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Abstract: Lightweight pruning facilitates the deployment of machine learning models on 

resource-constrained devices. This review systematically examines pruning techniques 

across different technical paths, along with lightweight strategies that incorporate pruning. 

Regarding pruning techniques, the review successively delves into the principles, 

implementation methods, and applicable scenarios of structured pruning, unstructured 

pruning, and automated pruning. Structured pruning holds significant advantages in hardware 

implementation; unstructured pruning, on the other hand, demonstrates unique potential in 

fine-grained optimization, while automatic pruning methods achieve more precise model 

compression through intelligent search strategies. Subsequently, it centers on the synergy 

among pruning and other lightweight approaches, presenting the integration of pruning with 

quantization, the combination of pruning and distillation, as well as the pruning concepts 

incorporated in lightweight neural network architectures. The review concludes by 

highlighting some current challenges facing pruning technologies and offering insights into 

potential future research directions. These integration strategies not only enhance the model's 

operational efficiency in resource-constrained environments, but also offer innovative ideas 

for further compression while maintaining high accuracy. 

Keywords: TinyML, pruning, quantization, distillation, lightweight neural network 

architecture  

1. Introduction 

Tiny Machine Learning(TinyML) is primarily applied in embedded edge devices, where low power 

consumption, real-time performance, and minimal latency are critical[1]. This research can define 

Tiny Machine Learning Model as “machine learning aware architectures, frameworks, techniques, 

tools, and approaches which are capable of performing on-device analytics for a variety of sensing 

modalities (vision, audio, speech, motion, chemical, physical, textual, cognitive) at mW (or below) 

power range setting, while targeting predominately battery-operated embedded edge devices suitable 

for implementation at large scale use cases preferable in the IoT or wireless sensor network 

domain”[2]. Motivated by the urgent demand in highly resource-limited environments, this study 

explores how to optimize and integrate advanced pruning techniques with other lightweight strategies 

to achieve efficient model performance without compromising accuracy. The lightweight strategies 

mainly concentrate on two aspects: model compression and the design of lightweight neural networks. 

Model compression includes methods like quantization and knowledge distillation, and is essentially 

enhanced by efficient pruning techniques. Efficient pruning techniques form the backbone of model 
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compression in TinyML by systematically eliminating redundant parameters and reducing 

computational complexity with slightly sacrificing performance. Lightweight neural network design 

seeks to minimize resource consumption starting from the design of convolutional structures, an 

approach that, when combined with targeted pruning, yields models that are well-suited for 

deployment on resource-constrained devices. By enhancing model compression efficiency, the 

proposed approach promises notable improvements in latency and energy efficiency for 

resource-constrained IoT and embedded applications. 

2. Pruning Techniques 

The neural network pruning framework proposed by Han et al. is widely adopted in current 

research[4]. It begins with thoroughly training the initial network, followed by parameter importance 

evaluation through weight magnitude or gradient statistics, which informs the subsequent selective 

pruning. After pruning, the model undergoes fine-tuning to restore performance. Multiple iterations 

progressively optimize the network structure, forming a closed-loop “pruning–recovery–verification” 

process as shown in Fig.1. 

 

Figure 1: Neural network pruning framework 

2.1. Structured Pruning 

In structured pruning, the L-norm serves as a convenient metric for gauging the overall importance of 

convolutional kernels or channels in structured pruning, effectively identifying redundant 

components that can be removed[3]. Its application spans the entire pruning pipeline: ranking and 

pruning based on L-norm values, then continually updating these evaluations in subsequent training 

iterations. This review primarily synthesizes optimization avenues for L-norm based pruning 

methodologies. 

Li et al. employ a predefined per-layer pruning ratio to remove filters with smaller L1 norms, 

thereby achieving structured pruning by discarding these low-norm filters in their entirety[5]. Wu et 

al. introduce an L1 and an L2 regularization term into the error function. As a result, the weights 

gradually decrease during training and can finally be removed when the training is completed[6]. Luo 

et al. introduce an L1-norm based and L2-norm regularization based Extreme learning 

machine(ELM)[7]. It leverages the grouping effect of the L2 penalty and the sparsity characteristic of 

the L1 penalty.  

In order to achieve a deeper reduction in model redundancy and enhance the robustness of the 

pruned model, L-norm-based optimization strategies have been introduced. Cheng et al. propose an 

improved similarity metric by extending the concept of cross-covariance among feature maps into a 

Hilbert space and computing its Hilbert–Schmidt norm[8].  

