

Dynamic malware detection based on CNN-LSTM network

Jiate Chen

Zhejiang University of Technology, Hangzhou, China

chenot0221@163.com

Abstract. As cyberspace continues to evolve, so does malicious behavior across the network.

Attacks in cyberspace, such as the spread of malware, bring harm and risks to users. Malware

will attempt to steal user information or impair system resources. Therefore, to protect against

malware, a series of detection software such as firewalls have been developed to protect users’

information and systems from damage. As malware continues to evolve and develop, and the

forms of attack are increasing, the corresponding malware and detection techniques should also

be evolving issues. The commonly used raw detection technique is based on signature and

behavior specification, which has the advantages of fast speed and less computation. However,

this method is limited to known software, the target software which is an unknown software

will not be applicable. Therefore, one obvious shortage of traditional malware detection

techniques is that new or unknown malware are not likely to be detected. To solve this problem,

this paper uses machine learning to analyze different features of malware. By this way, new

malware can be detected by the model. Based on the API call of the Windows system, this

paper proposed a convolutional neural network for the classification of malware types. On this

basis, this paper used CNN to extract the features, considering the text characteristics of the

API sequence. After subsequence debonding and meaningless suffixes deletion of the original

API sequence, word vectors were obtained through training as the input of the subsequent

machine model. Then, different convolution kernels were used to process contextual semantic

information. Then, the LSTM model is used to extract the long-distance features from the

features.

Keywords: Malware, API sequence, Detection, LSTM, CNN.

1. Introduction

In order to reduce the harm caused by malware, users need more effective malware detection

technologies. Malware detection methods can be divided into static and dynamic malware

detection[1].

Static malware detection technology is mainly based on the static characteristics of the target PE

file. These features are extracted by the analyzer, including string patterns, opcodes, and byte

sequences of the file. The static analysis method generally comprises a database which contains static

characteristic data of known malicious software, so the static characteristics of the target software are

matched with the existing records in the database during detection to judge whether the target software

belongs to the malicious software. Considering the principle of detection, the static detection method

does not need to execute the target software[2], and the detection speed is relatively fast, so it is

widely used. However, static detection can not solve the problem of malware detection perfectly, the

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

597

main disadvantage is that it can not determine the type of malware that is not contained in the database.

At the same time, malware can bypass static detection through obfuscation techniques or prevent

detection by encrypting the signature. Therefore, in order to solve these problems, the dynamic

malware detection method will analyze the malicious behavior of the software during execution. The

main process is to run the malware in a virtual environment isolated from the user's actual system

environment, and monitor the running behavior of the software, and then analyze and judge the type of

the software.

The dynamic detection method analyzes various behaviors of malicious software, including

accessing the network, changing the registry, requesting system calls, using memory space, and so

on[3]. In order to analyze behaviors, selected features used for detection should reflect those behaviors.

The sequence of Windows API calls is a good indication of how the software will behave as it is being

executing. This sequence shows a series of actions by which the software requests the system to

operate. Therefore, the software behavior can be analyzed by analyzing the API calling sequence of

the target software in the running process, so as to determine the software type[4].

The API call sequence is actually a piece of text, whose semantics reflects the interface call of the

software, and the behavior of the software can be analyzed through the context. Therefore, we can

consider the natural language processing [5] of the sequence and use the general text classification

model to complete the detection of malicious software. And the API sequence records the API calls of

the software in chronological order, so it contains the time characteristics as well. In order to analyze

The semantic information and the time characteristics contained in the sequence of API calls, this

paper proposed the CNN-LSTM model and trained the model to detect malware.

2. Relative Work

Malware is widely circulated in cyberspace today. Anti-virus companies can catch tens of thousands of

them every day. Manual analysis of malware samples is difficult to adapt to the growing trend of

malicious software, and automated malware detection has become a mainstream approach. Traditional

malware detection is based on the signature, that is, extracting unique signatures from known malware,

identifying the features of the malware, and performing feature extraction and comparison on the new

malware for identification[6]. Signature detection technology is efficient and fast, but it can only

detect known code, and can not detect malware using code obfuscation and polymorphism technology.

