

Mathematical Analysis of Descent Algorithms in Artificial
Intelligence: Convergence, Loss Landscapes, and Structural

Optimization

Wenxin Lyu1,a,*

1National Day School, Beijing, China

a. lvwenxin2023@163.com

*corresponding author

Abstract: Descent algorithms, particularly gradient-based methods are very important in

optimization of deep learning models. However, their application is often accompanied by

significant mathematical challenges, including convergence guarantees, avoidance of local

minima, and the trade-offs between computational efficiency and accuracy. This article

begins by establishing the theoretical underpinnings of descent algorithms, linking them to

dynamical systems and extending their applicability to broader scenarios. It then delves into

the limitations of first-order methods, highlighting the need for advanced techniques to ensure

robust optimization.The discussion focuses on the convergence analysis of descent

algorithms, emphasizing both asymptotic and finite-time convergence properties. Strategies

to prevent convergence to local minima and saddle points, such as leveraging the strict saddle

property and perturbation methods, are thoroughly examined. The article also evaluates the

performance of descent algorithms through the lens of structural optimization, offering

insights into their practical effectiveness. The conclusion reflects on the theoretical

advancements and practical implications of these algorithms, while also addressing the ethical

considerations in their deployment. By bridging theory and practice, this article aims to

provide a deeper understanding of descent algorithms and their role in advancing artificial

intelligence.

Keywords: Mathematics, Computer Science, Deep Learning, Descent Algorithms

1. Introduction

Artificial Intelligence (AI) has become a vital tool across people’s life and work, revolutionizing

industries with its ability to learn from data. The ability of learning from data relies heavily on

optimization algorithms. Among these, descent algorithms iteratively adjust weights and other

parameters in neural networks based on gradient information. These algorithms are used to minimize

the loss function, which measures the difference between optimal value and the actual value. By

minimizing the loss, descent algorithm helps the AI model improve its ability to make accurate

predictions. Mathematically, like M-estimator (a maximum-likelihood estimation) [1], given a dataset

D and a model parameterized by θ, the goal is to solve:

θ
∗

= arg min
θ

L (θ, 𝒟)

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

14

where L (θ, D) is the loss function. The descent algorithm iteratively updates θ using gradients of L.

Variants such as Stochastic Gradient Descent (SGD) offer additional improvements by refining

the optimization process and allowing models to converge more efficiently.

1.1. Mathematical Challenges and Research Directions

In the optimization of descent algorithms for AI learning, several mathematical challenges arise that

require ongoing research to address. One key issue is ensuring the convergence of optimization

algorithms, particularly in the context of complex, non-convex loss landscapes [2]. In non-convex

problems, the optimization process may get stuck in local minima or saddle points, which makes it

difficult to find global solutions. Research into techniques such as saddle point avoidance and escape

mechanisms continue to explore how to overcome these challenges.

Another important mathematical aspect is the design of efficient convergence rates. Under-

standing and deriving convergence rates for descent algorithms under different conditions—such as

with varying step sizes and complex neural network architectures—remains an open area of re- search.

Moreover, the role of regularization in optimization is a critical subject, as it helps prevent overfitting

by controlling the complexity of the model. Research into the optimal balance between model

complexity and generalization performance is an ongoing effort.

In general, the mathematical foundations of AI optimization offer numerous research directions,

from improving algorithmic efficiency to deepening the theoretical understanding of how different

models converge during training.

2. Foundations of Descent Algorithms

Descent algorithms are a fundamental class of optimization techniques widely used in machine

learning and artificial intelligence. These algorithms iteratively update model parameters, guiding the

system towards an optimal solution. The most common method, gradient descent, relies on the

gradient of the loss function to determine the direction of updates. In the following section, the article

will explore the mathematical foundations of descent algorithms.

