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Abstract: Descent algorithms, particularly gradient-based methods are very important in 

optimization of deep learning models. However, their application is often accompanied by 

significant mathematical challenges, including convergence guarantees, avoidance of local 

minima, and the trade-offs between computational efficiency and accuracy. This article 

begins by establishing the theoretical underpinnings of descent algorithms, linking them to 

dynamical systems and extending their applicability to broader scenarios. It then delves into 

the limitations of first-order methods, highlighting the need for advanced techniques to ensure 

robust optimization.The discussion focuses on the convergence analysis of descent 

algorithms, emphasizing both asymptotic and finite-time convergence properties. Strategies 

to prevent convergence to local minima and saddle points, such as leveraging the strict saddle 

property and perturbation methods, are thoroughly examined. The article also evaluates the 

performance of descent algorithms through the lens of structural optimization, offering 

insights into their practical effectiveness. The conclusion reflects on the theoretical 

advancements and practical implications of these algorithms, while also addressing the ethical 

considerations in their deployment. By bridging theory and practice, this article aims to 

provide a deeper understanding of descent algorithms and their role in advancing artificial 

intelligence. 
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1. Introduction 

Artificial Intelligence (AI) has become a vital tool across people’s life and work, revolutionizing 

industries with its ability to learn from data. The ability of learning from data relies heavily on 

optimization algorithms. Among these, descent algorithms iteratively adjust weights and other 

parameters in neural networks based on gradient information. These algorithms are used to minimize 

the loss function, which measures the difference between optimal value and the actual value. By 

minimizing the loss, descent algorithm helps the AI model improve its ability to make accurate 

predictions. Mathematically, like M-estimator (a maximum-likelihood estimation) [1], given a dataset 

D and a model parameterized by θ, the goal is to solve:   

θ
∗

= arg min
θ

L (θ, 𝒟) 
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where L (θ, D) is the loss function. The descent algorithm iteratively updates θ using gradients of L. 

Variants such as Stochastic Gradient Descent (SGD) offer additional improvements by refining 

the optimization process and allowing models to converge more efficiently. 

1.1. Mathematical Challenges and Research Directions 

In the optimization of descent algorithms for AI learning, several mathematical challenges arise that 

require ongoing research to address. One key issue is ensuring the convergence of optimization 

algorithms, particularly in the context of complex, non-convex loss landscapes [2]. In non-convex 

problems, the optimization process may get stuck in local minima or saddle points, which makes it 

difficult to find global solutions.  Research into techniques such as saddle point avoidance and escape 

mechanisms continue to explore how to overcome these challenges. 

Another important mathematical aspect is the design of efficient convergence rates.  Under- 

standing and deriving convergence rates for descent algorithms under different conditions—such as 

with varying step sizes and complex neural network architectures—remains an open area of re- search. 

Moreover, the role of regularization in optimization is a critical subject, as it helps prevent overfitting 

by controlling the complexity of the model. Research into the optimal balance between model 

complexity and generalization performance is an ongoing effort. 

In general, the mathematical foundations of AI optimization offer numerous research directions, 

from improving algorithmic efficiency to deepening the theoretical understanding of how different 

models converge during training. 

2. Foundations of Descent Algorithms 

Descent algorithms are a fundamental class of optimization techniques widely used in machine 

learning and artificial intelligence. These algorithms iteratively update model parameters, guiding the 

system towards an optimal solution. The most common method, gradient descent, relies on the 

gradient of the loss function to determine the direction of updates.  In the following section, the article 

will explore the mathematical foundations of descent algorithms. 

2.1. Dynamical Systems and Descent Algorithms 

Gradient descent can be understood as a discrete dynamical system where the model parameters 

evolve over time in response to the gradient of the loss function [3]. In this view, each iteration 

represents a “step” in a time series. This process can be seen as a dynamical system with discrete time, 

where the parameters are adjusted at each time step according to a fixed rule. The dynamical system 

perspective allows us to analyze the trajectory of the algorithm’s parameter updates over time, 

determining whether the system converges to a stable point (i.e., the optimal solution) or oscillates or 

diverges.  In particular, the stability of this system depends on the learning rate η, as an overly large 

step size can cause the system to “jump” away from the optimal point, while a very small step size 

can lead to slow convergence. 
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2.2. Gradient Descent and Extending Algorithms for Wider Situations 

 

Figure 1: Visualization of gradient descent, retrieved from: https://bohrium.dp.tech/courses/5963419

225/content?file=8570 

Gradient descent is the most basic method of optimization, suggesting the fundamental principle of 

descent algorithm mathematically [4]. The method can be expressed as: 

θ𝑡+1 = θ𝑡 − η∇θ𝐿(θ𝑡) 

where: 

𝜃𝑡  represents the parameters of the model at iteration t, namely the red point on figure 1. 