Therefore, malware detection technology based on dynamic behavior analysis is favored by

researchers. API is the interface between the application program and the system, and API calls can

reflect the behavior of the program to a large extent, so most of the dynamic analysis of malware is

based on API sequences[7]. Zhu Xuebing et al.[8] proposed a malware detection method based on

frequent subgraph mining of malware family behavior, which marks the parameters of API through

dynamic taint technology, to obtain the API call relationship and form a single sample behavior

dependence graph, and then mine family frequent subgraph patterns for malware detection. Rong

Fengping [9] proposed a malware detection method based on malware API called sequential pattern

mining. By introducing the concept of object-oriented association mining, the API call model that can

represent the behavior pattern of malware is mined, which is used for malware detection. Ding [10]

used dynamic taint analysis to construct a familial behavioral dependency graph to detect malware

based on maximum weight subgraph matching. Du et al.[11] extracted common malicious API calling

patterns from different classes of malware based on biological DNA sequence alignment algorithm. to

detect malware.

Currently, most of the malware dynamic analysis detection methods are based on graph and

sequence mining, and the methods based on graph matching are subject limited to the graph

isomorphism problem, when the number of malware is increasing, the graph match can become

increasingly complex, limiting the application of such methods. Use method based on sequence

mining is limited to system call injection attack. When extraneous system calls are added to malware,

it can greatly affect the effectiveness of methods based on sequence mining. Considering the above

dynamic detection techniques based on malware behavior, the lack of technology, and the success of

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

598

deep learning in image and text classification, this paper uses dynamic analysis technology and based

on the text. This classification is combined with a convolutional neural network and RNN for malware

detection. There are relatively few API functions in an API sequence compared to plain text, and the

call frequency of different API functions is also quite different. The behavior of the same kind of

malware is quite different, and its API sequence also shows a more obvious difference.

3. Inplementaion

3.1. Windows API Call

The windows API call dataset is a public windows malware dataset offered by Tianchi Dataset, Aliyun,

containing 6,145 samples of malicious files among 8 classes. The breakdown of sample size per label

is available in Table 1.

Table 1. API call dataset counts.

Malware Type Sample Size

Common 3960

Ransomware 408

DTLMiner 525

DDos 753

Worm 89

Virus 2989

Backdoor 468

Trojan Horse 1277

Total 10469

3.2. Data Processing

The initial data is in the format of ['file_id', 'label', 'API ',' TID ', 'index'], i.e. the file number, software

category label, thread ID, and serial number. The raw data is processed as follows.

The meaningless suffixes will be deleted first. Windows API calls contain suffixes, so the text

displayed by the same API call will be different, which will affect subsequent data processing, so they

will be deleted, including A, W, ExA, ExW.

The current API data is a string and input vectors are required for model training, so the different

API functions are mapped to digital labels. There are 236 classes of API functions in the data set.

Therefore, each class of function corresponds to 1-236 respectively to generate an API-index

dictionary and save it as ISON file for subsequent training by converting sequences into vectors.

Then, multiple records belonging to the same file are integrated into one data according to the

sequence number. Only the file ID, API sequence and software category label are retained, that is, the

data format is ['file_id', 'label', 'API_IDx '].

Remove duplicate substrings from API sequences. Malware may perform the same behavior

continuously when running, which means that the same API function will be called consecutively

many times, or the same combination of API functions will be executed consecutively many times,

which will lead to the API sequence containing a lot of repeated information, and excessive redundant

information will lead to the excessively long sequence and the increase of model training time. So

duplicate substrings in the API sequence are removed. Finally, the data files are saved as PKL files.

3.3. Embedding Layer

To obtain feature vectors, processed data will be put into the embedding layer to generate vectors to be

used in the convolution layer.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

599

First, use a dictionary to convert the API calls into one-hot encoding. The vector dimension is 237,

which is the number of API calls plus 1. The integer corresponding to each API in the dictionary

represents the position of the number 1 in the vector, and the first index of the vector is 0. For example,

if an API corresponds to an integer of 3, the generated vector puts a value of 1 at position 3. This

sequence of API calls will be converted to a matrix of dimensions 237. This matrix is then used as

skip-gram input to reduce its dimension. The output matrix dimension is 100.

3.4. Convolution and Maxpooling

Because API calls close to each other in program code are closely related in behavioral

characterization, and malicious code variants insert irrelevant API calls in key code segments, which is

similar to object elongation in images, CNN can extract local features of different dimensions by using

convolution kernels of various sizes.

