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Abstract: Time series analysis plays a pivotal role in diverse domains, facilitating critical 

tasks such as forecasting, classification, and anomaly detection. This paper introduces a 

multi-task learning (MTL) model utilizing a deep learning framework to simultaneously 

predict three key financial indicators: trading volume, closing price, and volatility. By 

leveraging shared representations across tasks, the MTL model captures intricate 

dependencies and enhances generalization, outperforming single-task benchmark models—

ARIMA and univariate Deep Learning (DL). The MTL model achieves over 50% reduction 

in MAE and RMSE compared to ARIMA and approximately 10% improvement over DL. 

The results demonstrate the ability of MTL to exploit inter-task relationships, delivering more 

accurate and robust forecasting for stock markets. This work highlights the potential of multi-

task learning framework in enhancing financial time series forecasting.  

Keywords: Multi-task Learning, Deep learning, Financial Forecasting, Time Series Analysis. 

1. Introduction 

Time series modeling is critical across numerous domains, including healthcare, energy, and finance 

[1-2], where capturing temporal dependencies and multi-scale patterns is essential for accurate 

forecasting. Predicting future trends and patterns enables informed decision-making, efficient 

resource allocation, and effective risk management, making time series forecasting an indispensable 

tool in industry.  

Financial time series forecasting, particularly for stock market data, presents significant challenges 

due to the unique characteristics of such data. Stock series are influenced by many factors, including 

market sentiment, geopolitical events, and economic indicators [3], resulting in high levels of noise 

and making it difficult to distinguish meaningful signals from random fluctuations. Additionally, 

financial time series are often non-stationary, exhibit volatility clustering, and contain nonlinear 

patterns. These characteristics all complicate the model. 

Statistical and machine learning (ML) models have been widely used for stock time series 

forecasting. However, statistical models may lose effectiveness when their strong assumptions are 

violated, while ML models may struggle to capture the intricate patterns necessary for real-world 

trading scenarios. Deep learning (DL) approaches have gained prominence due to their ability to 

extract features from complex data and their reliance on fewer assumptions. Despite these 

advancements, DL models still face the problem of high dimensionality, particularly when dealing 

with a stock market that incorporates numerous variables to capture dynamic market behaviors. 

Furthermore, most DL models are limited to single-task learning, restricting their ability to leverage 

shared information across related tasks. 
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To address these limitations, this paper proposed a multi-task learning (MTL) model for stock time 

series forecasting, which simultaneously predicts trading volume, closing price, and volatility. By 

leveraging shared information across related tasks, the MTL model provides a more comprehensive 

approach to modeling stock market behavior. The proposed model incorporates CNN, LSTM, and 

the attention mechanism as shared layers to extract correlated features, while task-specific layers 

capture individual task characteristics. This MTL model, built on a deep learning framework, is 

evaluated against benchmark models to demonstrate its performance and generalization ability. 

2. Literature Review 

There are three key methods widely applied in financial time series forecasting, which are the classical 

statistical method, single-task machine learning method, and multi-task learning method. 

2.1. Statistical Method 

Statistical models have been widely used for stock price forecasting. Mondal et al. proposed an 

ARIMA model for stock price prediction across 56 datasets from various sectors, achieving over 85% 

accuracy and demonstrating strong generalization and interpretability [4]. However, ARIMA models 

face limitations, such as their inability to capture fat-tailed distributions, handle volatility clustering, 

and adapt to non-stationary data [5]. To address these issues, Vasudevan and Vetrivel built GARCH-

type models, showing that the EGARCH model outperforms symmetric GARCH in forecasting the 

conditional variance of stock returns [6].  

2.2. Single-task Machine Learning Method 

Recent developments in deep learning have greatly enhanced stock market prediction by capturing 

nonlinear patterns and extracting features from noisy data. A comparative study of ARIMA, LSTM, 

and BiLSTM models, applied to six stock datasets, revealed that deep learning models reduced RMSE 

by more than 80% compared to ARIMA [7]. To more effectively capture both linear and nonlinear 

patterns, researchers have developed a hybrid model, ARIMA-ANN, which requires no strong 

assumptions and outperforms individual models as well as earlier hybrid approaches, particularly on 

highly fluctuating datasets [8]. Mei et al. further advanced this approach by proposing an ARIMA-

SVM model, where ARIMA prediction errors serve as inputs to SVM, achieving over 90% accuracy 

on IBM stock data [9]. 

