
Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

9

Design of Reward Functions for Autonomous Driving Based
on Reinforcement Learning: Balancing Safety and Efficiency

Weijin Zhang

International School, Beijing University of Posts and Telecommunications, Beijing, China

zwj2022@bupt.edu.cn

Abstract: Autonomous driving, leveraging artificial intelligence and reinforcement learning

(RL), has made significant strides in improving traffic efficiency and safety. However,

current RL-based approaches often focus on single-objective optimization, such as

maximizing either efficiency or safety. In real-world driving, multiple conflicting

objectives—such as safety, efficiency, and comfort—must be balanced simultaneously,

which remains underexplored. This paper proposes a multi-objective reward function design

to balance safety and efficiency in autonomous driving. Using the Proximal Policy

Optimization (PPO) algorithm, we train seven autonomous driving models with varying

collision penalty strategies in the MetaDrive simulation environment. The results show that

dynamic collision penalties outperform fixed penalties in balancing safety and efficiency,

with Model 5 achieving the best overall performance. Despite this, all models underperform

in left-turn scenarios, highlighting the need for further optimization in lateral control. This

work provides insights into effective reward design for multi-objective reinforcement

learning in autonomous driving.

Keywords: Reinforcement Learning, autonomous driving, reward function, safety, efficiency

1. Introduction

1.1. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning where the core idea is that an agent (AI)

learns by interacting with an environment through trial and error, receiving rewards (positive or

negative) as feedback for its actions. The agent aims to maximize the reward by taking the correct

actions and thus finding the optimal decision-making strategy.

During the execution of reinforcement learning, the agent interacts with the environment by

receiving the current state 𝑠𝑡, performing an action 𝑎𝑡 based on this state, and then receiving a reward

𝑟𝑡 and a new state 𝑠𝑡+1 from the environment in response to the action.

Compared to other machine learning methods, supervised learning uses labeled data for learning,

unsupervised learning discovers patterns and inherent structures in unlabeled data, while

reinforcement learning uses unlabeled data, but the agent can determine if it is closer or farther from

the goal based on reward feedback, learning from a series of reinforcement—rewards or punishments

[1].

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

10

1.2. Autonomous Driving

Autonomous driving is the ability of a vehicle to sense its environment, plan its path, and drive safely

and autonomously without human intervention using artificial intelligence, sensors, computer vision,

and control systems. Its core objectives are to enhance traffic efficiency, reduce accidents, and free

up human driving time [2].

Autonomous driving relies on the integration of multiple technologies, such as environmental

perception through multi-sensor fusion, including LiDAR, cameras, and millimeter-wave radar, to

achieve 360° coverage with no blind spots [3]; path planning and decision-making using a hybrid

architecture of deep learning and rule-based engines [4]; and precise control of steering, throttle, and

braking using Model Predictive Control (MPC) and steer-by-wire technologies [5]. Compared to

human driving, autonomous driving has many advantages, such as faster response times in

milliseconds, the ability to stay focused without fatigue or emotional interference, making it suitable

for long-distance driving tasks [6]; and while humans may have visual blind spots, autonomous

driving can achieve 360° coverage using multi-sensor fusion [3].

1.3. Current Progress in Reinforcement Learning and Autonomous Driving

In recent years, reinforcement learning has been significantly integrated into autonomous driving,

such as through Q-Learning, DQN, and PPO, using high-precision maps and real-time perception

data for decision-making and path planning in scenarios like lane changes, overtaking, and

intersections [7]. Multi-agent reinforcement learning (MARL) methods, like MADDPG, simulate

complex traffic flows to predict pedestrian and vehicle intentions and optimize interaction strategies

[8]. By combining Model Predictive Control (MPC) with reinforcement learning algorithms like SAC,

these systems balance comfort and energy consumption, enabling smooth control of throttle, brakes,

and steering.