After the matrix is obtained by the embedding layer, the matrix is input to the convolution layer.

Filters are used at this level to extract feature vectors. The filter sizes are 3, 4 and 5 respectively, and

the number of each type of filter is 100. The matrix needs to be activated by the ReLU function after

the filter operation

(1)

Where θ denotes the ReLU function and b denotes the bias vector. The convolution kernel is utilized

to step size 1 sliding process x1:f in the sequence direction to get a feature map:

(2)

3.5. LSTM Layer

When processing API sequences, the CNN model is used to consider the semantic information of the

sequences. However, the processed API sequences have a time-axis correlation, which means the API

sequence indicates the order in which the software calls the API. In the process of time-related data

sequence, such as the text with up-down correlation, the traditional neural network cannot process this

relation, so the RNN recurrent neural network is used instead.

Temporal recursive neural network and structural recursive neural network are collectively referred

to as recursive neural network. The forward propagation process of DNN is input X and weight matrix.

After bias value B is calculated, the result is sent to hidden layer 2 as input, and the activation function

outputs the result after calculation. After another round of calculation, the input and output layer is

activated before the output result is obtained.

In the circulating neural network, because the parameters are shared and the gradient of the output

result is related to the current and past results, the optimization of the back propagation algorithm

needs to add the gradient of W. However, in the traditional neural network, there is no need to share

parameters between layers, so it is not required.

RNN can be obtained from the general structure and the back propagation algorithm. The key is

that the information of the previous task will be considered when processing the current task and the

characteristics of the time series will be advanced. However, if the time interval between relevant

information and the current processing content is too large, the recurrent neural network cannot learn

information well. Because it is difficult to learn long-term sequence problems by using BPTT

algorithm due to gradient divergence. The LSTM model will be used to solve similar problems that

may arise when considering issues related to API sequences.

LSTM network is used to solve problems with a long time span. Considering the general cyclic

neural network, it can be found that there is the reuse of neural network modules in its structure, such

as a TANH layer. However, in the LSTM model, the general structure is similar but there is some

improvement. It is modified in the reuse module, adding four operations and mutual input between

them. The meaning of gate means that the information passing through can be screened. The

)'(1: bwxm siii += −+

= +− 121 ,...,, sfmmmm

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

600

realization principle is to use sigmoID function to calculate with input, and the output result is vector.

Each element in the vector is in the interval of 0,1, which means the weight of information passing.

In LSTM, discarding information is processed first for input information, which is realized by the

forgetting gate. The forgetting gate receives the output of the previous cell and the input of the current

cell, and outputs a value in the range of 0,1 through sigmoid. The next step is to decide how much

information to add to the cellular state in a two-step process. Firstly, the sigmoID function of Input

Gate Layer is used to judge the information to be updated, and then the alternative information vector

is output by TANH Layer. Finally, the above two outputs are combined to realize the update of cell

state. Finally, multiply the old state by ft, discard unnecessary information and add sigmoid function to

output the result multiplied by the current cell state value.

Finally, in the output stage, the output value will be determined based on the cell state. The first

step is to determine the output portion by sigmoid. The cell state is then calculated as the TANH input

and then multiplied by the sigmoid layer output to determine the final result.The calculation formula is

as follows.

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−𝑖 + 𝑏𝑖) (3)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (4)

(5)

(6)

(7)

Where 𝜎 represents the sigmoid function, W and b respectively represent the weight matrix and bias

vector corresponding to the subscript, for example, Wxi is the weight matrix from the input layer to

the input gate, xt is the input at a certain time point, that is, the vectorized representation of API, and it,

ft and ot respectively represent the input gate, forgetting gate and output gate. Ct is the memory unit

and ht is the output of the hidden layer.

3.6. Result

To evaluate and compare the proposed model, use the TextCNN model without LSTM layer as a

comparison. Table 2 shows the confusion matrix of the CNN-LSTM model. Table 3 shows the

confusion matrix of the TextCNN model.

Table 2. Confusion matrix of CNN-LSTM model.