η represents the learning rate, controlling how much to adjust the parameters, namely how much 

the red point moves in one step. 

∇𝜃𝐿(𝜃𝑡) represents the derivation of the loss function with respect to the parameters, determining 

the direction and size of one step.  

In practical problems, the derivation can be replaced by differences. There is no essential dis- 

tinction between the two, because they both use the idea of monotonicity. 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = lim
Δ→0

𝑓(𝑥𝑘 + Δ2) − 𝑓(𝑥𝑘 − Δ1)

(𝑥𝑘 + Δ2) − (𝑥𝑘 − Δ1)
 

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
d𝑓(𝑥𝑘)

d𝑥
= lim

Δ→0

𝑓(𝑥𝑘 + Δ) − 𝑓(𝑥𝑘)

Δ
 

For convex optimization, gradient descent guarantees convergence to the global minimum under 

appropriate conditions, provided that the loss function is differentiable, and the learning rate is 

suitably chosen [5]. The update rule for gradient descent ensures that the parameters are consistently 

adjusted in the direction of the negative gradient, and each step brings the algorithm closer to a 

minimum. 

Further discussions on convergence analysis and the mathematical complexities of these 

algorithms, including how they behave in different optimization landscapes, will be explored in 

discussion section. 

2.3. Theoretical Limitations of First-Order Methods 

Despite its widespread use, first-order methods like gradient descent have several theoretical 

limitations. One major challenge is their lack of second-order information about the curvature of the 

loss function. Gradient descent only uses the first derivative (the gradient), which can lead to 

inefficiencies when the loss function has regions with sharp curvatures or flat areas. In such cases, 

the algorithm may either overshoot the minimum or move too slowly, failing to exploit the structure 
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of the problem effectively. The absence of second-order information means that gradient descent can 

perform poorly in situations where the loss function has steep and shallow regions, which require 

different step sizes for efficient progress. 

Additionally, gradient descent is generally limited to local optimization and may converge to a 

local minimum, especially in non-convex optimization problems. While methods like simulated 

annealing can potentially escape these local minima by accepting worse solutions, gradient descent 

is deterministic and will typically settle into the nearest local minimum.  This is a significant is- sue 

for problems with complex, multi-modal loss landscapes, such as those encountered in deep learning. 

To address these limitations, researchers have developed more advanced methods, such as second-

order methods (e.g., Newton’s method), which use both first and second derivatives of the loss 

function to more efficiently navigate complex optimization surfaces. 

3. Discussion 

3.1. Convergence Analysis of Descent Algorithms 

The convergence of descent algorithms in artificial intelligence depends on the properties of the 

objective function and the specific algorithmic framework. For any two points on the graph of a 

function, the line segment connecting them lies entirely above the graph – the function is called a 

convex function, as figure 2 shown, which means it has a single global minimum point. Mentioned 

previously, descent algorithm can solve optimization problem for convex function very easily.  

However, in non-convex settings, convergence is generally to a stationary point, which may be a local 

minimum or a saddle point. Special techniques are required to prevent these situations. 

                 

Figure 2: Comparison between convex function and non-convex function in 2-dimensional space 

3.2. Methods to prevent local minima and minimax 

To prevent descent algorithms from getting trapped in saddle points, several methods have been 

developed, each addressing different aspects of the optimization process.  

3.3. Leveraging Strict Saddle Property 

Strict Saddle Property is a key feature of minimax in non-convex optimization, which states the 

hessian matrix of every saddle point of a function has at least one negative eigenvalue [6]. Roughly 

speaking, saddle points exhibit at least one direction of negative curvature. This negative curvature 

allows second-order methods (such as Newton’s method) to escape these saddle points and continue 

towards a true local minimum or global optimum. 
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3.4. Perturbation Methods  

Perturbation Methods is effective for escaping saddle points [7]. They introduce randomness or 

perturbations to the algorithm’s updates, which can prevent the optimization process from stagnating 

at a saddle point. 