However, current research primarily focuses on single-objective optimization, such as maximizing

either driving efficiency or safety. There is relatively little research on multi-objective optimization

(MOO), which is essential as real-world driving tasks typically require the optimization of multiple

conflicting objectives, such as safety, efficiency, comfort, and energy consumption.

1.4. Our Work

This paper proposes a reward function design method aimed at balancing safety and efficiency. We

use reinforcement learning (PPO algorithm) to train seven autonomous driving models in the

MetaDrive simulation environment to complete driving tasks safely and efficiently. After training,

the models are evaluated, including automatic generation of JSON-format test reports and saving

driving process animations categorized by turning type. Based on the generated test reports, we

calculate the success rates and average frame counts required for each model in various turning

scenarios, thus analyzing the results.

2. Related work

2.1. Challenges in Designing Reward Functions for Reinforcement Learning

In reinforcement learning, the design of the reward function directly determines the agent's learning

objectives and behavioral strategies. However, in complex scenarios such as autonomous driving,

significant challenges arise, particularly in balancing safety and efficiency.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

11

2.1.1. Challenges in Reward Function Design

In autonomous driving, the reward function depends not only on the current state and action but also

on time, driving scenarios, traffic conditions, and other complex factors. Moreover, autonomous

driving tasks often require reward functions that balance multiple objectives, which are often

conflicting. For example, cautious driving reduces risk but increases travel time, while high-speed

driving reduces travel time but increases risk. The linear weighting in reward functions is limited

because static weights cannot adapt to dynamic scenarios, and fixed weights can lead to suboptimal

strategies [9]. Sparse rewards are a common problem in the reinforcement learning training process,

where the agent may receive insufficient feedback over long periods, causing instability in the

learning process. In autonomous driving, key events like reaching the destination or crashing rarely

occur in the early stages of training, resulting in slow learning [10]. Moreover, the manual design of

reward functions is subjective, which can lead to reward shaping biases. For example, if we reward a

specific behavior too much, the agent may focus excessively on that behavior, leading to overfitting

to certain scenarios and ultimately suboptimal strategies [11].

2.1.2. Challenges in Balancing Safety and Efficiency

There is little research that designs reward functions specifically to balance safety and efficiency, as

these two goals often conflict in real-world driving scenarios. First, safety is very difficult to quantify.

The risk of a crash is non-linearly related to factors such as vehicle speed and distance, making it

difficult to model using simple reward terms [12]. Additionally, efficiency metrics present a short-

term vs. long-term conflict. Greedy optimizations for immediate efficiency (e.g., frequent lane

changes) may accumulate long-term risks, with short-term efficiency improvements coming at the

cost of long-term safety [13].

2.2. Importance of Multi-Objective Optimization in Autonomous Driving

Multi-objective optimization in autonomous driving refers to the simultaneous consideration and

optimization of multiple conflicting objectives in the design of autonomous driving systems.

2.2.1. Importance of Multi-Objective Optimization

In real-world environments, these objectives often conflict with each other. Therefore, multi-

objective optimization is crucial for improving the performance of autonomous driving systems and

is necessary for the practical deployment of autonomous driving technology. Multi-objective

optimization enables the system to make more comprehensive and accurate decisions, improving

overall performance and user experience. In complex traffic environments, it helps the autonomous

system handle dynamic changes more effectively, ensuring the system can adapt to a wide range of

traffic scenarios. Through multi-objective optimization, the system can maintain stable performance

under different conditions, reducing the limitations of single-objective optimization and improving

reliability and stability. If multi-objective optimization is neglected, strategies may overfit to a single

goal and fail in complex scenarios, thus failing to meet users' needs for comprehensive driving

experiences.

