
 

 

 

 

 

 

Comparing supervised and unsupervised learning in image 

denoising 

Hanyun Wang 

Chongqing Foreign Language School, Chongqing, 400065, China 
 

whywhy_Whyyyzbb@163.com 

Abstract. Recent studies on unsupervised learning have attracted people's increasing attention. 

In particular, Deep learning has developed rapidly in recent years. With the development of 

media images, people's demand for image noise reduction is increasing, and the requirements 

are becoming more and more strict. The traditional methods used for image noise reduction are 

far from meeting people's requirements, and people are eager to find a more efficient image 

noise reduction technology. In recent years, the technology of using a convolutional neural 

network for image noise reduction has become more and more skilled. This paper explores the 

reliability of image noise reduction technology using a convolutional neural network as an 

autoencoder, and whether good performance is maintained without using clean images. The 

article aims to compare the performance with supervised learning and unsupervised learning by 

deep learning in image denoising.  

Keywords: Unsupervised learning, Image noise reduction, Convolutional neural network, 

Performance. 

1.  Introduction 

In today’s era, whether it is in the field of streaming media, in the field of medicine, in the field of 

archaeology, etc., image noise reduction technology plays a vital role. People have become less 

tolerant of noisy images and crave clean images. In this experiment, we will explore the performance 

of n2n technology in the field of image noise reduction. In the traditional image noise reduction 

technology, the methods people use are far from meeting the current requirements. At present, most 

people use deep neural networks to denoise images. In the current research, most scholars use the 

supervised method to denoise the image, that is, give a noisy image to the model, and at the same time 

tell the model what the image should look like. This supervised method has achieved good results, but 

this also has a common disadvantage, that is, in practical applications, it is difficult to collect a rush 

image and a noisy image of the recording of the same thing [1]. In this experiment, we are more 

interested in unsupervised image denoising techniques, we want to know if denoising images in an 

unsupervised manner still has good performance. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

284



 

 

 

 

 

 

2.  Related work 

2.1.  Encoder-Decoder  

Some scholars use autoencoder to denoise images. Encoder-Decoder mainly has two network 

structures, one is an encoder and the other is the decoder. In this network structure, the convolutional 

neural network is mainly used to operate the original image. After the encoder, the original image is 

embedded into the latent space, and the information in the latent space is mapped to the latent space 

through the decoder of the same number of layers, the original space. Chen et al. combining 

autoencoder, deconvolutional networks, and shortcut connections into a residual encoder-decoder 

convolutional neural network (RED-CNN) for low-dose CT imaging [2]. After patch-based training, 

the proposed RED-CNN achieves competitive performance against state-of-the-art methods in both 

simulated and clinical cases. Shan et al. use a conveying path-based convolutional encoder-decoder 

(CPCE) network in 2-D and 3-D configurations within the GAN framework for LDCT denoising [3].  

 
Figure 1. The autoencoder model. 

In the autoencoder model, the input is a noisy image, where the Encoder maps the input image X̂  to 

the latent space z , for the n2c method, the output Y  is a clean target image, X  and Y do a 2L  loss, for 

the n2n algorithm, the output Y  is the target image with noise added, and X  and Y  do a 2L  loss 

(Figure1). 

2.2.  Fully convolution network 

This means that the entire network uses convolutional layers, and the output image is subjected to 

convolution operations. As for the more specific convolution methods, different models have different 

methods, and some use the convolution kernel size of 3 or 5 [4]. Gholizadeh-Ansari et al., propose a 

deep neural network that uses dilated convolutions with different dilation rates instead of standard 

convolution helping to capture more contextual information in fewer layers and have employed 

residual learning by creating shortcut connections to transmit image information from the early layers 

to later ones [5]. 

2.3.  Gan based algorithms 
In this way, the network has two parts, a generator and a discriminator. Generation Using a 

convolutional neural network will generate a fake image, and the discriminator will identify whether 

the image is real or fake. This adversarial way of training forces the generator to produce images that 

are more and more similar to clean images throughout the training process. Some denoising method 

based on the generative adversarial network (GAN) with Wasserstein distance and perceptual 

similarity [4]. Some researchers train the FCN-based denoising network with fill-size images, which is 

computationally efficient due to the reuse of feature maps from the lower layers [6]. 