Stochastic Gradient Descent (SGD) is a gradient-based method widely used in machine learning 

[8][9]. As its name suggested, it is very similar with gradient descent (GD), which is elaborated 

previously. The only difference between them: SGD uses only a data point (or a mini-batch) of 

training set to update a parameter in one iteration or step, while GD runs through all samples in 

training set to update a parameter in one iteration. SGD takes much less time than GD when training 

set is very large. The analysis through time complexity is shown in following text.  

Dataset size: Assume the dataset consists of N data points, each with D features. 

Number of iterations(T): In SGD, the algorithm processes one data point per iteration, and it takes 

N iterations to go through the entire dataset once. Typically, SGD is used for many epochs, so the 

total number of iterations T can be much larger than N  

So, the total time complexity for SGD and GD is:  O(T ⋅ N ⋅ D) 

While these seem similar to each other, the key difference is that SGD processes only one data 

point at a time, meaning the computational cost per iteration is significantly lower than the cost of 

processing the entire dataset in GD, which is   

O(D) ≤ O(N ⋅ D), for N > 1, 

O(D) ≪ O(N ⋅ D),  when N ≫ 1 

where O(D) represents the time complexity per iteration of SGD, O(N⋅D) represents the time 

complexity per iteration of GD.  

The randomness in SGD, due to mini-batch updates, can help escape some local minima or saddle 

points to a degree. However, it doesn’t have an explicit mechanism to ensure global exploration of 

the solution space like Simulated Annealing (SA) does. Therefore, while it can sometimes escape 

shallow local minima, it may still end up stuck in deeper ones, especially in highly non-convex 

landscapes. 

Simulated Annealing (SA) begins by initializing with a solution x0 and an initial temperature T0 

[10]. At each iteration, the temperature is reduced according to the formula  

T (t+1) = α T(t) 

where 0<α<1 is the cooling factor. A neighbouring solution x′ is then generated by modifying the 

current solution x. The new solution x′ is accepted with a probability given by: 

P(𝑎𝑐𝑐𝑒𝑝𝑡) = { 
1,                                   𝑖𝑓 𝑓(𝑥′) < 𝑓(𝑥)

𝑒−
−𝑓(𝑥′)−𝑓(𝑥)

𝑇 ,                 𝑖𝑓 𝑓(𝑥′) ≥ 𝑓(𝑥)
 

where f(x) is the objective function value. The algorithm repeats this process, iterating through 

neighbour generation and acceptance, until the solution stabilizes, indicating the end of the process. 

To ensure convergence to the global minimum, the cooling schedule must be carefully controlled. At 

the beginning, the high temperature lets the system to explore a wide range of solutions, including 

accepting worse solutions that help avoid local minima. As the temperature decreases, the algorithm 

becomes more selective, favouring better solutions and eventually settling in a local minimum. If the 

cooling is slow enough, simulated annealing is theoretically guaranteed to find the global minimum 
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in the limit, given infinite time, due to its connection with the Boltzmann distribution, which dictates 

that the probability of accepting a worse solution decreases as the temperature lowers. 

Together, these methods offer a robust framework for optimizing non-convex functions, 

preventing descent algorithms from being trapped in local minima or saddle points, and enabling 

them to find better solutions more efficiently. 

3.5. Evaluating Descent Algorithms 

When evaluating descent algorithms, two key aspects is often considered: asymptotic convergence 

and finite-time convergence. These two methods assess the behaviours of optimization algorithms, 

particularly how they approach the minimum of an objective function over time. In this context, 

convergence refers to the algorithm’s ability to minimize the objective function as the number of 

iterations increases. Asymptotic convergence focuses on the long-term behaviour of an algorithm, 

describing how the algorithm behaves as the number of iterations, t, becomes large [11]. More 

formally, the algorithm is said to converge asymptotically if the parameters 𝜃t of the model converge 

to the optimal solution θ∗ as t → ∞, such that: 

lim
𝑡→∞

θ𝑡 = θ∗. 