2.3. Multi-task Learning Method 

Multi-task learning (MTL) enhances model performance by leveraging shared information across 

related tasks. In computer vision, Ranjan et al. developed an MTL model for simultaneous face 

detection, landmark localization, pose estimation, and gender recognition [10]. Similarly, Samala et 

al. applied MTL for breast cancer detection, achieving high AUC score [11]. In finance, Ma and Tan 

proposed an MTL framework for forecasting multiple related stocks simultaneously, outperforming 

baseline methods [12]. Yuan et al. designed an MTL model for stock market forecasting during 

COVID-19, effectively capturing internal and external market features [13]. These studies highlight 

the benefits of MTL in extracting shared patterns and improving generalization. 
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3. Methodology 

3.1. Data Source 

The dataset, sourced from Alpha Vantage API, spans from 2010 to the most recent data. The 2008 

financial crisis period is excluded due to its minimal impact on current data, while the COVID-19 

period is included in the ongoing economic effects. 

3.2. Autoregressive Integrated Moving Average (ARIMA) 

ARIMA model is a widely used statistical method for univariate time series forecasting, combining 

three components: Autoregressive (AR), Integrated (I), and Moving Average (MA). The model is 

denoted as ARIMA(p, d, q), where p is the order of the AR component, d is the degree of differencing, 

and q is the order of the MA component.  

The AR(p) component models the relationship between the current value (𝑌𝑡) and its past values: 

𝑌𝑡 = 𝑐 +  𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2  + ⋯ +  𝜑𝑝𝑌𝑡−𝑝 +  𝜀𝑡                                           (1) 

where 𝑐 is a constant, 𝜑1, 𝜑2, … , 𝜑𝑝 are autoregressive parameters, and 𝜀𝑡 is the error term at time 𝑡.  

The MA(q) component models the relationship between the current value (𝑌𝑡) and past error terms:  

𝑌𝑡 = 𝜇 +  𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2  + ⋯ +  𝜃𝑞𝑌𝑡−𝑞 +  𝜀𝑡                                            (2) 

where 𝜇 is the mean of series, 𝜃1, 𝜃2, … , 𝜃𝑝 are moving average parameters, and 𝜀𝑡 is the noise term. 

Differencing (degree d) removes trends and seasonality to make the series stationary, where the 

degree represents the number of times differencing is taken [14].  
AR component captures the memory of the time series, detecting strong temporal dependencies 

[14], while the MA component captures the shocks, detecting the sudden changes or irregularities 

[15]. As a result, AR and MA are combined to effectively address more complex time series. When 

the series is stationary, the ARIMA model can be expressed as, 

𝑌𝑡 =  𝑐 +  𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2  + ⋯ +  𝜑𝑝𝑌𝑡−𝑝 +  𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2  + ⋯ +  𝜃𝑞𝑌𝑡−𝑞 +  𝜀𝑡       (3) 

In this study, three ARIMA models are developed. The optimal parameter d is determined using 

the Augmented Dickey-Fuller test, while p and q are selected via grid search guided by 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. 

3.3. Deep Learning Neural Networks 

Convolution Neural Networks (CNN) can be used to perform feature extractions, learning through 

filter optimization [16]. In this study, three types of layers are used: Convolutional layer applies 

learnable filters to extract local patterns, pooling layer reduces dimensionality while preserving key 

features, and flatten layer converts feature maps into a 1D vector for fully connected layers. 

Recurrent Neural Network (RNN) is commonly used to process sequential data by maintaining a 

hidden state that captures information from the previous time steps [17]. The standard neural networks 

have limited memory about previous data and only utilize the current input to forecast. But the 

neurons in RNN can recur a hidden variable ℎ𝑡, containing information that later iterations can use. 

The update process can be expressed mathematically as follows, 

ℎ𝑡 = 𝑓(𝑊ℎ  ∙  ℎ𝑡−1 +  𝑊𝑥  ∙  𝑥𝑡 +  𝑏ℎ)                                             (4) 

𝑦𝑡 = 𝑓(𝑊𝑦  ∙  ℎ𝑡 +  𝑏𝑦)                                                         (5) 

where 𝑊ℎ, 𝑊𝑥, 𝑊𝑦 are weights, 𝑏ℎ, 𝑏𝑦 are bias terms, 𝑥𝑡, 𝑦𝑡 are input and output at time step 𝑡, and 𝑓 

is activation function. 