2.2.2. Limitations of Past Single-Objective Optimization Research

Ziegler et al. focused on optimizing efficiency by minimizing travel time. However, by prioritizing

speed and aggressive path planning, their approach sometimes led to safety risks in complex traffic

scenarios. The lack of safety awareness in single-objective optimization makes it unsuitable for real-

world deployment [14]. Bojarski et al. developed an end-to-end deep learning model that prioritizes

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

12

lane-keeping safety but does not optimize passenger comfort or traffic efficiency. Although the

system performs well in structured environments, it struggles in dynamic interactions like merging

and overtaking, highlighting the need to balance safety and confidence [15]. Ohn-Bar et al. focused

on minimizing acceleration and jerk to optimize ride comfort, but this led to overly cautious driving

behavior and poor navigation efficiency in urban environments. This indicates the need for multi-

objective optimization to consider both comfort and travel time efficiency [16].

3. Our method

3.1. Components of the Reward Function

This paper designs a reward function aimed at balancing safety and efficiency. Here, we provide a

detailed explanation of the components of the reward function.

3.1.1. Penalty for Wrong-Way Driving

 reward −= self. config. get("wrong_way_penalty", 50.0) (1)

First, we check if the vehicle is driving on the wrong-way lane. If the vehicle is moving in the wrong

direction on a one-way lane, a fixed penalty is applied (default value: 50). The wrong-way driving

penalty forces the vehicle to follow traffic rules, optimizing safety.

3.1.2. Reward for Forward Distance

 reward+= self. config. get("driving_reward", 1.0) ∗ (long_now − long_last) ∗ positive_road(2)

Firstly, obtain the front and rear positions (𝑙𝑜𝑛𝑔_𝑙𝑎𝑠𝑡 and 𝑙𝑜𝑛𝑔_𝑛𝑜𝑤) of the vehicle in the lane

coordinate system to calculate the position change of the vehicle in the lane: 𝑙𝑜𝑛𝑔_𝑛𝑜𝑤 − 𝑙𝑜𝑛𝑔_𝑙𝑎𝑠𝑡 ,

multiply by the positive coefficient (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑜𝑎𝑑) again to prevent obtaining positive rewards

when driving in the opposite direction, with a weighted coefficient (𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑) value of 1.0.

The forward distance reward is used to encourage vehicles to continue moving along the lane

direction, optimizing efficiency.

3.1.3. Speed Reward

 reward += self. config. get("speed_reward", 0.1) ∗ speed_factor ∗ positive_road (3)

Firstly, calculate the speed factor: 𝑠𝑝𝑒𝑒𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑠𝑝𝑒𝑒𝑑_𝑘𝑚_ℎ /

 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑘𝑚_ℎ, multiplying by the positive coefficient (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑜𝑎𝑑), the weighted

coefficient (𝑠𝑝𝑒𝑒𝑑_𝑟𝑒𝑤𝑎𝑟𝑑) value is 0.1. Speed reward is used to encourage vehicles to maintain a

reasonable speed (close to the speed limit), but not excessively pursue high speeds, optimizing

efficiency.

3.1.4. Termination Condition Handling

3.1.4.1. Success Reward

 reward += 40 (4)

If the vehicle successfully reaches the destination, a fixed reward of 40 is applied. This success reward

encourages the vehicle to complete the driving task safely, optimizing safety.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

13

3.1.4.2. Collision Penalty

Table 1: Collision Penalty Reward Functions for Models 1~7.

Model Reward Function

model1 reward −= 0.2 ∗ vehicle. speed_km_h

model2 reward −= 20

model3 reward −= 10

model4 reward −= 30

model5 reward −= 0.1 ∗ vehicle. speed_km_h

model6 reward −= 0.3 ∗ vehicle. speed_km_h

model7 reward −= 10 + 0.1 ∗ vehicle. speed_km_h

If the vehicle crashes, as shown in Table 1, fixed penalties (20, 10, 30 respectively) will be applied

to Model 2, Model 3, and Model 4; The penalty values of Model 1, Model 5, Model 6, and Model 7

are directly proportional to the vehicle speed at the time of collision (0.2 * speed, 0.1 * speed, 0.3 *

speed, 10+0.1 * speed, respectively). High-speed crashes incur higher penalties, which better reflect

actual risks. Collision penalty is used to prevent crashes and optimize both safety and efficiency.