In this case, the objective function f (θ) approaches its minimum value f(θ*) as the algorithm 

proceeds. For many gradient-based methods, the learning rate η approaches zero, the gradient of the 

objective function at the iterate also approaches zero, suggesting convergence to a minimum. 

lim
η→0

| ∇𝑓(𝑥𝑡)| = 0 

A common theoretical result that guarantees asymptotic convergence is provided by the gradient 

descent method, which, under certain conditions (e.g. convexity of f), converges to the global 

minimum as t→∞. For a convex function f, the convergence rate is often analysed in terms of distance 

to optimality dt = |θt − θ∗| ,which typically follows a relationship like: 

 dt+1 ≤ ρdt,  where 0 < ρ < 1. 

This implies that the distance between the current solution and the optimal solution decreases 

exponentially with each iteration, where ρ is a constant depending on the properties of f and the 

learning rate η. 

3.6. Finite-time Convergence 

Asymptotic convergence evaluates the long-term behaviours of an optimization algorithm. Finite-

time convergence focuses on its performance within a limited number of iterations. Compared to 

asymptotic convergence, finite-time convergence examines the convergence rate over a finite number 

of steps, often measured by convergence rates such as linear, sublinear, and superlinear convergence 

[12]. 

Linear convergence is featured by an exponential decrease in the objective function value f (θt) at 

iteration t. Specifically, the difference between the current function value and the optimal value f (θ*) 

decreases by a constant fraction at each step. Mathematically, this is expressed as: 

𝑓(θ𝑡+1) − 𝑓(θ∗) ≤ α(𝑓(θ𝑡) − 𝑓(θ∗)),  0 < α < 1. 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/145/2025.21892 

19 



 

 

Here, α is the convergence rate constant. Linear convergence implies that the number of iterations 

required to achieve a small error grows relatively slowly, making it a desirable property for many 

optimization algorithms. 

Compared to linear convergence, Sublinear convergence has a slower rate, typically on the order 

of O(1/t). In other words, the algorithm gets closer to the optimal solution at a diminishing rate over 

time. For example: 

𝑓(θ𝑡) − 𝑓(θ∗) ≤
𝐶

𝑡
, 

where C is a constant. Sublinear convergence is common in scenarios where the algorithm is not 

optimally tuned, or the problem is ill-conditioned. This kind of rate is easily to see in gradient descent 

methods with fixed step.  

Furthermore, superlinear convergence is a faster form of convergence where the rate of 

improvement increases dramatically as the algorithm approaches the optimal solution. A classic 

example is Newton's method, which exhibits quadratic convergence [13]. This can be expressed as: 

𝑑𝑡+1 ≤ β𝑑𝑡
2 ,  for some constant β > 0, 

where dt represents the distance to the optimal solution at iteration t. Superlinear convergence implies 

that the error decreases very quickly as the algorithm gets closer to the optimal point, making it highly 

efficient for well-conditioned problems. In summary, the evaluation of descent algorithms through 

Asymptotic and Finite-Time Convergence provides a comprehensive understanding of their 

efficiency. Asymptotic convergence focuses on the ultimate destination. On the other hand, finite-

time convergence measures how quickly an algorithm reaches a solution within a finite number of 

iterations, with different convergence rates dictating how rapidly the objective function value 

decreases. Depending on the problem and the algorithm used, both types of convergence are critical 

in determining the effectiveness of a descent method in practice. 

4. Conclusion 

This article gives mathematical insight into aspects of descent algorithms, while having limitations 

and allowing for further exploration in research. The main issue stems from the implementation of 

these algorithms, where certain assumptions made during the theoretical analysis do not generally 

transfer into practical applications. For example, these assumptions of linear convergence or saddle 

point escape, or the idealized case of having a smooth optimization landscape may be hard to achieve 

in practice in real-world and complex noisy environments. As machine learning and artificial 

intelligence advance further, researchers require descent algorithms that not only work 

mathematically but also translate well in practice against these challenges. This research, looking at 

nature alone without these complexities, is a useful stepping stone toward future large-scaled studies 

that include these features. 

While research continues, it is important to think not only about the mathematical and 

computational performance of these algorithms but additionally on their effect in society. Descent 

algorithms are popular for practical applications in natural language processing, computer vision, 

autonomous actuation systems, etc. ,all of which often have ethical issues. So now, as AI technologies 

keep developing, researchers, practitioners, and policymakers, need to collaborate with one another 

to ensure that such platforms are used responsibly, and are designed with fairness, transparency, and 

accountability in mind. 
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