Long Short-Term Memory (LSTM) is a type of RNN that can address the vanishing gradient 

problem of traditional RNNs, using memory cells and gating mechanisms (forget gate, input and 
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output gate) to capture long-term dependency, learning when to remember the information that is 

needed in later processing and when to forget the information that is no longer required [18]. 

Attention is a mechanism that determines the relative importance of each element in the sequence. 

It can resolve the weakness of RNN in leveraging the information of hidden layers, where it places 

higher importance on information from recent layers, compared with those from earlier layers. 

In this paper, the univariate deep learning models are LSTM-based, incorporating dropout, batch 

normalization, and L2 weight regularization to prevent overfitting. They are trained with Adam 

optimizer and optimized via MSE loss. 

3.4. Multi-task Learning (MTL) 

MTL model can improve task performance by leveraging shared information across tasks. Given M 

related or at least partially related learning tasks, {𝑇𝑖}𝑖=1
𝑀 , MTL is trying to enhance the training of  𝑇𝑖 

from learning some or all M tasks. The MTL loss is a weighted combination of individual task losses 

𝐿𝑖 , the simultaneous optimization of loss function across all tasks can lead to a significant 

improvement in model performance [19]. 

In the deep learning context, the MTL structure is categorized into two types, hard and soft 

parameter sharing. For hard parameter sharing in Figure 1, the shared layers can extract common 

features that are beneficial for all tasks, while task-specific layers receive common features as inputs 

and learn unique features. It can reduce overfitting by promoting generalized representations. For soft 

parameter sharing in Figure 2, each task maintains its own parameters, while a feature-sharing 

mechanism facilitates the information sharing between tasks [20]. 

 

 

 

Figure 1: Hard parameter sharing.  Figure 2: Soft parameter sharing. 

This paper employs a hard parameter sharing structure. The shared layers comprise a CNN block 

for localized temporal dependencies and an LSTM network with an attention mechanism for 

enhanced sequence representation. The extracted features are subsequently directed into task-specific 

branches: a dense network with residual connections for closing price prediction and LSTM branches 

for forecasting trading volume and volatility. To mitigate overfitting, the model integrates Dropout 

and Batch Normalization layers. Hyperparameter tuning and loss weight optimization are utilized to 

further enhance predictive performance across tasks. 

3.5. Data Preprocessing and Model Training 

The dataset includes five variables: closing price, opening price, low price, high price, and volume. 

Closing price and volume are used as the target variables. The volatility variable is computed as the 

rolling standard deviation of log returns, where log returns is calculated as:  

𝐿𝑜𝑔 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 =  log(
𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒𝑡

𝐶𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒𝑡−1
)                                            (6) 

A 20-day rolling window is applied, and the standard deviation is annualized by multiplying by 

√252 (assuming 252 trading days per year). 
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To enhance model performance, technical indicators are added, providing additional information 

about market trends, which can be leveraged by the multi-task learning model. These indicators were 

selected based on their established relevance in financial time series analysis and their ability to 

capture different aspects of market behavior. Moving average (MA) and relative strength index (RSI) 

are added, where MA can capture long-term trends by smoothing price fluctuations and RSI can 

identify overbought or oversold, signaling potential price reversals. On-balance volume (OBV) can 

indicate market sentiment and anticipate potential volume spikes or drops, and Average True Range 

(ATR) can measure the price volatility, reflecting market uncertainty.  

For data preprocessing, the data is normalized using MinMaxScaler and converted to sequence 

format for deep learning model inputs. The dataset is split into training, validation, and test sets in an 

8:1:1 ratio, preserving the chronological order of the time series. 

Three ARIMA models and three single-task deep learning models (DL) are developed as 

benchmarks for performance comparison. Each DL model is trained on the training set, with 

hyperparameters tuned on the validation set using grid search. Predictions are made on the test set 

and transformed back to their original scales due to prior normalization. For the MTL model, 

hyperparameters are optimized using a random search through the Keras Tuner library. This 

algorithm was used to explore different hyperparameter combinations to minimize the validation loss. 

4. Results 

Evaluation metrics are carefully chosen to align with the characteristics of the forecasting tasks. MAE 

and RMSE are employed, as MAE provides an intuitive measure of average error magnitude, while 

RMSE emphasizes large deviations, penalizing extreme errors. MAPE is also utilized as a criteria, as 

it offers a normalized error measure, particularly useful for trading volume data with spikes and 

anomalies.  