3.1.4.3. Other Termination Penalty

 reward −= 20 ∗ 1.2 (5)

If the vehicle terminates due to non-successful or crash-related outcomes, such as going off-road, a

fixed penalty (default 20 * 1.2=24) is applied. This penalty prevents the vehicle from going out of

bounds, optimizing safety.

3.2. Training Method (PPO)

3.2.1. Core Principle of PPO

Proximal Policy Optimization (PPO) is an on-policy reinforcement learning algorithm based on

policy gradients. Its core idea is to limit the magnitude of policy updates to avoid overly deviating

from the current policy, thus ensuring training stability. PPO defines a clipping objective to restrict

the ratio of policy updates within a trust region ([1 − 𝜖, 1 + 𝜖]) to avoid excessive changes.

3.2.2. PPO Objective Function

The objective of PPO is to maximize the expected return of a policy. PPO uses the following objective

function to ensure stable updates:

 𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[𝑚𝑖𝑛(𝑟𝑡 (𝜃)�̂�𝑡 , clip (𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖)�̂�𝑡)] (6)

𝑟𝑡 (𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃old
(𝑎𝑡|𝑠𝑡)

 is the policy ratio, representing the ratio between the current policy and the old

policy. �̂�𝑡 is the advantage function of time step 𝑡, which measures the quality of the current action

relative to the average action. 𝜖 is a hyperparameter used to control the clipping range.

The key to this objective function is to limit the magnitude of policy updates through clipping

operations. When the ratio 𝑟𝑡 (𝜃) falls within the range of [1 − 𝜖, 1 + 𝜖], the objective function will

revert to the conventional policy gradient form, maximizing the advantage function; When the ratio

exceeds this range, the objective function will be clipped to avoid excessive policy updates.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

14

3.2.3. Advantage Function Calculation

The PPO algorithm uses the advantage function to estimate the relative value of a certain action,

which then guides the optimization of the strategy. The advantage function typically uses Generalized

Advantage Estimation (GAE) to reduce variance and improve estimation accuracy. The GAE formula

is:

 �̂�𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + (𝛾𝜆)2𝛿𝑡+2 + ⋯ (7)

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) is the time difference error (TD error) of time step 𝑡, 𝛾 is the discount

factor, and 𝜆 is the hyperparameter of GAE.

3.2.4. PPO Training Process

3.2.4.1. Sampling Data

The agent interacts with the environment and collects trajectory data over time (states, actions,

rewards, etc.).

3.2.4.2. Calculating Advantage Function

Use methods like GAE to compute the advantage function �̂�𝑡 for each time step.

3.2.4.3. Updating the Policy

Use PPO's objective function (clipped strategy) to update the policy parameters. Each update involves

multiple small steps of gradient ascent to optimize the objective function.

3.2.4.4. Updating the Value Function

Optimize the state value function by minimizing the mean squared error (MSE) of the value function,

typically using the objective function 𝐿𝑉𝐹(𝜃) = 𝔼𝑡 [(𝑉𝜃(𝑠𝑡) − �̂�𝑡)2] to train the value function.

4. Experiment Result

4.1. Hyperparameter Settings

4.1.1. Environment Configuration Hyperparameters

Table 2: Environment Configuration Hyperparameters.

