by their dot product.

Wt
′ =

Yt · Wt−1

YtWt−1

(3)

The portfolio weight will evolve from Wt′ to Wt due to transaction costs. Then the price at time t

will be Pt = =μPt′ where μ ∈ [0,1] the transaction costs factor.

The portfolio value at time t is given by:

𝑃𝑡 = 𝜇𝑡𝑃𝑡−1𝑌𝑡𝑤𝑡−1 (4)

The portfolio log return is given by:

𝑅𝑡 = ln
𝑃𝑡
𝑃𝑡−1

= ln𝜇𝑡𝑌𝑡𝑤𝑡−1 − 1 (5)

The final portfolio value at time T is given by:

PT = P0exp(∑Rt

T

t=1

) = P0∏μtYtwt−1

T

t=1

(6)

P0 is the investment at time zero that we start with. The objective function in the optimization problem

will be to maximize this cumulative portfolio value at time T.

We define the Reinforcement Learning Configuration of our model as follows:

1. The state (S) consists of the high, low, and close. The covariance matrix of close prices and the

market characteristics serve as input.

2. The action (A) is the desired weights allocation. The action at time t is supposed to be denoted

by the weights vectors at time t − 1: At−1 = Wt−1. As a consequence of the action At−1 and the state

inputs, we will have an action or weights allocation at time t which is At = Wt. Taking into

consideration the transaction costs, our model should make a decision on how the weights are

rebalanced from Wt−1 weights Wt. This is done to maximize the accumulative portfolio value.

3. The reward function is given based on the total portfolio value adjusted for the transaction costs.

The reward function adjusted for transaction costs is given by:

𝑅𝑡(𝑆𝑡−1, 𝐴𝑡−1) = 𝑙𝑛(𝐴𝑡−1𝑌𝑡−1 − 𝜇∑ |𝐴𝑖,𝑡−1 −𝑊𝑖,𝑡−1|
𝑛
𝑖=1) (7)

The policy Π(s,a) determines the action to maximize the reward at each state. In our case the policy is

made by a DNN using DRL.

In implementation of the model the following assumptions are taken into consideration:

• The market is liquid and it is possible to trade at any time;

• Transactions are small enough not to affect the market price of the assets which means the

number of assets traded is small enough compared with the general market liquidity;

• Transaction costs have been assumed at 0.1% of each trade total value.

The methodology proposed for the asset allocation problem follows the following steps:

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

484

1. Stock Selection. We have considered the 30 stocks of Dow Jones Industrial Average (DJIA) to

form part of our portfolio. Perform stock selection from the total stock constituent. This process

ensures that the stocks considered for the portfolio are less volatile. Neural Network Auto Encoders

are proposed to perform Stock Selection.

2. Feature Selection and Reduction. Technical indicators are added to the selected stocks to aid in

the performance of the agent. In addition, we perform dimensionally reduction of the added features

(technical indicators) to optimize the learning process of the model. Neural Network Autoencoders are

used to perform feature reduction.

3. Benchmark Portfolio. We construct portfolio based on equal weights allocation, which is used to

benchmark the DRL model.

4. Deep Reinforcement Learning Models. We develop two DRL models to perform asset allocation

which are based on the A2C and PPO RL algorithms.

5. Backtesting and Evaluation. We test the performance of the DRL models against the uniform

weights portfolio.

4. Results

4.1. Stock Selection

We use the data for the 30 stocks of the DJIA for the period from 01 January 2010 to 30 December

2020 giving us a total of 2768 data points. From the 30 stocks, 20 with lower volatility are selected

using Autoencoders. We construct an Autoencoder with the total number of stocks in our input layer,

we have an encoder layer with dimension 5 and a decoder layer with dimension 30. The stock data is

reconstructed by passing it through the Autoencoder and then the reconstruction error of each stock is

calculated. We then pick the 20 stocks with the lowest reconstruction errors.

Below is the summary of the Autoencoder model:

Table 1. Model summary for stock selection.

Layer (type) Output Shape Param #

Input_1 (InputLayer) [(None, 30)] 0

Encoder_Input (Dense) (None, 5) 155

Decoder_Input (Dense) (None, 30) 180

Decoder_Activation_function (Activation) (None, 30) 0

Total: 335

Trainable: 335

Non-trainable: 0

The selected stocks are 'KO', 'PG', 'JNJ', 'PFE', 'MMM', 'VZ', 'MRK', 'JPM', 'XOM', 'V', 'AXP', 'IBM',

'MCD', 'CAT', 'HD', 'WMT', 'NKE', 'MSFT', 'DIS', and 'TRV'.

4.2. Feature Selection and Dimensionality Reduction

The following technical indicators are generated to be chosen as features [7].