3.  Method 

In this part we will explore the specific methods of Noise2noise. In n2n, the network structure used by 

the model is a residual connected autoencoder. The autoencoder inputs the original image X  to the 

Encoder, and through a series of convolution operations, maps the image information to the latent 

space z , and then restores the image through the same number of convolutional layer Decoders [7][8]. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

285



 

 

 

 

 

 

3.1.  Prepare 

First, let's introduce some operator symbols. We first define a noise image  nxxxX ˆ,ˆ,ˆˆ
21 = . Define 

 iyY =  as clean target output and  iyY ˆˆ =  as noise output. 

3.2.  Train 
The purpose of our experiments is to compare the network performance of the supervised and 

unsupervised methods. So, for supervised networks, we feed the noisy samples X̂  to the network, and 

compare the output of the network with the clean target output Y . We use the following loss to 

optimize the entire network. 

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝛦𝑥,𝑦{𝐿(𝑓𝜃(�̂�), 𝑦)}

(1)
 

Here the f  network is the autoencoder, and   is the parameter of the entire network. The goal is to 

optimize the autoencoder by minimizing this loss, and finally make the image output by the Decoder 

consistent with the clean target image. 

Formula (1) mainly explores the performance of supervised learning in image noise reduction. As 

another unsupervised method, we input the noisy image to the Encoder, and let the Encoder map the 

image information into the latent space. After the Decoder Then restore the image, this time we use 

the noisy image Ŷ  as the output comparison, the loss is as follows: 

𝑎𝑟gmin
𝜃

𝛦𝑥,�̂�{𝐿(𝑓𝜃(�̂�), �̂�)} (2) 

In formula (2), we keep making one noisy image close to another noisy image, but since the noise 

is irregular, the network cannot capture the two irregular noised images, mapping, but both images 

have latent representations that share common clean image semantic features. In this way, the network 

can also theoretically output a clean image. 

In equations (1) and (2) above, we listed our goals for both methods, and now we write in detail 

how to use our network output to calculate the corresponding loss function. For formula (1), we input 

X̂ and calculate the L2 loss of output and  and Y, the specific loss is as follows: 

𝐿𝑛2𝑐 =
1

𝑛
∑‖𝑓𝜃(�̂�𝑖) − 𝑦𝑖‖

𝑛

𝑖=1 2

(3) 

For equation (2), we input �̂�, and compute the𝐿2 loss between the network's output 𝑓𝜃(�̂�) and the 

noise-added target output, The detailed loss is as follows:  

𝐿𝑛2𝑐 =
1

𝑛
∑‖𝑓𝜃(�̂�𝑖) − �̂�𝑖‖

𝑛

𝑖=1 2

(4) 

Here n  represents the number of training samples. The detailed algorithm pseudocode is as follows: 

Algorithm 1 n2c Algorithm 

Input：The set of noise image �̂� = {�̂�𝑖} and 𝑖 = 1,2 … 𝑛. The set of clean image targets 𝑌. 

Output: optimal 𝜃; 

1: initial Network parameters 𝜃; 

2: repeat 

3:    Enter �̂� into the network; 

4:    Get the output of the network 𝑓𝜃(�̂�)； 

5:    Calculate the 𝐿2 loss between 𝑌 and 𝑓𝜃(�̂�); 

6:    Optimize the network parameters 𝜃 according to equation(3); 

7: until convergence 

( )ixf ˆ


Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

286



 

 

 

 

 

 

We show in detail the steps of the n2c algorithm in Algorithm 1 and the steps of the n2n in Algorithm2. 

Algorithm 2 n2n Algorithm 

Input：The set of noise image �̂� = {�̂�𝑖} 𝑎𝑛𝑑 𝑖 = 1,2 … 𝑛. The set of clean image targets �̂�. 

Output: optimal 𝜃; 

Algorithm 2 (continue) 

1: initial Network parameters 𝜃; 

2: repeat 

3:    Enter �̂� into the network; 

4:    Get the output of the network 𝑓𝜃(�̂�)； 

5:    Calculate the 𝐿2 loss between �̂� and 𝑓𝜃(�̂�); 

6:    Optimize the network parameters 𝜃 according to equation (3); 

7: until convergence 

3.3.  Evaluate 

3.3.1.  PSNR. PSNR is an objective criterion for evaluating images. It is local, PSNR is the 

abbreviation of "Peak Signal to Noise Ratio". And ratio means ratio or ratio, psnr is generally used for 

an engineering project between maximum signal and background noise. Usually after image 

compression, the output image is usually different from the original image to some extent. In order to 

measure the image quality after processing, people usually refer to the PSNR value to measure 

whether a processing program is satisfactory. It is the logarithm of the mean square error between the 

original image and the processed image relative to (2𝑛 − 1)2 (the square of the maximum signal value, 

n is the number of bits per sample value), the unit is dB. Its formula is as follows: 