The experimental results, comparing the MTL model with benchmarks (ARIMA and DL), are 

presented in Table 1 (trading volume), Table 2 (closing price), and Table 3 (volatility). Visual 

comparisons of the results are shown in Figure 3 (trading volume), Figure 4 (closing price), and 

Figure 5 (volatility). 

Table 1: Trading volume forecasting results. 

 ARIMA DL MTL 

MAE 29927491.0244 9553091.106 8678394.180 

MAPE 0.944 0.258 0.225 

RMSE 33969067.491 13666180.227 12350223.872 

Table 2: Closing price forecasting results.                 Table 3: Volatility forecasting results. 

 ARIMA DL MTL 

MAE 8.442 1.020 0.933 

MAPE 0.209 0.028 0.025 

RMSE 10.012 1.297 1.223 

 

The MTL model outperforms both DL and ARIMA across all tasks. For volume forecasting, the 

MTL model achieves the lowest MAE (8678394.180), representing a 9.2% error relative to the mean 

trading volume (94719750), compared to DL (10.1%) and ARIMA (31.6%). It also achieves the 

lowest MAPE and RMSE, demonstrating superior accuracy and robustness. For closing price 

forecasting, the MTL model achieves the lowest MAE (0.933), representing a 3.9% error relative to 

the mean price 23.728, compared to DL (4.3%) and ARIMA (35.6%). Similarly, it achieves the lowest 

 ARIMA DL MTL 

MAE 0.085 0.024 0.018 

MAPE 0.436 0.101 0.077 

RMSE 0.096 0.034 0.027 
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MAPE and RMSE. In volatility forecasting, the MTL model achieves the lowest MAE (0.018), 

representing a 6.0% error relative to the mean volatility (0.302), along with the lowest MAPE (0.077) 

and RMSE (0.027). 

                 

Figure 3: Plot of trading volume forecasting result. Figure 4: Plot of closing price forecasting result. 

 

Figure 5: Plot of volatility forecasting result. 

Considering the visual results (Figures 3–5), the predictions closely follow the actual trends in the 

test set, despite deviations in precise values. This alignment suggests that the MTL model can 

effectively captures the underlying patterns, though the inherent complexity and noise in stock time 

series data make exact challenges. The observed discrepancies may stem from sudden market 

fluctuations or the nonlinear dynamics of financial data, which are difficult to fully model. However, 

the MTL model’s ability to approximate the overall trends highlights its robustness and utility. 

5. Discussion 

5.1. Result Analysis 

The MTL model consistently outperforms benchmark models across all tasks, demonstrating its 

ability to leverage shared information across related tasks to improve prediction accuracy. Classic 

ARIMA models perform poorly, especially in volume and volatility prediction, due to their inability 

to handle data with nonlinear dynamics and sudden spikes and drops, highlighting the limitations in 

capturing complex and nonlinear patterns in financial data. The DL models perform significantly 

better than ARIMA but worse than MTL, reflecting its better ability for processing time series data 

but the limitations in capturing related factors and information. These findings underscore the 

effectiveness of MTL for financial times series forecasting, particularly when tasks are interrelated. 

 

5.2. Limitations 

Regarding the MTL model in this experiment, while the performance has been improved for the 

volume prediction task, it still incurs a large percentage error due to the extreme spikes in trading 
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volume data.  Additionally, though the MTL model can learn efficiently by leveraging correlated 

information compared to single-task models, it faces some challenges due to its multi-task framework. 

Firstly, there may have situations where tasks have conflicting objectives or gradients, improving one 

task's performance can degrade the performance of others. This can lead to promising forecasts for 

only a subset of tasks. Secondly, the tasks may have various difficulty and complexity levels, and the 

MTL model will prioritize the easier tasks at the expense of the others. Those harder tasks cannot get 

enough attention and produce poor performance. Another obstacle is to determine optimal weights 

for task losses, unreasonable weights can lead to imbalanced and poor performance across the tasks. 

6. Conclusion 

This paper proposes a multi-task learning model (MTL) based on a CNN-LSTM-Attention 

architecture for simultaneously forecasting stock closing price, trading volume, and volatility. By 

incorporating technical indicators and leveraging shared information across tasks, the MTL model 

achieves significant improvements over the ARIMA and DL models. Future work may focus on 

further enhancing the performance, particularly the trading volume forecasting, by either 

incorporating external factors (e.g., market sentiment, economic indicators) or refining the model 

framework by exploring advanced architectures and loss-weighting strategies for better 

generalization. Additionally, future work can study more on resolving task conflicts and balancing 

task complexities to further improve MTL performance. 
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