1. Volatility Average True Range (ATR). It is an N-day exponential moving average of the true

range values. It reflects the intensity of price fluctuations. Low ATR indicates a relatively cold market

trading atmosphere. A high ATR indicates a relatively prosperous market trading atmosphere. Extreme

high ATR or low ATR values can be seen as the reversal of the price trend or the beginning of the next

trend.

2. Volatility Bollinger Band Width (BBW). It draws the distance between the upper and lower

Bollinger Bands. The graph line represents the contraction and expansion of the bands on a basis of

recent volatility. A high width usually indicates a slowing trend, while a low width indicates a forming

trend.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

485

3. Volume On-balance Volume (OBV). It is the average volume of each transaction. Its increase

indicates that there is a large amount of business, which may be the main force or large customers

entering the market. Its decrease indicates that most of the traders are small and medium-sized retail

investors.

4. Volume Chaikin Money Flow (CMF). It is the sum of close location value volume in a certain

time period divided by the total transaction volume. It indicates the strong or weak trend of a stock.

5. Trend Moving Average Convergence Divergence (MACD). It measures the aggregation and

separation between short-term index average indicators and long-term index average indicators.

6. Trend Average Directional Index (ADX). it can show an investor if a trend is gathering steam or

beginning to fade.

7. Trend Fast Simple Moving Average (SMA). It simply averages the closing price.

8. Trend Fast Exponential Moving Average (EMA). It weights the average closing price.

9. Trend Commodity Channel Index (CCI). It measures whether the stock price is beyond the

normal distribution range.

10. Momentum Relative Strength Index (RSI). It calculates the comparison of market buying and

selling power through the change of stock price, and speculates the future change direction of stock

price.

Dimension reduction with the Autoencoders is implemented to reduce the number of input features

from ten to four. Autoencoders consists of two parts which are the encoder which reduces the

dimension of the input data in the latent hidden layer and the decoder which reconstructs the data from

the hidden layer.

Figure 2. Structure of the Autoencoder.

The following is a graphical representation of an Autoencoder which we propose to use. It contains of

One Input Layer, Two Hidden Layers, and One Output Layer.

Table 2. Model summary for stock selection.

Layer (type) Output Shape Param #

lstm_2 (LSTM) (None, 4) 240

repeat_vector_1 (RepearVector) (None, 20, 4) 0

lstm_3 (LSTM) (None, 20, 100) 42000

time_distributed_1 (TimeDistributed) (None, 20, 10) 1010

Total: 43250

Trainable: 43250

Non-trainable: 0

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

486

4.3. Benchmark Portfolio

Uniform weights portfolio serves as a benchmark. An equally weighed portfolio of assets with the

capital invested equally among the total number of assets is constructed. With n number of assets in a

portfolio, the weight for each asset in the portfolio is given by:

𝑤1 = 𝑤2 =. . . = 𝑤𝑛 =
1

𝑛

4.4. Deep Reinforcement Learning Models

Two DRL models are implemented using the following two RL algorithms [8].

1. Advantage Actor Critic (A2C) Algorithm. The training process of reinforcement learning is

mainly divided into two processes. On the one hand, in the process of sample collection, it interacts

with the environment with behavioral strategies to generate training samples. On the other hand, it

uses the collected training samples to update the strategy. The above two processes are repeated in

A2C implementation. It collects samples first. After collecting a certain number of training samples, it

uses the gradient update formula to conduct a gradient update and generate a new strategy. The

algorithm consists of the policy which is the actor and acts on the environment. The critic calculates

the value function based on a set reward function and this helps the actor to determine the optimal

policy.

2. Proximal Policy optimization (PPO). The PPO algorithm is an on-policy method that can be used

for discrete or continuous action space environments.It solves the reinforcement learning problem of

discrete and continuous action space. In PPO, the policy accepts the state and outputs the probability

distribution of action. It samples actions in the action probability distribution, executes actions, gets

returns, and jumps to the next state. In this process, it can use the strategy to gather a batch of samples,

and then use the gradient descent method to train these samples. However, when the policy parameters

are updated, these samples can no longer be used. Reusing policies to interact with the environment to

gather data takes time. Therefore, it uses importance sampling so that these samples are reused.

We split the data into train-data and test-data, which is prepared to train the model and test its

performance respectively. The environment setup within which we implement the algorithms is made

up of the stock constituents, the prices, the technical indicators (features) and the covariance matrix

derived from the one-year period data at each time step. The DRL agent interacts with the

environment in an exploration-exploitation way. This involves making decisions which will maximize

rewards by considering whether to make previous good decisions (exploitation) or to try new decisions

with potential for greater rewards (exploitation). We make the assumptions that there are no short sales

and all of our capital is used to invest in the portfolio stocks. The following algorithm gives a

summary of the interaction within our environment.