Wang et al. show the possibility of linear representational redundancy among the feature maps 

produced by convolutional kernels[9]. They introduce an additional loss term, termed CCM-loss, into 

the training objective. By optimizing this term during back propagation, the convolution kernels’ 

outputs can be made partially linearly representable by one another, which in turn allows for merging 

or removing redundant channels during subsequent pruning. CCM-loss directly acts on the 
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convolutional kernel outputs, concentrating on the similarity or correlation of the data at the 

feature-mapping level. 

Wang et al. proposed a structured pruning algorithm for CNN models based on GraSP 

algorithm[10]. In each training iteration, the algorithm first selects the filter index set Gk containing 

those with the highest absolute gradient values and the set Ak containing the largest parameter 

magnitudes. It then takes the union Sk = Gk ⋃ Ak as a candidate set of filters to retain, while all 

others are set to zero or flagged for pruning, allowing those with high gradient contributions or large 

magnitudes to receive more training opportunities in subsequent iterations. 

Improvement methods based on different information sources (data correlation, gradient 

information) can target various aspects of optimization for L-norm pruning, ultimately addressing the 

issues of high cost and high complexity under the over-parameterization of neural networks. By 

implementing effective redundancy identification, the original model’s accuracy can be nearly 

unchanged after pruning. 

2.2. Automatic Pruning 

Building on structured strategies, automated pruning incorporates automated search and iterative 

optimization, leading to more diverse strategies and a more flexible, refined pruning process.  

A major optimization direction for imposing constraints on the original weights involves 

combining structured pruning with ADMM to achieve deeper sparsification, by splitting the 

constrained optimization problem—featuring complex regularization—into two parts: one updates 

the network weights, and the other updates the variables that represent the sparse structure: 

 minw,z ℒ(W) subject to W = Z ∈ Ω (1) 

where ℒ(W) denotes the training loss of the network, Ω denotes the feasible set for the sparse 

structure, and Z denotes the pruned (or sparsified) network weights[11]. Building on this framework, 

Liu et al. introduced an additional “purification” step in the ADMM process: after completing the 

primary ADMM iterations, they conduct a local readjustment or reactivation check for pruned 

weights to remove redundant residual weights or correct over-pruning. Lin et al. incorporated 

ADMM into the Artificial Bee Colony (ABC) algorithm to automatically discover the optimal 

number of retained channels for each layer, thereby significantly reducing manual hyperparameter 

tuning while enhancing network compression efficacy[12]. 

Another optimization direction ains at achieving lower hyperparameter sensitivity and stronger 

recoverability. Xiao et al. introduce a pruning method in which auxiliary parameters, instead of 

directly constraining or modifying the original network weights, determine which weights or neurons 

are pruned[13]. Through a specialized gradient update scheme and a recoverable pruning mechanism, 

any vitally important weights erroneously pruned can be automatically restored upon discovery. Liu 

et al. treat network pruning as a process of structure search combined with meta-learning[14]. By 

making use of a trained Pruning - net to directly generate the weights for a given sub - network, they 

are able to efficiently adapt to various sub - structures and significantly reduce the necessity for 

further fine - tuning. 

2.3. Unstructured Pruning 

Unstructured pruning attempts to remove redundant weight parameters from the tensor without 

modifying the network structure, making a large neural network sparse, which offers greater 

flexibility and achieves higher compression ratios. However, unstructured pruning can lead to a 

non-uniform distribution of zeros in the parameter tensors, and the compression degree of the model 

is generally not as good as that of structured pruning. 
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Wang et al. introduce a mask learning module that assigns a mask to each weight in the search 

space, allowing for the removal of redundant weights[15]. At the same time, layer-wise relevance 

propagation (LRP) is used as the pruning criterion, evaluating the importance of each neuron through 

backpropagation and updating the binary masks. 

Zhang et al. proposed a joint dynamic pruning algorithm aimed at addressing the issues of model 

capacity loss and complexity reduction present in traditional static and dynamic pruning methods[16]. 

During the training process, convolution kernels with lower importance are not immediately 

permanently pruned but instead set to zero, allowing them to be updated during backpropagation. At 

the same time, the algorithm dynamically selects the convolution kernels involved in the computation 

based on the features of the input images. 

3. Quantization 

By integrating pruning techniques, quantization can be applied to a network that has already been 

sparsified, ensuring that only the most critical weights are quantized. This synergy allows the model 

to benefit simultaneously from the reduced computational load of pruning and the low-precision 

efficiency brought by quantization. 