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20 ⋅ 𝑙𝑜𝑔10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (5) 

The formula for MSE is as follows: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

0

(6) 

3.3.2.  SSIM. SSIM is an indicator to measure the similarity of two pictures, and its formula is as 

follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
(7) 

Here x  and y  represent the average of x  and y  respectively, x
 and y

 represent the standard 

deviation of x  and y  respectively, xy
 represents the covariance of x  and y , 321 ,, ccc

 represent 

constants, avoiding the denominator of 0. 

4.  Experiment 

4.1.  Dataset 
In the experiments, we assess our result on two widely used digital image processing dataset: 

• Kodak: A natural image dataset with 24 samples. Each image is either 768x512 or 512x768 in 

size. In this experiment, we will use Kodak only in the validation phase. 

• BSD300: BSD is a dataset used frequently for image denoising and super-resolution. We use 

200 datasets for training and 100 datasets for testing. 

• COCO: We downloaded the validation set from the COCO dataset, which contains 5000 high-

definition images, as a training set for our model. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

287



 

 

 

 

 

 

In the processing stage of the data set, since the image size of the original data set is not fixed, it is 

impossible to use a general model to process images of different sizes, so we randomly crop the 

training set and randomly select each image. Cropped twice, each with a size of 256x256 for three 

channels. In the testing phase, we cannot use the cropping method to process the image, so we use the 

padding method for the image so that the size of the image can be restored to the same size image 

through the decoder after the encoder of the model. For the choice of noise, we choose Gaussian noise, 

salt and pepper noise, and Poisson noise, where Gaussian noise we choose = 0 and a = 25, We wanted 

to see if both methods performed well on different noises. 

4.2.  Noise 

In order to complete this experiment, we first have to generate various kinds of noise on an image, we 

need: 

• Gaussian noise: We need to write a function that randomly generates Gaussian noise with a 

given mean on an image. 

• Poisson noise: We need a function that can generate Poisson noise on an image. 

• Salt and pepper noise: We need a function that can generate salt and pepper noise on an image. 

For the experimentally generated results, we use PSNR and SSIM to evaluate the performance of 

the model. A conceivable experimental result is that we run different data sets with two different 

models to generate evaluation indicators. We record the evaluation. indicators to compare the 

performance of the two models. This time we need, this time we use There are 3 kinds of noise, 2 

training sets and 2 models, so a total of 16 experiments are required. 

4.3.  Experimental details 
This experiment used the reproduced pytorch code. In the Encoder and Decoder stages, we used the 

convolutional neural network according to the original text. We used 5 block convolutional layers in 

the Encoder layer, each of which contains a 3x3 block convolutional layer. A convolution kernel with 

stride 1, pandding 1, and a LeakyReLU layer and a MaxPool layer. We use both 2L  loss and 1L  loss to 

perform Training. The learning rate is le-3, the learning rate is dynamically adjusted, and the optimizer 

uses Adam. We evaluate using PSNR and SSIM. 

4.4.  Experimental Results 

4.4.1.  LOSS. Figure2 shows the loss trend after model training to verify whether our model is trained 

normally. 

 
Figure 2. the loss trend after model training. 

This is the loss map after training 300 epochs using the BSD300 dataset, (a) is the loss map when 

using a noisy target as the target, (b) is the loss map when using a clean target as the target 

4.4.2.  Evaluation. In order to see the results of using different training sets and using noisy images as 

targets and clean images as targets, the experimental results are as follows. 

Table 1. Training results with BSD300 as the training set and Kodak as the validation set. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

288



 

 

 

 

 

 

 noise PSNR(top1) SSIM(top1) 

n2n Gaussian 32.69 86.05 

Poisson 35.75 93.33 

Table 1．(continue) 

 noise PSNR(top1) SSIM(top1) 

n2c Gaussian 32.03 85.61 

Poisson 35.32 92.45 

Table 2. Training results with COCO as the training set and Kodak as the validation set. 

 noise PSNR(top1) SSIM(top1) 

n2n Gaussian 33.95 89.88 

Poisson 37.65 94.42 

n2c Gaussian 33.65 89.43 

Poisson 36.84 94.32 

 
Figure 3. the denoising results of images when using different training sets. 

