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Abstract: With the widespread application of Deep Neural Networks (DNNs) in edge 

computing and embedded systems, edge devices face challenges such as limited 

computational resources and strict power constraints. Microcontroller Units (MCUs), 

combined with the low-cost and mass-production advantages of dedicated Neural Processing 

Units (NPUs), provide a more practical solution for edge AI. This paper proposes a neural 

network optimization framework for NPU-MCU heterogeneous computing platforms. By 

leveraging techniques such as algorithm partitioning, pipeline design, data flow optimization, 

and task scheduling, the framework fully exploits the computational advantages of NPUs and 

the control capabilities of MCUs, significantly improving the system's computational 

efficiency and energy efficiency. Specifically, the framework assigns compute-intensive 

tasks (e.g., convolution, matrix multiplication) to NPUs and control-intensive tasks (e.g., task 

scheduling, data preprocessing) to MCUs. Combined with pipeline design and data flow 

optimization, it maximizes hardware resource utilization, reduces power consumption, and 

alleviates memory bandwidth pressure. Experimental results demonstrate that the framework 

performs exceptionally well in edge computing and IoT devices, effectively addressing the 

challenges of deploying neural networks in resource-constrained scenarios. This research 

provides a systematic optimization method for the industrial application of edge intelligence, 

offering significant theoretical and practical value. 

Keywords: Edge Computing, Embedded Systems, Deep Neural Networks, Computational 

Efficiency, Computational Efficiency 

1. Introduction   

In recent years, Deep Neural Networks (DNNs) have achieved breakthrough progress in artificial 

intelligence fields such as computer vision and natural language processing, gradually extending into 

edge computing and embedded systems. Edge devices commonly face challenges such as limited 

computational resources and strict power constraints, making traditional general-purpose computing 

platforms (e.g., CPUs, GPUs) inadequate for meeting the high-efficiency and low-power deployment 

requirements. Field-Programmable Gate Arrays (FPGAs), with their reconfigurable nature and 

parallel computing capabilities, have developed several mature optimization frameworks, such as 

ScaleHLS-HIDA (referred to as HIDA). ScaleHLS-HIDA achieves efficient hardware code 

generation through optimizations in both computation and data flow [1]. However, as a hardware 

development platform, the primary value of FPGAs lies in rapid validation and optimization of neural 
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network architectures, laying the groundwork for subsequent conversion to Application-Specific 

Integrated Circuits (ASICs). In contrast, MCUs, with their low-cost and mass-production 

characteristics [2,3], combined with the efficient computing capabilities of dedicated NPUs, offer a 

more practical solution for edge AI. 

Among existing NPU-MCU heterogeneous computing platforms, RK3588 and RK3399 are 

typical representatives. The RK3588 integrates a 6 TOPS NPU, supporting multiple data formats 

such as INT8, INT16, and FP16, and is widely used in edge computing boxes and autonomous 

driving. The RK3399, through the collaborative computing of GPU and CPU, achieves certain AI 

acceleration capabilities and is commonly used in educational robots and smart home scenarios. 

These embedded chips perform exceptionally well in edge computing and IoT devices, fully 

demonstrating the advantages of NPU-MCU platforms in resource-constrained scenarios. 

Therefore, developing a neural network optimization framework for NPU-MCU heterogeneous 

computing platforms holds significant theoretical and practical value. This framework not only fully 

leverages the computational advantages of NPUs and the control capabilities of MCUs but also 

provides a systematic optimization method for deploying neural networks in resource-constrained 

scenarios, promoting the industrial application of edge intelligence. 

2. Literature Review   

In NPU-MCU heterogeneous computing platforms, NPUs are responsible for compute-intensive 

tasks (e.g., matrix multiplication, convolution), while MCUs handle control-intensive tasks (e.g., task 

scheduling, data management). Through algorithm partitioning and pipeline design, the system's 

parallelism and throughput can be further enhanced. Additionally, drawing on the computation and 

data flow optimization ideas of HIDA, efficient hardware code can be generated, maximizing 

hardware resource utilization, reducing power consumption, and providing a systematic optimization 

method for edge AI applications. 