2.1. Dynamical Systems and Descent Algorithms

Gradient descent can be understood as a discrete dynamical system where the model parameters

evolve over time in response to the gradient of the loss function [3]. In this view, each iteration

represents a “step” in a time series. This process can be seen as a dynamical system with discrete time,

where the parameters are adjusted at each time step according to a fixed rule. The dynamical system

perspective allows us to analyze the trajectory of the algorithm’s parameter updates over time,

determining whether the system converges to a stable point (i.e., the optimal solution) or oscillates or

diverges. In particular, the stability of this system depends on the learning rate η, as an overly large

step size can cause the system to “jump” away from the optimal point, while a very small step size

can lead to slow convergence.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

15

2.2. Gradient Descent and Extending Algorithms for Wider Situations

Figure 1: Visualization of gradient descent, retrieved from: https://bohrium.dp.tech/courses/5963419

225/content?file=8570

Gradient descent is the most basic method of optimization, suggesting the fundamental principle of

descent algorithm mathematically [4]. The method can be expressed as:

θ𝑡+1 = θ𝑡 − η∇θ𝐿(θ𝑡)

where:

𝜃𝑡 represents the parameters of the model at iteration t, namely the red point on figure 1.

η represents the learning rate, controlling how much to adjust the parameters, namely how much

the red point moves in one step.

∇𝜃𝐿(𝜃𝑡) represents the derivation of the loss function with respect to the parameters, determining

the direction and size of one step.

In practical problems, the derivation can be replaced by differences. There is no essential dis-

tinction between the two, because they both use the idea of monotonicity.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = lim
Δ→0

𝑓(𝑥𝑘 + Δ2) − 𝑓(𝑥𝑘 − Δ1)

(𝑥𝑘 + Δ2) − (𝑥𝑘 − Δ1)

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
d𝑓(𝑥𝑘)

d𝑥
= lim

Δ→0

𝑓(𝑥𝑘 + Δ) − 𝑓(𝑥𝑘)

Δ

For convex optimization, gradient descent guarantees convergence to the global minimum under

appropriate conditions, provided that the loss function is differentiable, and the learning rate is

suitably chosen [5]. The update rule for gradient descent ensures that the parameters are consistently

adjusted in the direction of the negative gradient, and each step brings the algorithm closer to a

minimum.

Further discussions on convergence analysis and the mathematical complexities of these

algorithms, including how they behave in different optimization landscapes, will be explored in

discussion section.

2.3. Theoretical Limitations of First-Order Methods

Despite its widespread use, first-order methods like gradient descent have several theoretical

limitations. One major challenge is their lack of second-order information about the curvature of the

loss function. Gradient descent only uses the first derivative (the gradient), which can lead to

inefficiencies when the loss function has regions with sharp curvatures or flat areas. In such cases,

the algorithm may either overshoot the minimum or move too slowly, failing to exploit the structure

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

16

of the problem effectively. The absence of second-order information means that gradient descent can

perform poorly in situations where the loss function has steep and shallow regions, which require

different step sizes for efficient progress.

Additionally, gradient descent is generally limited to local optimization and may converge to a

local minimum, especially in non-convex optimization problems. While methods like simulated

annealing can potentially escape these local minima by accepting worse solutions, gradient descent

is deterministic and will typically settle into the nearest local minimum. This is a significant is- sue

for problems with complex, multi-modal loss landscapes, such as those encountered in deep learning.

To address these limitations, researchers have developed more advanced methods, such as second-

order methods (e.g., Newton’s method), which use both first and second derivatives of the loss

function to more efficiently navigate complex optimization surfaces.

3. Discussion

3.1. Convergence Analysis of Descent Algorithms

The convergence of descent algorithms in artificial intelligence depends on the properties of the

objective function and the specific algorithmic framework. For any two points on the graph of a

function, the line segment connecting them lies entirely above the graph – the function is called a

convex function, as figure 2 shown, which means it has a single global minimum point. Mentioned

previously, descent algorithm can solve optimization problem for convex function very easily.