 0 1 2 3 4 5 6 7

0 976 0 3 0 0 4 0 13

1 3 93 1 0 0 1 0 2

2 5 0 218 0 0 8 2 6

3 3 1 4 106 0 5 0 45

4 1 0 1 9 0 2 0 7

5 9 1 4 21 0 805 5 13

6 7 0 4 5 0 2 54 31

7 15 5 22 57 0 14 23 162

)(1 othotxot bhWxWo ++= −

)tanh(11 cthctxctttt bhWxWiCfC +++= −−

)tanh(ttt Coh =

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

601

Table 3. Confusion matrix of TextCNN model.

 0 1 2 3 4 5 6 7

0 982 0 1 0 0 2 2 9

1 6 86 6 0 0 2 0 0

2 15 4 195 0 0 4 3 18

3 3 1 4 103 0 7 0 46

4 1 0 1 9 0 2 0 7

5 7 0 5 13 0 811 6 16

6 11 0 6 5 0 8 14 59

7 24 5 21 52 0 11 15 170

To further the evaluation of the model, several indicators were used. Table 4 shows the indicators

including accuracy, recall rate, F1-score and the average.

ACC =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

BF1 =
2 × Precision × Recall

Preision + Recall
(11)

Table 4. Classification report of CNN-LSTM model.

 precision recall F1-score support

0 0.94 0.99 0.96 996

1 0.90 0.86 0.88 100

2 0.82 0.82 0.82 239

3 0.57 0.63 0.60 164

4 0.00 0.00 0.00 20

5 0.96 0.95 0.95 858

6 0.35 0.14 0.20 103

7 0.52 0.57 0.55 298

Accuracy 0.85 2778

Macro Avg 0.63 0.62 0.62 2778

Weighted AVG 0.84 0.85 0.84 2778

4. Conclusion

This report proposed CNN to extract features to classify malware based on its API. The accuracy of

this model reached 85%. The main reason for the relatively low accuracy is the lack of the data set.

For some types of software, like common software and virus, since data set contains relatively

abundant samples, this model performs well while classifying these two types. However, for worm

software, there are less than 100 samples in the data set. Therefore, the model cannot classify test

samples well, leading to low accuracy.

More samples are needed. Not only more amount, but also more types are needed to improve this

model. In this way, accuracy can be increased and this model can classify more types.

Another point is that this model cannot explain each result. Since we use skip-gram to lower the

dimension of the feature vectors, it is impossible to figure out which API call sequence affects the

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

602

result. To solve this problem, a model that remains the API call information is needed. Thus we can

find out the weight of each API call in the process.

References

[1] Zong, H. (2019). Research on deep learning algorithm of Android malware static detection

based on behavior pattern. (Doctoral dissertation, Beijing University of Posts and

Telecommunications).

[2] Oliver I. & Pereira R. (2013). Malicious software detection. US, US8392996 B2.

[3] Hisham, Shehata, Galal, Yousef, Bassyouni & Mahdy, et al. (2016). Behavior-based features

model for malware detection. Journal of Computer Virology & Hacking Techniques.

[4] Iwamoto, K. , & Wasaki, K. (2012). Malware classification based on extracted API sequences

using static analysis. Asian Internet Engineeering Conference (pp.31-38). ACM.

[5] Manning, C. D. , & H Schütze. (1999). Foundations of statistical natural language processing.

MIT Press,.

[6] Ahmadi, M. , Ulyanov, D. , Semenov, S. , Trofimov, M. , & Giacinto, G. (2016). Novel feature

extraction, selection and fusion for effective malware family classification. ACM.

[7] Salehi, Zahra, Ghiasi, Mahboobe, Sami, & Ashkan. (2017). Maar: robust features to detect

malicious activity based on api calls, their arguments and return values. Engineering

Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time

Automation.

[8] Zhu Xuebing, Zhou Anmin, & Zuo Zheng. (2019). Malicious code detection based on frequent

subgraph mining of family behavior. Information Security Research, 5(2), 9.

[9] Rong Fengping, Fang Yong, Zuo Zheng, & Liu Liang. (2018). Macspmd: Malicious Code

Detection Based on Sequence Pattern Mining of Malicious API Calls. Computer Science,

45(5), 8.

[10] Ding, Y. , Xia, X. , Sheng, C. , & Li, Y. (2018). A malware detection method based on family

behavior graph. Computers & Security, 73(MAR.), 73-86.

[11] Du, D. , Sun, Y. , Ma, Y. , & Xiao, F. . (2019). A novel approach to detect malware variants

based on classified behaviors. IEEE Access, PP(99), 1-1.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023329

603