Hyperparameter Name Value Description

map "X" X-shaped road structure (includes intersections and curves)

discrete_action True Discrete action space (non-continuous control)

discrete_throttle_dim 10
Throttle (acceleration/braking) divided into 10 discrete

levels

discrete_steering_dim 10 Steering divided into 10 discrete levels (-90° to +90°)

horizon 500 Maximum steps per episode before termination

random_spawn_lane_index True Randomly generate the vehicle's initial lane

num_scenarios 2000
Pre-generated number of traffic scenarios (to enrich

training diversity)

start_seed 5 Random seed controlling the reproducibility of

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

15

environment generation

traffic_density 0.5 Traffic density (0~1), 0.5 represents medium traffic

accident_prob 0.3 Probability of other vehicles randomly having accidents

use_lateral_reward True Use lateral reward to encourage staying centered in the lane

driving_reward 1.0 Reward coefficient for longitudinal forward distance

speed_reward 0.1 Speed reward coefficient

success_reward 40.0 Reward for successfully reaching the destination

out_of_road_penalty 20.0 Penalty for going out of bounds

crash_vehicle_penalty 20.0 Penalty for crashing into another vehicle

crash_object_penalty 20.0 Penalty for crashing into a static object

4.1.2. PPO Algorithm Hyperparameters

Table 3: PPO Algorithm Hyperparameters.

Hyperparameter

Name
Value Description

save_freq 10000 Interval for saving the model

n_steps 4096
The number of experience steps collected for each environment

before each strategy update

batch_size 64 Mini-batch size for each gradient update

n_epochs 10 Number of policy optimization iterations per data batch

gamma 0.99 Discount factor to balance immediate and future rewards

gae_lambda 0.95 GAE 𝜆 parameter to control the bias-variance tradeoff

clip_range 0.2
𝜖 Parameter, used to control the clipping amplitude and prevent

strategy mutations

ent_coef 0.0 Entropy coefficient (if >0, encourages exploration)

learning_rate 3e-4 Initial learning rate for the Adam optimizer

total_timesteps 1100000 Total training steps (approximately 268 epochs)

4.2. Results Analysis

In the case of a collision, Models 2, 3, and 4 apply fixed penalties (20, 10, and 30, respectively),

which are fixed penalty models. Models 1, 5, 6, and 7 have penalties that are proportional to the

vehicle's speed in the event of a collision (0.2 * speed, 0.1 * speed, 0.3 * speed, and 10 + 0.1 * speed,

respectively), which are dynamic penalty models. The results of Models 1~7 are analyzed in terms of

safety (success rate) and efficiency (average number of frames required to complete the task).

Figure 1 shows the training results for the models with different reward functions. Specifically, it

illustrates how the average reward of each model changes with the training steps/episodes. The x-axis

represents the training steps (or episodes), and the y-axis shows the average reward per training

episode.

Table 2: (continued).

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

16

Figure 1: Mean Reward with Different Reward Functions.

From Figure 1, it can be seen that as training progresses, the average reward for each model

gradually increases. This indicates that as the models interact with the environment, they learn more

effective strategies, leading to higher rewards.

The success rate for each model in various turning scenarios is shown in Table 4.

Table 4: Success Rate.

Model Left Right Straight

model1 28.07% 85.05% 61.80%

model2 41.07% 79.14% 48.63%

model3 30.76% 81.15% 60.74%

model4 73.27% 73.80% 80.85%

model5 31.83% 90.18% 63.11%

model6 41.65% 85.03% 59.85%

model7 27.93% 80.50% 59.48%

The average number of frames required to complete the task for each model in different turning

scenarios is shown in Table 5.

Table 5: Average Number of Frames to Complete the Task.

Model Left Right Straight

model1 208 126 153

model2 216 118 153

model3 191 130 149

model4 310 148 266

model5 202 121 148

model6 257 117 188

model7 211 119 155

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

17

Figures 2, 3, and 4 show the relationship between success rate and average frames required to

complete the task for different models in various turning scenarios. In these figures, the left y-axis

represents the success rate, and the right y-axis represents the average number of frames to complete

the task. The x-axis represents different models (Models 1 to 7). By comparing the performance of

the different models in these two metrics, we can analyze their safety and efficiency in different

turning types.

Figure 2: Left Analysis.