2.1. Algorithm Partitioning and Pipeline Design   

In NPU-MCU heterogeneous computing platforms, the core of algorithm partitioning is to divide the 

computational tasks of neural networks into parts suitable for NPUs and MCUs. NPUs handle 

compute-intensive tasks, such as convolution and matrix multiplication, while MCUs manage 

control-intensive tasks, such as task scheduling, data preprocessing, and post-processing [4]. Through 

reasonable task partitioning, the parallel computing capabilities of NPUs and the real-time control 

capabilities of MCUs can be fully utilized. 

Pipeline design is a crucial optimization technique for algorithm partitioning. By decomposing 

computational tasks into multiple stages, each handled by different hardware units, parallel execution 

of tasks can be achieved [5]. For example, in an image recognition task, the MCU is responsible for 

image acquisition and preprocessing, the NPU handles feature extraction and classification, and the 

MCU manages result output. Through double buffering and task parallelism, data loading latency can 

be hidden, improving system throughput. Pipeline design not only enhances computational efficiency 

but also reduces idle time of hardware resources, achieving efficient resource utilization. 

2.2. The Significance of HIDA at the Chip Level   

The ScaleHLS-HIDA framework achieves efficient hardware code generation through optimizations 

in both computation and data flow. In terms of computation optimization, it employs techniques such 

as task fusion, strength-aware and connection-aware parallelization, loop optimization, and 

fixed-point arithmetic, significantly improving the execution efficiency of computational tasks [1]. In 

terms of data flow optimization, it utilizes techniques such as multi-producer elimination, data path 
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balancing, buffer management, and design space exploration to optimize data transfer and 

communication efficiency between tasks. These ideas are of great significance at the chip level: task 

fusion and parallelized computation maximize hardware resource utilization; fixed-point arithmetic 

and buffer management reduce power consumption; and systematic data flow optimization alleviates 

memory bandwidth pressure. These optimization methods provide efficient solutions for deploying 

neural networks in resource-constrained scenarios, promoting the industrial application of edge 

intelligence [6]. 

3. Data Flow Optimization and Task Scheduling in NPU-MCU Heterogeneous Computing 

Platforms   

3.1. Overall Architecture and Data Flow   

In NPU-MCU heterogeneous computing platforms, the hardware architecture is typically divided 

into three layers: the MCU layer, the NPU layer, and the storage and communication layer. The MCU, 

as the main control core, is responsible for overall system scheduling, data preprocessing, and 

post-processing. The NPU focuses on compute-intensive tasks, such as matrix multiplication and 

convolution [7]. The storage and communication layer handles data storage and transmission, 

ensuring efficient data exchange between the MCU and NPU [8]. 

Table 1: Hardware Architecture of NPU-MCU Heterogeneous Computing Platform. 

Hardware Layer Function Characteristics 

MCU Layer Responsible for system control tasks, 

including task scheduling, data 

preprocessing, and post-processing. It 

communicates with the NPU and other 

peripherals via buses (e.g., AXI, APB). 

MCUs are characterized by low 

power consumption and strong 

real-time performance, making 

them suitable for handling 

control-intensive tasks. 

NPU Layer The NPU handles compute-intensive tasks 

such as matrix multiplication, convolution, 

and activation functions. It processes 

large-scale data efficiently through parallel 

computing and pipeline techniques. 

NPUs exhibit high parallelism and 

high computational throughput, 

making them ideal for handling 

complex computational tasks in 

neural networks. 

Storage and 

Communication 

Layer 

The storage layer is responsible for data 

storage, while communication layer 

manages data transmission between the 

MCU and NPU. Efficient memory 

management and data flow optimization 

reduce data access latency. 