However, in non-convex settings, convergence is generally to a stationary point, which may be a local

minimum or a saddle point. Special techniques are required to prevent these situations.

Figure 2: Comparison between convex function and non-convex function in 2-dimensional space

3.2. Methods to prevent local minima and minimax

To prevent descent algorithms from getting trapped in saddle points, several methods have been

developed, each addressing different aspects of the optimization process.

3.3. Leveraging Strict Saddle Property

Strict Saddle Property is a key feature of minimax in non-convex optimization, which states the

hessian matrix of every saddle point of a function has at least one negative eigenvalue [6]. Roughly

speaking, saddle points exhibit at least one direction of negative curvature. This negative curvature

allows second-order methods (such as Newton’s method) to escape these saddle points and continue

towards a true local minimum or global optimum.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

17

3.4. Perturbation Methods

Perturbation Methods is effective for escaping saddle points [7]. They introduce randomness or

perturbations to the algorithm’s updates, which can prevent the optimization process from stagnating

at a saddle point.

Stochastic Gradient Descent (SGD) is a gradient-based method widely used in machine learning

[8][9]. As its name suggested, it is very similar with gradient descent (GD), which is elaborated

previously. The only difference between them: SGD uses only a data point (or a mini-batch) of

training set to update a parameter in one iteration or step, while GD runs through all samples in

training set to update a parameter in one iteration. SGD takes much less time than GD when training

set is very large. The analysis through time complexity is shown in following text.

Dataset size: Assume the dataset consists of N data points, each with D features.

Number of iterations(T): In SGD, the algorithm processes one data point per iteration, and it takes

N iterations to go through the entire dataset once. Typically, SGD is used for many epochs, so the

total number of iterations T can be much larger than N

So, the total time complexity for SGD and GD is: O(T ⋅ N ⋅ D)

While these seem similar to each other, the key difference is that SGD processes only one data

point at a time, meaning the computational cost per iteration is significantly lower than the cost of

processing the entire dataset in GD, which is

O(D) ≤ O(N ⋅ D), for N > 1,

O(D) ≪ O(N ⋅ D), when N ≫ 1

where O(D) represents the time complexity per iteration of SGD, O(N⋅D) represents the time

complexity per iteration of GD.

The randomness in SGD, due to mini-batch updates, can help escape some local minima or saddle

points to a degree. However, it doesn’t have an explicit mechanism to ensure global exploration of

the solution space like Simulated Annealing (SA) does. Therefore, while it can sometimes escape

shallow local minima, it may still end up stuck in deeper ones, especially in highly non-convex

landscapes.

Simulated Annealing (SA) begins by initializing with a solution x0 and an initial temperature T0

[10]. At each iteration, the temperature is reduced according to the formula

T (t+1) = α T(t)

where 0<α<1 is the cooling factor. A neighbouring solution x′ is then generated by modifying the

current solution x. The new solution x′ is accepted with a probability given by:

P(𝑎𝑐𝑐𝑒𝑝𝑡) = {
1, 𝑖𝑓 𝑓(𝑥′) < 𝑓(𝑥)

𝑒−
−𝑓(𝑥′)−𝑓(𝑥)

𝑇 , 𝑖𝑓 𝑓(𝑥′) ≥ 𝑓(𝑥)

where f(x) is the objective function value. The algorithm repeats this process, iterating through

neighbour generation and acceptance, until the solution stabilizes, indicating the end of the process.

To ensure convergence to the global minimum, the cooling schedule must be carefully controlled. At

the beginning, the high temperature lets the system to explore a wide range of solutions, including

accepting worse solutions that help avoid local minima. As the temperature decreases, the algorithm

becomes more selective, favouring better solutions and eventually settling in a local minimum. If the

cooling is slow enough, simulated annealing is theoretically guaranteed to find the global minimum

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

18

in the limit, given infinite time, due to its connection with the Boltzmann distribution, which dictates

that the probability of accepting a worse solution decreases as the temperature lowers.