Figure 3: Right Analysis.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

18

Figure 4: Straight Analysis.

Model 1 performs well in terms of safety and efficiency during right turns but performs poorly in

terms of safety during left turns. Model 2 shows good efficiency but poor safety due to insufficient

penalty, leading to frequent risky lane changes. Model 3 shows high efficiency during left turns but

poor safety, resulting in high risk and low returns. Model 4 has the best safety in both left and straight

turns, though its safety during right turns is relatively poor. However, it is the least efficient across

all turning types, as high fixed penalties promote conservative driving, significantly reducing

collisions but sacrificing efficiency. Model 5 strikes a good balance between safety and efficiency

during right turns and straight driving, as the penalties dynamically adjust based on the vehicle’s

speed. This model helps avoid high-speed collisions and prevents overly cautious driving. However,

its safety during left turns is lower. Model 6 performs well in terms of both safety and efficiency

during right turns, but its performance during left turns is poorer, suggesting that increasing the

penalty coefficient may improve efficiency. Model 7 has lower safety across all turning types, but its

efficiency is high.

The driving process for Model 5 (green car) during a straight driving scenario is shown in Figure

5.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

19

Figure 5: Driving Process of Model 5 (Green Car) in a Straight Scenario.

As seen in Figure 5, Model 5 (green car) strikes a balance between safety and efficiency during

straight driving, ensuring both efficient driving and the ability to avoid collisions.

The driving process for Model 5 (green car) during a left-turn scenario is shown in Figure 6.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

20

Figure 6: Driving Process of Model 5 (Green Car) in a Left-Turn Scenario.

In Figure 6, we observe that Model 5 (green car) collides during a left turn, despite sacrificing

efficiency by waiting. This indicates that, even with safety measures in place, collisions may still

occur under certain conditions.

In summary, Model 5 performs best overall, balancing safety and efficiency during right turns and

straight driving, though left turns require further optimization. Across all models, success rates during

left turns are low, indicating a need for targeted optimization of lateral control rewards. Fixed

penalties have limitations; although high fixed penalties improve safety, they drastically reduce

efficiency. Low fixed penalties fail to effectively prevent collisions, limiting their practical

applicability. Dynamic penalties are better suited for complex interactions, as high-speed collisions

incur higher penalties, better reflecting actual risks.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

21

5. Conclusion

5.1. Summary

This paper addresses the challenge of balancing safety and efficiency in autonomous driving by

proposing a multi-objective reward function design method based on reinforcement learning. It

focuses on developing an effective reward structure and trains seven models with different collision

penalty strategies in the MetaDrive simulation environment using the PPO algorithm. Through the

collaborative design of wrong-way driving penalties, forward distance rewards, speed rewards, and

dynamic/fixed collision penalties, we evaluate the models based on their success rate and average

frames required for completion in different turning scenarios. The paper explores the impact of

different penalty strategies on driving behavior and seeks to determine the optimal strategy for

achieving safe and efficient driving behavior.

Experimental results indicate that models with dynamic collision penalties outperform those with

fixed penalties in balancing safety and efficiency. In particular, Model 5 demonstrates the best overall

balance in right-turn and straight driving scenarios, optimizing both safety (higher success rate) and

efficiency (fewer frames). However, all models show low success rates in left-turn scenarios,

highlighting the need for further improvements to the reward structure, especially in lateral control.

While fixed penalties effectively improve safety, they significantly reduce efficiency, revealing the

limitations of this approach in complex, dynamic environments.

5.2. Addressed Problems

This study addresses the core challenge of multi-objective optimization in autonomous driving by

emphasizing the importance of multi-objective optimization and the interplay between safety and

efficiency in reward function design. By using dynamic penalty mechanisms (such as speed-related

penalties), the study successfully balances safety and efficiency, avoiding the conservative or risky

behaviors caused by fixed penalties. This research deepens the understanding of how reinforcement

learning can be applied to autonomous driving systems to balance often conflicting objectives. The

dynamic reward function's effectiveness in complex interaction scenarios is validated, providing

empirical support for multi-objective reinforcement learning. A quantifiable evaluation system based

on success rate and frame count was also designed to support multi-scenario, multi-metric analysis

of autonomous driving strategies.

