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Abstract: Detecting road signs is essential for autonomous driving technology, especially in 

the identification of small objects.To overcome the difficulties of identifying tiny road signs, 

In order to increase detection performance, this work proposes an enhanced YOLOv8 method 

that combines Depthwise Separable Convolution (DWConv) with the Convolutional Block 

Attention Module (CBAM). Specifically, YOLOv8 serves as the baseline model, which is 

optimized in the feature extraction, fusion, and detection stages. The CBAM attention 

mechanism is incorporated into the Neck section, while traditional convolutions are replaced 

with DWConv, improving the model's focus on tiny information while reducing 

computational complexity. To improve the model's generalization ability, data augmentation 

methods like Mosaic and Mixup are incorporated. Mosaic augmentation increases the 

diversity of training data by stitching different images together, whereas Mixup improves the 

model’s adaptability to various scenes by blending images. Additionally, common 

augmentation techniques, including cropping, color adjustment, and flipping, are effectively 

applied to optimize model performance. Experimental results indicate that, compared with 

YOLOv8n, the improved YOLOv8 algorithm achieves a 2.1 percentage point increase in 

mean Average Precision (mAP0.5), a 4.9% improvement in mAP50-95, and a 7.2% increase 

in recall rate. Furthermore, the algorithm significantly reduces the missed detection rate and 

improves small-object detection performance while lowering runtime by 4.1%. These results 

demonstrate the practical applicability of the proposed method. 
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1. Introduction 

With the rapid development of autonomous driving technology, road sign detection has become a 

crucial research area. One of the key challenges in this domain is detecting road signs, which are often 

small objects. This paper focuses on addressing this issue. It is essential to accurately recognize small 

road signs for the safety and decision-making capabilities of autonomous driving systems. Since road 

signs are frequently found in complex environments, are small in size, or are partially occluded, 

improving small-object detection accuracy can significantly enhance a system’s ability to recognize 

distant or unclear signs. This ensures vehicles adhere to traffic regulations and respond promptly, 

thereby improving the reliability and safety of autonomous driving systems. 

Many researchers globally have explored methods for small-object detection. Zhai et al. excluded 

detection components designed for larger objects and unnecessary layers to minimize model 

complexity, thereby boosting UAV detection efficiency [1]. Hao et al. implemented a dual-branch 
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framework with an attention mechanism to refine local feature extraction and developed a 

bidirectional pyramid network guided by attention to enhance feature distinctiveness [2].Feng et al. 

optimized the network structure by eliminating the backbone P5 layer, which is used for large-object 

detection, and instead merged the P4, P3, and P2 layers [3]. Xu et al. replaced the CSPDarknet53 

backbone with the more lightweight MobileNetV3, effectively lowering the model's parameter count 

and computational burden while simultaneously improving its inference efficiency [4]. Li et al. 

incorporated the RFCBAM into the backbone for down sampling, which improved the efficiency of 

feature extraction and reduced the sparsity of spatial information typically caused by down sampling 

[5]. Huang et al. introduced the AFPN to emphasize key layer features after feature fusion while 

mitigating the impact of non-adjacent layer interactions. Zhang et al. designed an optimized multi-

branch Cross Stage Partial (CSP) module along with a dual-path feature fusion framework to enhance 

feature integration, particularly for small-scale traffic signs. Swastik Saxena et al. adopted 

Generalized Intersection over Union (GIoU) in place of the conventional IoU as a distance metric. 

Their refined model incorporated an improved PANet with grouped convolutional layers in the 

detection neck and introduced an extra feature scale to enhance the recognition of smaller traffic signs. 

Marco Flores-Calero et al. conducted extensive evaluations using YOLO, confirming its practicality 

and superiority in traffic sign detection [9], which provided direction for this study. Ruturaj 

Mahadshetti et al. proposed Sign-YOLO, an attention-based one-stage method integrating YOLOv7 

with the squeeze-and-excitation (SE) model and a special attention mechanism to overcome small-

object detection challenges [10]. Their approach effectively reduced computational costs while 

enhancing the robustness of feature extraction. 