The storage and communication 

layer must support high-bandwidth 

and low-latency data transmission 

to ensure efficient collaboration 

between the MCU and NPU. 

 

As the main control unit, the MCU optimizes the data processing workflow through efficient task 

scheduling and data flow management. First, the MCU collects raw data from sensors or external 

devices and performs preprocessing (e.g., scaling, normalization, noise reduction, etc.). Next, the 

MCU divides the preprocessed data into multiple small blocks, with each block treated as an 

independent task ready to be sent to the NPU for processing. The MCU transmits the data blocks and 

task descriptions to the NPU via high-speed buses or shared memory and manages data 
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synchronization between NPUs to ensure each NPU can access the required data. Finally, the MCU 

receives the computation results from the NPU, performs post-processing (e.g., classification, sorting, 

etc.), and outputs the final results to display devices or sends them to the cloud via a network. 

Through pipeline design and data reuse, the MCU can hide data loading and computation latency, 

improving system throughput and energy efficiency. 

The MCU splits the computational tasks of the neural network into multiple subtasks, with each 

subtask handled by a different NPU instance. For example, the MCU divides a convolution operation 

into multiple subtasks, each processing a local region of the input feature map, or splits a matrix 

multiplication task into subtasks, each handling a sub-block of the input matrix. The MCU allocates 

the divided tasks to multiple NPU instances using task scheduling algorithms (e.g., round-robin 

scheduling, priority scheduling) to ensure balanced task distribution. Through such task splitting and 

parallelization, the MCU can fully utilize the computational power of NPUs, significantly enhancing 

the overall performance of the system. 

3.2. Splitting of Neural Network Computational Tasks 

The splitting of neural network computational tasks is key to optimizing platform performance. 

Through reasonable task partitioning, compute-intensive tasks can be assigned to NPUs, while 

control-intensive tasks are assigned to MCUs, enabling efficient parallel computing. Task splitting 

not only involves assigning different layers of the neural network to appropriate hardware units but 

also includes task fusion, parallelization, and optimization of floating-point and mixed-precision 

operations. These optimization techniques can significantly reduce the storage and transmission 

overhead of intermediate data, improve computational throughput, and achieve a balance between 

performance and power consumption in resource-constrained edge devices. 

In neural network computations, task fusion and parallelization are primarily used to enhance 

computational efficiency. Task fusion combines multiple operators into a single composite operator, 

reducing the storage and transmission overhead of intermediate data [9]. For example, fusing a 

convolution layer and a ReLU activation function into a composite operator allows convolution and 

nonlinear transformation to be completed in a single computation, reducing data movement and 

computation latency [9]. Additionally, parallelization techniques, such as SIMD (Single Instruction, 

Multiple Data) and pipeline architectures, enable the simultaneous processing of multiple data points, 

significantly improving computational throughput. For instance, in matrix multiplication, using 

SIMD architecture allows multiple matrix elements to be computed simultaneously, fully leveraging 

the parallel computing capabilities of NPUs. These optimization techniques not only increase 

computation speed but also reduce idle time of hardware resources, achieving efficient resource 

utilization. 

Floating-point operations (e.g., FP32, FP16) offer high computational precision but come with 

high computational complexity and power consumption, which can become performance bottlenecks 

in resource-constrained edge devices. To reduce computational complexity and power consumption, 

low-precision computations (e.g., INT8) are often used as alternatives to floating-point operations. 

Low-precision computations maintain relatively high accuracy while significantly reducing 

computational resource and power consumption. Furthermore, in certain scenarios, mixed-precision 

computation can be employed, where floating-point operations are used in critical parts to maintain 

high precision, and low-precision computations are used in non-critical parts to reduce computational 

complexity. This mixed-precision approach strikes a balance between computational accuracy and 

performance, making it particularly suitable for neural network inference tasks in edge devices. 
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Figure 1: Basic Architecture of HIDA 

3.3. Data Flow Optimization and Pipeline Design   

Data flow optimization must start from the hardware architecture itself. By reasonably allocating 

tasks and managing data flow, the advantages of each hardware unit can be fully utilized. Pipeline 

optimization, as a core method of data flow optimization, can significantly improve system 

throughput, reduce power consumption, and optimize hardware resource utilization. Through 

pipeline design, multiple tasks can be executed in parallel [10], hiding data loading and computation 

latency, thereby achieving efficient neural network computation in resource-constrained edge 

devices. 