For TinyML applications, Quantization-Aware Training(QAT) and Quantization Guided 

Training(QGT) are widely applied. QAT improves models’ adaptability to low-precision 

environments by considering the impact of quantization during training, while QGT further 

introduces optimization mechanisms to achieve lower bit-width quantization[2]. Dan et al. optimizes 

the quantization strategy by proposing Quantization-Aware Training (QAT)[17]. They introduce 

quantization operations during the training process to simulate quantized weights and activation 

values, allowing for the calculation of quantization errors. They optimize the loss function by 

combining classification loss with quantization loss, ensuring the model’s performance in 

low-precision environments.  

Ghamari et al. introduces an innovative method, Quantization Guided Training (QGT), building 

upon the standard Quantization-Aware Training (QAT) approaches[18]. Additionally, it incorporates 

customized regularization terms that guide the distribution of DNN weights towards optimizing for 

reduced quantization errors while maintaining high accuracy. Through QGT, it becomes possible to 

transparently identify model layers or modules that perform poorly during the quantization process. 

This feature aids developers in selectively optimizing specific components, thereby further enhancing 

the overall effectiveness of model compression. When combined with pruning, QGT facilitates a dual 

optimization where the pruning process removes redundant parameters, and quantization further 

refines the compressed architecture. 

4. Knowledge Distillation 

Suwannaphong et al. show that the accuracy of student models[19] still showed a significant decline 

when size are limited to extreme (64 kb), indicating the limitations of the traditional Knowledge 

Distillation method in minimal model compression[20]. Combining distillation with pruning can 

better preserve performance under tight resource constraints. 

Deng et al. proposed a Feature-Enhanced Knowledge Distillation-based Object Detection 

Compression Algorithm(ODCA)[21]. ODCA initially incorporates a coordinate attention mechanism 

into the intermediate layers of the teacher network to enhance the teacher model’s ability to represent 

foreground object features. Integrating pruning into this approach further streamlines the model by 

eliminating redundant channels. Another strategy is Relational Knowledge Distillation (RKD)[22], 

which employs distance-wise and angle-wise distillation losses. When paired with pruning, RKD 
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retains key relational structure while reducing overall network complexity, yielding a more robust, 

compact model. 

5. Lightweight Neural Network Architectures in TinyML 

Lightweight neural network architectures optimize from the perspectives of structural pruning 

concepts in lightweight architectures, including kernel size and convolutional techniques by 

employing smaller kernels and unconventional convolution methods. MobileNet[23] enhances the 

model by increasing the number of channels and enabling independent feature extraction, whereas 

ShuffleNet[24] improves performance by enhancing the flow of information between channels.  

Howard et al. propose MobileNets, an efficient deep learning model for mobile and embedded 

vision applications. The core of MobileNets lies in depthwise separable convolution, which splits the 

convolution operation into depthwise convolution and pointwise convolution. Depthwise convolution 

applies a single convolutional kernel to each input channel, while pointwise convolution applies a 

1 × 1 convolution to combine the outputs of the depthwise convolution. A standard convolutional 

layer is parameterized by a convolution kernel K of size DK · DK · M · N, where DK represents the 

size of the convolution kernel, M is the number of input channels, and N is the number of output 

channels. The output feature map for standard convolution is computed as:  

 Gk,l,n = ∑i,j,m Ki,j,m,nFk+i−1,l+j−1,m (2) 

The computational cost is expressed as DK ⋅ DK ⋅ M ⋅ N ⋅ DF ⋅ DF. The output feature map of the 

depthwise convolution after separation is computed as  

 Ĝk,l,n = ∑i,j,m K̂i,j,m,nFk+i−1,l+j−1,m (3) 

In the equation: K̂ is a small kernel of size DK × DK × M, where the M-th kernel in K̂ is applied 

to the F -th channel, generating the output feature map Ĝ  for the M -th channel. The amount 

computed at this time is DK ⋅ DK ⋅ M ⋅ DF + M ⋅ N ⋅ DF, while the 1 × 1 kernel is computed as DK ⋅
DK ⋅ M ⋅ DF ⋅ DF. By representing the convolution kernel size as DK × DK and the process of merging 

and filtering, the reduced computation amount is given by  

 DK ⋅ DK ⋅ M ⋅ DF + M ⋅ N ⋅ DF =
1

N
+

1

DK
2  (4) 