The Convolutional Block Attention Module improves the model’s proficiency in emphasizing 

important features by merging channel and spatial attention mechanisms, optimizing how features are 

extracted. Channel attention alters the influence of each feature channel depending on its relevance, 

while spatial attention assigns importance to specific spatial regions, sharpening the model’s focus 

on vital areas. This method empowers the model to accurately identify and detect small objects, even 

in complex and cluttered environments. Depthwise Separable Convolution (DWConv), on the other 

hand, separates depthwise and pointwise convolutions, significantly reducing computational costs 

while maintaining feature extraction effectiveness. This method allows the model to efficiently 

process large-scale datasets and improve detection accuracy. 

In this study, we integrate DWConv and CBAM into YOLOv8 by incorporating CBAM into the 

Backbone module and replacing standard convolution kernels with DWConv. Additionally, data 

augmentation techniques are employed to enhance feature representation. These enhancements 

ultimately boost the model's recall and precision. 

2. Background Knowledge 

YOLO is a deep learning-based object detection algorithm that frames the detection process as a 

regression task, directly mapping an image to the prediction of bounding boxes and class labels. As 

a one-stage detection method, YOLO's greatest advantage over traditional object detection techniques 

lies in its speed. It simultaneously predicts all bounding boxes and class labels in one forward pass, 

greatly enhancing the efficiency of detection. 

The core principles of YOLO focus on bounding boxes and confidence scores. Each bounding box 

is defined by five parameters: x, y, which represent the coordinates of the box's center relative to the 

grid; w, h, the width and height of the box; and the Confidence Score, which reflects the predicted 

likelihood that the box contains an object. The confidence score is calculated as follows: 

Confidence = Pr(Object) × IoU (Intersection over Union) (1) 
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Since its initial release in 2016, YOLO has undergone continuous development and has now 

evolved to YOLOv11. The following sections briefly introduce several versions of the YOLO series. 

Input Image

Darknet-53 Backbone Detection at 3 Scales

Output：Bunding 

Boxes+Class predication

Input Image

CSPDarknet 

Backbone
PANet Neck

Output：Bunding 

Boxes+Class predication

Detection Head

 

Figure 1: Simplified YOLOv3 Flowchart         Figure 2: Simplified YOLOv5 Flowchart 

As illustrated in Figure 1, YOLOv3 [11] primarily adopts Darknet-53 as its backbone. Darknet-

53, a convolutional neural network built upon a residual structure, enables efficient extraction of high-

level image features. In the Head Layer, multi-scale prediction is introduced, allowing the network to 

make predictions at three different scales. This enhances YOLOv3’s ability to handle objects of 

various sizes. Each scale outputs a convolutional layer that generates multiple bounding box 

predictions (position, confidence, and class probability). The final output consists of bounding boxes 

along with their predicted class labels. 

As shown in Figure 2, YOLOv5 [12] follows a similar detection pipeline but introduces notable 

differences in the Backbone and Neck layers compared to YOLOv3. In the Backbone, YOLOv5 

incorporates CSPDarknet (Cross-Stage Partial Darknet) as its primary architecture. CSPDarknet 

optimizes feature extraction efficiency using the Cross-Stage Partial structure. In the Neck layer, 

YOLOv5 introduces PANet (Path Aggregation Network) to enhance feature fusion. PANet 

significantly improves object detection, particularly for small and densely packed objects. These 

advancements highlight that the core of the YOLO algorithm lies in the design of its Backbone and 

Neck layers. 

3. Methods Used in This Study 

This study primarily utilizes the Convolutional Block Attention Module (CBAM), supported by 

Depthwise Separable Convolution (DWConv), to improve detection performance in the YOLOv8 

algorithm. 
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Figure 3: Improved YOLOv8 Method 

The diagram above illustrates the improvements made to the YOLOv8 algorithm [13]. Serving as 

the foundation of this model, the Backbone network, shown in the leftmost column, is essential for 

feature extraction from the input image. The middle two columns correspond to the Neck, which 

handles feature fusion and refinement. The final column represents the Head, which serves as the 

decision-making component of the object detection model, generating the ultimate detection results. 

In this improved version, CBAM is added after the third C2f module, and the last two standard 

convolution layers in the Neck are replaced with DWConv. 

3.1. CBAM 

CBAM (Convolutional Block Attention Module) [14] enhances the network's focus on crucial 

features through the combination of Channel Attention and Spatial Attention mechanisms. 