The core idea of pipeline optimization is to decompose the computational tasks of a neural 

network into multiple stages [11], with each stage handled by different hardware units. Through 

pipeline design, multiple tasks can be executed in parallel, hiding data loading and computation 

latency, and improving the overall throughput of the system. Pipeline optimization includes the 

following key steps:   

Task Decomposition: Decompose the computational tasks of the neural network into multiple 

subtasks, with each subtask handled by different hardware units. For example, convolutional layers, 

pooling layers, and fully connected layers can be processed by NPUs, GPUs, or MCUs, respectively.   

Parallelized Computation: Use SIMD (Single Instruction, Multiple Data) and pipeline 

techniques to process multiple data points simultaneously, improving computational throughput. For 

example, in matrix multiplication, SIMD architecture can compute multiple matrix elements at the 

same time.   
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Data Reuse and Caching: Maximize data reuse and reduce access to high-latency external 

memory through techniques such as sliding windows and local caching. For example, in convolution 

operations, the sliding window mechanism can reuse data blocks of input feature maps, reducing 

memory bandwidth requirements.   

In a System-on-Chip (SoC), different hardware units have varying computational capabilities and 

characteristics. Through pipeline design, compute-intensive tasks and control-intensive tasks can be 

allocated to NPUs and MCUs [12,13], respectively, enabling efficient parallel computing. 

Specifically, NPUs are designed for neural network computations and are suitable for handling 

compute-intensive tasks such as matrix multiplication, convolution, and activation functions. With 

pipeline design, NPUs can process multiple computational tasks in parallel, significantly improving 

computational throughput [8]. On the other hand, MCUs are suitable for control-intensive tasks such 

as task scheduling, data preprocessing, and post-processing. Through pipeline design, MCUs can 

efficiently manage data flow, ensuring the smooth execution of NPU tasks. Additionally, by using 

efficient storage management and data flow optimization techniques, such as double buffering, the 

MCU can preload the next data block while the NPU processes the current one, hiding data loading 

latency and further enhancing the overall system performance. 

The implementation of pipeline optimization requires designing efficient task scheduling and data 

flow management mechanisms based on the characteristics of the hardware architecture. Specific 

implementation steps include:   

Task Scheduling: Decompose the computational tasks of the neural network into subtasks and 

allocate them to appropriate hardware units. For example, assign convolutional layers to NPUs and 

data preprocessing tasks to MCUs.   

Data Flow Management: Reduce data access latency through efficient storage management and 

data flow optimization. For example, use double buffering and local caching to maximize data reuse.   

Performance Optimization: Dynamically adjust the allocation of hardware resources to optimize 

system performance and energy efficiency. For example, dynamically adjust the number of parallel 

computing units in NPUs based on the computational complexity of tasks.   

3.4. Implementation of the Computing Platform on Transformers   

In models that combine Convolutional Neural Networks (CNNs) and Transformers, task splitting and 

scheduling are key to optimizing performance [14,15]. The main control unit (MCU) is responsible 

for coordinating data scheduling and allocating tasks to GPUs and NPUs to fully leverage their 

respective strengths. First, the MCU sends raw data to the GPU for initial processing. The GPU 

handles data preprocessing tasks, such as scaling and normalization, and assigns convolution-related 

tasks to the NPU. By testing the time taken by the GPU and NPU to process each computational task, 

the system can determine their preferences for different tasks. Based on these preferences, the system 

can allocate tasks more efficiently: the NPU focuses on compute-intensive convolution operations, 

while the GPU leverages its powerful matrix operations and parallel computing capabilities to handle 

Transformer-related tasks, such as self-attention mechanisms and feedforward neural networks. 