Together, these methods offer a robust framework for optimizing non-convex functions,

preventing descent algorithms from being trapped in local minima or saddle points, and enabling

them to find better solutions more efficiently.

3.5. Evaluating Descent Algorithms

When evaluating descent algorithms, two key aspects is often considered: asymptotic convergence

and finite-time convergence. These two methods assess the behaviours of optimization algorithms,

particularly how they approach the minimum of an objective function over time. In this context,

convergence refers to the algorithm’s ability to minimize the objective function as the number of

iterations increases. Asymptotic convergence focuses on the long-term behaviour of an algorithm,

describing how the algorithm behaves as the number of iterations, t, becomes large [11]. More

formally, the algorithm is said to converge asymptotically if the parameters 𝜃t of the model converge

to the optimal solution θ∗ as t → ∞, such that:

lim
𝑡→∞

θ𝑡 = θ∗.

In this case, the objective function f (θ) approaches its minimum value f(θ*) as the algorithm

proceeds. For many gradient-based methods, the learning rate η approaches zero, the gradient of the

objective function at the iterate also approaches zero, suggesting convergence to a minimum.

lim
η→0

| ∇𝑓(𝑥𝑡)| = 0

A common theoretical result that guarantees asymptotic convergence is provided by the gradient

descent method, which, under certain conditions (e.g. convexity of f), converges to the global

minimum as t→∞. For a convex function f, the convergence rate is often analysed in terms of distance

to optimality dt = |θt − θ∗| ,which typically follows a relationship like:

 dt+1 ≤ ρdt, where 0 < ρ < 1.

This implies that the distance between the current solution and the optimal solution decreases

exponentially with each iteration, where ρ is a constant depending on the properties of f and the

learning rate η.

3.6. Finite-time Convergence

Asymptotic convergence evaluates the long-term behaviours of an optimization algorithm. Finite-

time convergence focuses on its performance within a limited number of iterations. Compared to

asymptotic convergence, finite-time convergence examines the convergence rate over a finite number

of steps, often measured by convergence rates such as linear, sublinear, and superlinear convergence

[12].

Linear convergence is featured by an exponential decrease in the objective function value f (θt) at

iteration t. Specifically, the difference between the current function value and the optimal value f (θ*)

decreases by a constant fraction at each step. Mathematically, this is expressed as:

𝑓(θ𝑡+1) − 𝑓(θ∗) ≤ α(𝑓(θ𝑡) − 𝑓(θ∗)), 0 < α < 1.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

19

Here, α is the convergence rate constant. Linear convergence implies that the number of iterations

required to achieve a small error grows relatively slowly, making it a desirable property for many

optimization algorithms.

Compared to linear convergence, Sublinear convergence has a slower rate, typically on the order

of O(1/t). In other words, the algorithm gets closer to the optimal solution at a diminishing rate over

time. For example:

𝑓(θ𝑡) − 𝑓(θ∗) ≤
𝐶

𝑡
,

where C is a constant. Sublinear convergence is common in scenarios where the algorithm is not

optimally tuned, or the problem is ill-conditioned. This kind of rate is easily to see in gradient descent

methods with fixed step.

Furthermore, superlinear convergence is a faster form of convergence where the rate of

improvement increases dramatically as the algorithm approaches the optimal solution. A classic

example is Newton's method, which exhibits quadratic convergence [13]. This can be expressed as:

𝑑𝑡+1 ≤ β𝑑𝑡
2 , for some constant β > 0,

where dt represents the distance to the optimal solution at iteration t. Superlinear convergence implies

that the error decreases very quickly as the algorithm gets closer to the optimal point, making it highly

efficient for well-conditioned problems. In summary, the evaluation of descent algorithms through

Asymptotic and Finite-Time Convergence provides a comprehensive understanding of their

efficiency. Asymptotic convergence focuses on the ultimate destination. On the other hand, finite-

time convergence measures how quickly an algorithm reaches a solution within a finite number of

iterations, with different convergence rates dictating how rapidly the objective function value

decreases. Depending on the problem and the algorithm used, both types of convergence are critical

in determining the effectiveness of a descent method in practice.