CBAM Pseudocode 

CBAM  

Input: input_feature  // Input feature map 

Output: output_feature  // Output feature map 

begin 

Step 1: Channel Attention Module (CAM) 

1:  1.1 Apply Global Average Pooling and Global Max Pooling 

2:  avg_pool = GlobalAveragePooling(input_feature)  // Shape: [batch_size, channels] 
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3:  max_pool = GlobalMaxPooling(input_feature)      // Shape: [batch_size, channels] 

4:  1.2 Apply Fully Connected (FC) layers 

5:  avg_fc = FullyConnected(avg_pool)  // Shape: [batch_size, channels] 

6:  max_fc = FullyConnected(max_pool)  // Shape: [batch_size, channels] 

7:  1.3 Combine avg_fc and max_fc using Sigmoid activation 

8:  channel_attention = Sigmoid(avg_fc + max_fc)  // Shape: [batch_size, channels] 

9:  1.4 Apply channel attention to input feature map 

10: channel_weighted = input_feature * channel_attention  // Broadcasting 

Step 2: Spatial Attention Module (SAM) 

11:  2.1 Apply Channel-wise Max and Average Pooling 

12:  max_pool_spatial = MaxPooling(channel_weighted)  // Shape: [batch_size, height, 

width] 

13:  avg_pool_spatial = AvgPooling(channel_weighted)  // Shape: [batch_size, height, 

width] 

14:  2.2 Concatenate max_pool_spatial and avg_pool_spatial 

15:  spatial_concat = Concatenate(max_pool_spatial, avg_pool_spatial)  // Shape: 

[batch_size, height, width, 2] 

16:  2.3 Apply 3x3 Convolution to generate spatial attention map 

17:  spatial_attention = Conv2D(spatial_concat) 

18:  spatial_attention = Sigmoid(spatial_attention)  // Shape: [batch_size, height, width] 

19:  2.4 Apply spatial attention to feature map 

20:  spatial_weighted = channel_weighted * spatial_attention  // Broadcasting 

21:  Final output after both channel and spatial attention 

22:  output_feature = spatial_weighted 

end  

 

Pseudocode Explanation 

Channel Attention (CAM) creates feature maps by applying Global Average Pooling (GAP) and 

Global Max Pooling (GMP), which yield two distinct descriptors capturing channel-specific 

information. These descriptors are then passed through shared fully connected (FC) layers, followed 

by ReLU and Sigmoid activations to generate the channel attention weights. The resulting weights 

are applied to the original feature map using element-wise multiplication, enhancing the relevance of 

more important channels. 

Spatial Attention (SAM) improves the localization of spatial features by performing Max Pooling 

and Average Pooling along the channel axis, generating two distinct spatial maps. These maps are 

then merged and passed through a 3×3 convolution to form a spatial attention map. The Sigmoid 

activation function is used to normalize the attention weights within the interval [0,1], which are then 

applied to the feature map using element-wise multiplication. By integrating these two components, 

CBAM enhances the model's focus on essential features while reducing the impact of irrelevant 

background noise, leading to better results in image classification and object detection. 

3.2. DWConv  

DWConv is a computationally efficient convolution technique that decomposes standard convolution 

into two separate operations: 

(1) Depthwise Convolution (DW): 

Applies an independent convolution kernel to each input channel, reducing computational 

complexity: 
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𝑌𝑖,𝑗
(𝑑)

= ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛
(𝑑)𝑘−1

𝑛=0
𝑘−1
𝑚=0 ⋅ 𝐾𝑚,𝑛

(𝑑) (2)

where: 𝑌(𝑑) is the output of the depthwise convolution, 𝐾(𝑑) is the independent convolution kernel 

for each channel, 𝑑 denotes the input channel index. 

(2) Pointwise Convolution (PW): 

Uses 1×1 convolution to combine the depthwise convolution outputs: 

𝑌𝑖,𝑗
(𝑝)

= ∑ 𝑌𝑖,𝑗
(𝑑)𝐶

𝑑=0 ⋅ 𝑊𝑑
(𝑝)

(3)

where: 𝐶  is the number of input channels, 𝑊𝑑
(𝑝)

 represents the weights of the pointwise convolution. 

By applying DWConv, each input channel is processed separately before the results are mixed in 

the pointwise convolution stage. This dramatically reduces the number of computations compared to 

standard convolution while maintaining high feature extraction efficiency. 

3.3. Data Augmentation 

The dataset used contains a variety of traffic signals, but its overall size is relatively small. To mitigate 

data scarcity issues, data augmentation techniques such as Mosaic and Mixup were implemented. 