5.3. Future Prospects

Although this study has made significant progress in balancing safety and efficiency, there are still

areas that require improvement. As previously mentioned, all models perform poorly in left-turn

scenarios, indicating the need for more refined lateral control rewards to better handle the unique

challenges posed by sharp turns and narrow spaces. Furthermore, expanding the research to include

a broader range of traffic scenarios, such as pedestrian interactions, real-time dynamic traffic, and

complex weather conditions, would provide a more comprehensive evaluation of the model's

robustness in diverse environments.

In the future, my goal is to explore advanced reward shaping techniques, such as hierarchical

reinforcement learning, which could better address the long-term dependencies in driving tasks.

Additionally, by introducing cognitive architecture or multi-agent systems, incorporating human-like

decision-making processes into the model could further enhance its navigation capabilities in

dynamic, real-world traffic scenarios. Finally, applying these methods to real-world data and

integrating them with current vehicle control systems will be crucial for evaluating their practicality

and scalability in real-world autonomous driving applications.

Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ21921

22

In conclusion, developing reward functions for autonomous driving using reinforcement learning

is a complex and multifaceted challenge. This study provides valuable insights into balancing safety

and efficiency, and I hope future research will build upon these findings to create safer and more

efficient autonomous driving systems.

References

[1] Russell, S. J., & Norvig, P. (2021). Artificial intelligence: a modern approach, 4th US ed. University of California,

Berkeley.

[2] Bansal, M., Krizhevsky, A., & Ogale, A. (2018). Chauffeurnet: Learning to drive by imitating the best and

synthesizing the worst. arXiv preprint arXiv:1812.03079.
[3] Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International

Journal of Robotics Research, 32(11), 1231-1237.

[4] Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus, D. (2019). Social behavior for autonomous

vehicles. Proceedings of the National Academy of Sciences, 116(50), 24972-24978.

[5] Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F. (2015, June). Kinematic and dynamic vehicle models for

autonomous driving control design. In 2015 IEEE intelligent vehicles symposium (IV) (pp. 1094-1099). IEEE.

[6] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yogamani, S., & Pérez, P. (2021). Deep

reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems,

23(6), 4909-4926.

[7] HAMMA, R., & BOUMARAF, M. (2023). Applying Deep Reinforcement Learning for Autonomous Driving in

CARLA Simulator (Doctoral dissertation).

[8] Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I. (2017). Multi-agent actor-critic for mixed

cooperative-competitive environments. Advances in neural information processing systems, 30.

[9] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor. In International conference on machine learning (pp. 1861-1870).

PMLR.

[10] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., ... & Zaremba, W. (2017). Hindsight
experience replay. Advances in neural information processing systems, 30.

[11] Ng, A. Y., Harada, D., & Russell, S. (1999, June). Policy invariance under reward transformations: Theory and

application to reward shaping. In Icml (Vol. 99, pp. 278-287).

[12] Shalev-Shwartz, S. (2017). On a formal model of safe and scalable self-driving cars. arXiv preprint

arXiv:1708.06374.

[13] Taubman-Ben-Ari, O., Mikulincer, M., & Gillath, O. (2004). The multidimensional driving style inventory—scale

construct and validation. Accident Analysis & Prevention, 36(3), 323-332.

[14] Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., ... & Zeeb, E. (2014). Making bertha

drive—an autonomous journey on a historic route. IEEE Intelligent transportation systems magazine, 6(2), 8-20.

[15] Bojarski, M. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

[16] Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., & Geiger, A. (2020). Learning situational driving. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11296-11305).