We use two different training sets, BSD300 and COCO, and use Kodak for validation. We use 

Gaussian noise and σ = 25. (a) represents the original image, and (b) represents the image after 

Gaussian noise processing. (c): The result of denoising the image by using the COCO training set. (d): 

The result of denoising the image by using the BSD300 training set. 

 

 
Figure 4. Denoising performance (dB in KODAK dataset) as a function of training 

epoch for additive Gaussian noise and σ = 25. White Gaussian noise, clean and noisy 

targets lead to very similar convergence speed and eventual quality (Figure 4). 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

289



 

 

 

 

 

 

 
Figure 5. Denoising performance (dB in KODAK dataset) as a function of training 

epoch for additive Gaussian noise and σ = 25 . In the figure 5, (a) represents the 

original image, and (b) represents the image after Gaussian noise processing. (c) and 

(d) represent the output of the two methods. 

BSD300 data set, so the experimental result is that using COCO as the training set is more effective. 

 
Figure 6. Denoising performance (dB in KODAK dataset) as a function 

of training epoch for additive Salt and peppemoise. In the figure, (a) 

represents the image after Salt and pepper noise processing, (b) represents 

the image after noise reduction. 

We use BSD300 data and COCO dataset for training and Kodak dataset for test. We use clean images 

(clean targets) and noise images (noise targets) as outputs respectively, and compare the difference 

between them. And all the experimental results are visualized and tabulated to analyze the 

performance comparison and usage range of the two methods. 

A clean image and a noise-processed image are used as the output of the network, respectively. The 

goal is to compare the performance of using the noised image as the output and using the clean image 

as the output directly, how. As shown in Figure 4, we add Gaussian noise to the image, and we use 

PSNR to evaluate the data during network training. It can be clearly seen that there is no significant 

difference between the two methods, even adding noise most of the time. The output looks better than 

a clean image as the output. It can be inferred that the performance of the method using the noised 

image as the output comparison is completely comparable to the performance of the method using the 

clean image as the output comparison. 

For the two methods compared in this paper, the main purpose is to verify the effectiveness of these 

two methods for image noise reduction. From Figure 5, it is clear that there is not much difference in 

image noise reduction. Figure 6 shows the performance of Salt and pepper noise reduction by n2c (n2c 

is not shown, because the effect of n2n noise reduction is not much different from that of n2c). It is 

easy to see that the two methods of n2n and n2c are in The noise reduction effect under Salt and 

pepper noise is not very good, and it can be analyzed that this noise reduction method can only be 

applied to specific noises.  

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

290



 

 

 

 

 

 

5.  Conclusion 

After a series of experiments, it can be concluded that in the same data set, by adding the same noise 

to the same image, the performance of n2n and n2c is not much different, but both methods have a 

certain scope for noise. Both methods have good performance for the noise reduction of Gaussian 

noise and Poisson noise, but not very good for the noise reduction of salt and pepper noise. At the 

same time, by comparing the training of the BSD300 and COCO datasets, it is obtained that the best 

trained network will have better noise reduction if a larger dataset is used for training.  

 

References 

[1] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M.» and Aila, T. 

Noise2noise: Learning image restoration without clean data. Technical report, 2018. 

[2] Chen, H., Zhang, Y., Kalra, M. K., Lin, F., Chen, Y.» Liao, R, Zhou, J., and Wang, G. Low-

dose ct with a residual encoder-decoder convolutional neural network. Technical report, 

2017. 

[3] Shan, H., Zhang, Y. Yang, Q., Kruger, U., Kalra, M. K., Sun, 

[4] Yang, Q・,Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, 

[5] Gholizadeh-Ansari, M.，Alirezaie, J., and Babyn, R Deep learning for low-dose ct denoising 

using perceptual loss and edge detection layer. Technical report, 2020. 

[6] Choi, K., Kim, S. W., and Lim, J. S. Real-time image reconstruction for low-dose ct using 

deep convolutional generative adversarial networks (gans). Technical report, 2018. 

[7] L.,Cong, W., and Wang, G. 3-d convolutional encoderdecoder network for low-dose ct via 

transfer learning from a 2-d trained network. Technical report, 2018. 

[8] M. K., Zhang, Y., Sun, L.» and Wang, G. Low-dose ct image denoising using a generative 

adversarial network with wasserstein distance and perceptual loss. Technical report, 2018. 

 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/5/20230581

291