Mosaic Augmentation combines multiple images into a single image to expose the model to more 

diverse scenarios. Each training iteration presents different backgrounds, objects, and spatial layouts. 

This forces the model to capture a wider range of object distributions and background variations. By 

merging multiple objects and backgrounds, the model learns to distinguish spatial relationships 

among different objects. Other augmentation parameters used are listed in Table 1: 

Table 1: Data Augmentation Parameters 

Parameter Value Description 

mosaic 1.0 Enables image-mosaic augmentation to increase dataset diversity. 

mixup 0.5 Mixes two images in a weighted manner for augmentation. 

crop 0.3 Randomly crops 30% of the image for augmentation. 

hsv_h 0.015 Randomly adjusts hue values. 

hsv_s 0.7 Randomly adjusts saturation levels. 

hsv_v 0.4 Randomly adjusts brightness levels. 

degrees 0.0 Rotation angle range (0 = no rotation). 

translate 0.1 Percentage of horizontal and vertical translation. 

scale 0.5 Scaling range, typically between 0.5 and 2.0. 

shear 0.0 Shearing transformation (0 = disabled). 

flipud 0.5 50% probability of flipping the image vertically. 

fliplr 0.5 50% probability of flipping the image horizontally. 

4. Experimental Results 

The dataset used is the publicly available YOLOv8 Traffic Sign Dataset. Upon reviewing the dataset, 

it was observed that some small targets lacked annotations. To address this issue, MakeSense was 

utilized to manually label certain unannotated small road signs. Additionally, a portion of the dataset 

was supplemented with manually labeled small-object samples to ensure comprehensive training data. 

This study classifies road signs into four categories: Speed Limit, Crosswalk, Traffic Sign, Stop 
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Figure 4: Detection Results 

The image above presents the detection results, with the first four rows corresponding to: Traffic 

lights, Speed limit signs, Stop signs, Crosswalk signs. The last row consists of mixed-class images 

containing multiple small objects. 

Traffic Lights (Row 1): The algorithm accurately detects traffic lights under different weather 

conditions, providing precise bounding boxes and correct classifications. However, for traffic lights 

that are turned off, the confidence score is relatively low. 

Speed Limit Signs (Row 2): The model classifies these signs with high precision, with confidence 

scores generally exceeding 0.95. Even in challenging scenarios such as reflective surfaces or 

nighttime conditions—where even humans struggle to recognize signs—the model achieves accurate 

predictions. 

Stop Signs (Row 3): The algorithm performs well even in snow-covered and glare-affected 

conditions, making correct detections. 

Crosswalk Signs (Row 4): Although the model detects more objects in the images, it still maintains 

accurate predictions. Small-Object Detection. 

Small-Object Detection (Row 5): The model effectively detects road signs that need to be read 

while the vehicle is in motion. Even objects that appear very small in the camera view are accurately 

enclosed in bounding boxes with high confidence scores—performing at a level that sometimes 

surpasses human vision. During training, multiple hyperparameter adjustments were made. It was 

found that by epoch 20, the model's performance metrics had already reached near saturation. 
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Figure 5: Training Process 

The final training results are as follows:  

Bounding Box Accuracy: 96% 

Overall Recall: 93.2% 

mAP50: 94.2% 

The improvements over the original YOLOv8n model are as follows: 

Bounding Box Accuracy increased by 2.4% 

Overall Recall improved by 7.2% 

mAP50 increased by 2.1% 

These results demonstrate a significant reduction in the missed detection rate while also improving 

the accuracy of model predictions. 

5. Conclusion 

Road sign detection in autonomous driving presents challenges due to the small size of road signs 

and the impact of weather conditions, which can cause signs to appear blurred or unclear. To address 

these issues, this study incorporates CBAM to adaptively correct important feature representations in 

feature maps, and DWConv to decrease the number of parameters required for model training, 

accelerating computation speed. By integrating these two mechanisms, the YOLOv8n architecture 

was improved, making it better suited for small-object detection in road sign recognition. This 

enhancement significantly reduces missed detections, a common issue in YOLOv8n for small targets. 

The enhanced model exhibits better detection performance than other models and achieves high 

precision while maintaining a lightweight architecture.This method can be practically applied in real-

world scenarios. 
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