Table 3. Algorithm: Portfolio Strategy By DRL.

Algorithm: Portfolio Strategy By DRL

Input s, state space which contains covariance matrix for stocks and features.

Output Final portfolio value

Initialize P0 = 1,000,000 is the initial portfolio value. w0 = (1/m,...,1/m) is the initial weights and m is the

number of assets.

for t = 1,2,...,n

do

 Observe the state s and output portfolio weights vector wt at time t.

 Normalize the weights wt whose sum is 100%.

 Calculate stock returns vector rt = ((v1,t-v1,t-1)/v1,t-1,...,(vm,t-vm,t-1)/vm,t-1), v is the closing price.

 Portfolio returns are wt
Trt

 Update portfolio value Pt = Pt-1(1+wt
Trt)

End

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

487

The actions which the agents make are the portfolio weights and the policy is learned at each step that

maximizes the portfolio value (reward function).

4.5. Backtesting and Evaluation

The weights for the equal weight portfolio is determined using the train data and these are applied on

the test data. The DRL models, however, learns a policy for allocation and the train data and

continuously rebalances the portfolio based on the state of the portfolio at every time space. The DRL

portfolios rebalances the weights at each time step using a policy that would maximize the portfolio

cumulative value. The figure below shows the cumulative returns of the DRL models benchmarked

against the uniform weight and mean-variance portfolios using the training data.

We can see that the two DRL models have better performance than uniform weights portfolio. PPO

model outperforms all the other portfolios on the training data. The cumulative return of A2C model

ranks second. From 2011 to 2014, the cumulative return of the three kinds of portfolio are similar.

Since 2015, the cumulative return of two DRL models has far exceeded the cumulative return of the

uniform weights portfolio.

Figure 3. Cumulative return for train data.

Figure 4. Cumulative return for test data.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

488

With the test data, we see that, mostly, the two DRL models have better performance than uniform

weights portfolio. A2C model and PPO model have similar performance. The under-performance of

the DRL models during the period in Q2 2020 could be attributed to the market fall during the period

of the COVID-19 pandemic. After Q2, the cumulative return of two DRL models increase a lot, and

exceed the cumulative return of uniform portfolio.

5. Conclusion and future works

The two implemented DRL models do perform relatively better than the uniform weights portfolio,

especially A2C model. We can conclude that DRL helps investor increase cumulative return. In

addition, an analysis of the performance of the model during market down times as observed during

the 2020 market crash shows that the DRL model has the ability to recover at a relatively quicker rate

than the benchmark index. This is an indication of the Reinforcement Learning nature of the model to

be able to explore and exploit the prevailing market environment.

Further works should be explored to improve the performance of the DRL models to be able to

significantly outperform the uniform weights portfolio in all market conditions. We propose the

following further works to be considered in refining the DRL model:

1. Explore the implementation of differential Sharpe ratio as the reward function for the DRL

model;

2. Application of the DRL model on a bigger stock constituent;

3. Consideration of a number of technical indicators;

4. Consider using different portfolio initialization strategies apart from the equal weights

initialization.

References

[1] Duryea, E. , Ganger, M. , & Wei, H. . (2016). Deep Reinforcement Learning with Double Q-

learning.

[2] Zhixiong, X. U. , Cao, L. , Zhang, Y. , Chen, X. , & Chenxi, L. I. . (2019). Research on deep

reinforcement learning algorithm based on dynamic fusion target. Computer Engineering and

Applications.

[3] Neuneier, R., 1996. Optimal asset allocation using adaptive dynamic programming. In

Advances in Neural Information Processing Systems. pp. 952-958.

[4] Yang, H., Liu, X., Zhong, S. and Walid, A., 2020. Deep Reinforcement Learning for Automated

Stock Trading: An Ensemble Strategy. SSRN Electronic Journal.

[5] Chakravorty, G., Awasthi, A., Da Silva, B. and Singhal, M., 2018. Deep learning based global

tactical asset allocation. SSRN Electronic Journal.

[6] Obeidat, S., Shapiro, D., Lemay, M., MacPherson, M.K. and Bolic, M., 2018. Adaptive

portfolio asset allocation optimization with deep learning. International Journal on Advances

in Intelligent Systems, 11(1), pp.25-34.

[7] Taghian, M. , Asadi, A. , & Safabakhsh, R. . (2022). Learning financial asset-specific trading

rules via deep reinforcement learning. Expert Systems with Application (Jun.), pp. 195.

[8] Hirsa, A. , Osterrieder, J. , Hadji-Misheva, B. , & Posth, J. A. . (2021). Deep reinforcement

learning on a multi-asset environment for trading. arXiv e-prints.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230866

489