MobileNets introduces two hyperparameters: the width multiplier α (which controls the number 

of input and output channels) and the resolution multiplier ρ (which reduces the resolution of the 

input image) to further optimize the model:  

 DK ⋅ DK ⋅ αM ⋅ DF ⋅ DF + αM ⋅ αN ⋅ DF ⋅ DF (5) 

The design of MobileNets concentrates 95% of the computation time on 1 × 1 convolutions, 

which can be implemented using highly optimized matrix multiplication (GEMM), further enhancing 

computational efficiency. The 1 × 1 convolutions do not require memory rearrangement (im2col) 

and can be directly implemented using GEMM, making them more efficient in practical applications. 

Zhang et al. introduce an efficient convolutional neural network (CNN) architecture designed 

specifically for mobile devices, with the main goal of achieving efficient image classification and 

object detection under limited computational resources. ShuffleNet uses 1 × 1 convolutions to fuse 

information between channels: 

 Yi,j,k = ∑c Xi,j,c ⋅ Wc,k (6) 
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where Y is the output feature map, X is the input feature map, W is the convolution kernel, i, j are 

the spatial positions, c is the channel index, and k is the output channel index. Divide the input 

channels into several groups, and perform convolution operations independently on each group:  

 Yg,i,j,k = ∑c∈Gg
Xg,i,j,c ⋅ Wg,c,k (7) 

in which Gg denotes the channels of the g-th group. After grouped convolution, a channel shuffle 

operation is performed to disrupt the channel order, ensuring that information can flow between 

different groups and avoiding the phenomenon of information islands: 

 Shuffle(Y) = Reshape(Transpose(Y)) (8) 

These two models also represent the design strategies of emerging lightweight neural network 

architectures. Lightweight Deep Convolutional Neural Network (DCNN) technologies incorporate 

sparse hierarchical structures and modular designs in their architectural framework[25]. The sparse 

hierarchical structures reduce redundant parameters by designing networks with sparse connections 

and efficient hierarchical architectures. Based on MobileNet, MobileNetV2[26] was developed, 

introducing reverse residual structures and linear bottlenecks. The application of depthwise separable 

convolutions has also led to the creation of more lightweight models, such as EfficientNet[27], 

Xception[28], and GhostNet[29], among others. These models significantly reduce computational 

complexity while maintaining or improving accuracy, making them suitable for mobile devices and 

resource-constrained environments. 

On the basis of ShuffleNet model, Li et al. optimized channel shuffling by enhancing the model’s 

ability to extract features using a residual block structure based on the initial foundation images 

generated by the subnet reconstruction[30]. Gao et al. proposed a lightweight Multi-branch Aware 

Super-Resolution Network(MASRN) combining channel shuffling with attention mechanisms[31], 

where the basic building block is the Multi-branch Aware Module(MAM), which integrates the 

Channel Shuffle Pixel-wise Attention(CSPA) mechanism to effectively extract hierarchical 

contextual features. 

Similarly, terminal deployment and model optimization are complementary. Lai et al. proposed a 

deployment-driven model design approach[32]. For ML development and deployment optimized for 

edge devices, they utilize deployment tools instead of traditional ML frameworks to construct 

network models. These deployment tools integrate operator libraries of the target platform, ensuring 

that the designed models are compatible with the deployment environment.  

6. Conclusion 

This review introduces pruning techniques tailored for resource-constrained devices within the 

TinyML domain and discusses their synergy with other model compression approaches and their 

application in designing lightweight AI systems. The inherent model-simplification achieved through 

pruning, when integrated with complementary compression techniques, fosters the development of 

compact architectures that enable machine learning models to operate on significantly smaller 

hardware without compromising functionality. The paper cites a limited number of references, which 

may not comprehensively cover the latest developments and diverse methods in this field. 

Consequently, some innovative technologies are not discussed and compared in depth. Building on 

the existing research, future work could incorporate more empirical studies to validate the actual 

performance of integrating pruning techniques with other model compression methods through 

large-scale experiments. At the same time, by incorporating a wider range of literature, a unified and 

comprehensive evaluation framework for lightweight models could be developed, ensuring a fairer 

and more precise comparison among techniques such as pruning, quantization, and distillation across 

various tasks. Additionally, the co-design of algorithms with dedicated hardware will be an important 
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direction, and future research is expected to offer more customized optimization solutions for 

large-scale practical deployments. 
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