Additionally, for certain single and time-consuming tasks with low complexity, the MCU can assign 

convolution operations that the GPU is less efficient at to another NPU, further improving the overall 

system efficiency. Through this task splitting and scheduling strategy, the system can fully utilize the 

parallel computing capabilities of GPUs and NPUs, achieving higher computational performance. 

If only GPUs are used in the pipeline without NPUs, the system's energy consumption and 

computation time will increase significantly [3]. Although GPUs excel at handling large-scale 

parallel computing tasks, they consume more power and are less efficient at processing certain 

low-complexity tasks. Therefore, designing efficient channels between NPUs, GPUs, and VRAM 

becomes a critical issue for optimizing system performance. 
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To achieve efficient data transmission and task scheduling in an NPU-MCU-GPU heterogeneous 

computing platform, the design of channels between NPUs, GPUs, and VRAM is crucial. Table 2 

outlines the key points of channel design.   

Table 2: Channel Design Between NPU, GPU, and VRAM   

High-Speed Bus 

Design 

 

AXI Bus: The AXI bus is used to connect the NPU, GPU, and MCU, ensuring 

high-bandwidth and low-latency data transmission. 

Shared Memory Mechanism: Through the shared memory mechanism, the 

NPU and GPU can directly access the same memory region, reducing the 

overhead of data copying. 

Data Flow 

Management 

Double Buffering: While the NPU processes the current data block, the GPU 

can preload the next data block, hiding data loading latency. 

Data Synchronization Mechanism: The MCU manages data synchronization 

between the NPU and GPU, ensuring that each hardware unit can access the 

required data during task execution. 

Task Scheduling and 

Priority 

Management 

Dynamic Task Allocation: The MCU dynamically adjusts task allocation 

based on the computational complexity of tasks and the computing 

capabilities of hardware units. 

Priority Scheduling: The MCU uses priority scheduling algorithms to ensure 

that high-priority tasks (e.g., real-time inference tasks) are granted hardware 

resources first. 

Energy and 

Performance 

Optimization 

Low-Power Mode: During task idle periods, the MCU can switch the NPU 

and GPU to low-power mode, reducing system energy consumption. 

Mixed-Precision Computing: By maintaining relatively high computational 

precision while reducing computational complexity and power consumption, 

mixed-precision computing is employed to optimize performance and energy 

efficiency. 

3.5. Conclusion 

This paper proposes a systematic neural network optimization framework for NPU-MCU 

heterogeneous computing platforms. By leveraging techniques such as algorithm partitioning, 

pipeline design, data flow optimization, and task scheduling, the framework significantly enhances 

the computational efficiency and energy efficiency of neural networks on edge devices. By assigning 

compute-intensive tasks to NPUs and control-intensive tasks to MCUs, combined with pipeline 

design and data flow optimization, the system maximizes hardware resource utilization, reduces 

power consumption, and alleviates memory bandwidth pressure. Experimental results demonstrate 

that the framework performs exceptionally well in edge computing and IoT devices, effectively 

addressing the challenges of deploying neural networks in resource-constrained scenarios. 

The findings of this research have significant implications for the industrial application of edge 

intelligence technologies. First, the framework provides a systematic optimization method for 

deploying neural networks in resource-constrained environments, significantly reducing the 

computational complexity and power consumption of edge devices while improving their 

performance in practical applications. Second, by fully leveraging the collaborative computing 

capabilities of NPUs and MCUs, the framework offers technical support for the mass production and 

widespread adoption of edge AI devices, facilitating the rapid development of fields such as smart 

homes, autonomous driving, and industrial IoT. In the future, we will further optimize task 
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scheduling algorithms and explore more low-power computing technologies to promote the 

widespread application and industrial development of edge intelligence technologies. 
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