4. Conclusion

This article gives mathematical insight into aspects of descent algorithms, while having limitations

and allowing for further exploration in research. The main issue stems from the implementation of

these algorithms, where certain assumptions made during the theoretical analysis do not generally

transfer into practical applications. For example, these assumptions of linear convergence or saddle

point escape, or the idealized case of having a smooth optimization landscape may be hard to achieve

in practice in real-world and complex noisy environments. As machine learning and artificial

intelligence advance further, researchers require descent algorithms that not only work

mathematically but also translate well in practice against these challenges. This research, looking at

nature alone without these complexities, is a useful stepping stone toward future large-scaled studies

that include these features.

While research continues, it is important to think not only about the mathematical and

computational performance of these algorithms but additionally on their effect in society. Descent

algorithms are popular for practical applications in natural language processing, computer vision,

autonomous actuation systems, etc. ,all of which often have ethical issues. So now, as AI technologies

keep developing, researchers, practitioners, and policymakers, need to collaborate with one another

to ensure that such platforms are used responsibly, and are designed with fairness, transparency, and

accountability in mind.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

20

References

[1] Wikipedia Contributors. (2024, November 5). M-estimator. Wikipedia; Wikimedia Foundation. https://en.wikipedia.

org/wiki/M-estimator
[2] Jain, P., & Kar, P. (2017). Non-convex Optimization for Machine Learning. Foundations and Trends® in Machine

Learning, 10(3-4), 142–336. https://doi.org/10.1561/2200000058

[3] Baldi, P. (1995). Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE

Transactions on Neural Networks, 6(1), 182–195. https://doi.org/10.1109/72.363438

[4] Suvrit Sra, Nowozin, S., & Wright, S. J. (2012). Optimization for machine learning. Mit Press.

[5] Chatterjee, S. (2022). Convergence of gradient descent for deep neural networks. ArXiv (Cornell University). https:

//doi.org/10.48550/arxiv.2203.16462

[6] Jin, C., Ge, R., Praneeth Netrapalli, Kakade, S. M., & Jordan, M. I. (2017). How to escape saddle points efficiently.

International Conference on Machine Learning, 1724–1732.

[7] Spall, J. C. (1999). Stochastic optimization and the simultaneous perturbation method. https://doi.org/10.1145/

324138.324170

[8] Ge, R., Huang, F., Jin, C., & Yang, Y. (2015). Escaping From Saddle Points --- Online Stochastic Gradient for

Tensor Decomposition. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1503.02101

[9] Kiefer, J., & Wolfowitz, J. (1952). Stochastic Estimation of the Maximum of a Regression Function. The Annals of

Mathematical Statistics, 23(3), 462–466. http://www.jstor.org/stable/2236690

[10] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598),

671–680. https://doi.org/10.1126/science.220.4598.671
[11] Wah, B. W., Chen, Y., & Wang, T. (2006). Simulated annealing with asymptotic convergence for nonlinear

constrained optimization. Journal of Global Optimization, 39(1), 1–37. https://doi.org/10.1007/s10898-006-9107-

z

[12] Axelsson, O., & Kaporin, I. (2000). On the sublinear and superlinear rate of convergence of conjugate gradient

methods. Numerical Algorithms, 25, 1-22.

[13] Drobny, S., & Weiland, T. (2000). Numerical calculation of nonlinear transient field problems with the Newton-

Raphson method. IEEE Transactions on Magnetics, 36(4), 809–812. https://doi.org/10.1109/20.877568

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/145/2025.21892

21

