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Abstract: This study proposes a stock price prediction model integrating Particle Swarm 

Optimization (PSO) and Random Forest (RF) to enhance the accuracy and efficiency of 

closing price predictions. Using historical data of Zhongchuang Environmental Protection 

(300056.SZ) from 2014 to 2022, the model incorporates features such as opening price, EMA, 

and RSI. The ADF and Ljung-Box Q tests confirm the stationarity and autocorrelation of the 

differenced time series. PSO optimizes RF hyperparameters (e.g., n_estimators, max_depth). 

Results show: (1) The PSO-RF model achieves high performance with R²and MAE reaching 

0.943 and 0.030 respectively. (2) The DM test indicates statistically significant prediction 

accuracy compared to benchmark models (PSO-SVM, Grid-RF, GA-RF) with p-values < 

0.05. (3) The synergistic effect of PSO's global optimization and RF's generalization ability 

effectively captures short-term market trends, demonstrating superior predictive performance 

and broad application potential. 
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1. Introduction 

Stock price prediction is crucial for investment decisions, risk reduction, and market efficiency. 

Traditional econometric models (e.g., ARIMA, GARCH) have limitations due to simplified 

assumptions (Kumar et al.[1]; Petrica et al.[2]). Recent advances in Machine Learning (ML), 

particularly Random Forest (RF), show superior performance in nonlinear modeling and feature 

extraction (Khedr et al.[3]; Mintarya et al.[4]; Khaidem et al.[6]). However, RF's performance relies 

heavily on hyperparameter tuning, involving trade-offs between accuracy, efficiency, and 

generalization (Probst et al.[7]). Traditional optimization methods (e.g., Random Search, Grid Search) 

are inefficient and often fail to identify optimal solutions (Yang et al.[8]; Bischl et al.[9]).   

This study employs Particle Swarm Optimization (PSO) for hyperparameter optimization due to 

its faster convergence, fewer parameter settings, and ability to avoid local optima in high-dimensional 

problems (Li et al.[10]; Juneja et al.[11]; Reif et al.[12]). PSO's key parameters include inertia weight 

(w), learning factors (c1 and c2), swarm size (n), and number of iterations, with values set based on 

Syi et al.[13]. The study also incorporates technical indicators (e.g., EMA, RSI) and market activity 

features (e.g., trading volume) to enhance trend capture, considering the market's dynamic and 

uncertain nature (Tsay et al.[14]). The hybrid PSO-RF model aims to improve prediction accuracy 

and efficiency.   

The paper is structured as follows: Section 2 covers data processing and statistics; Section 3 

focuses on time series analysis, including the Augmented Dickey-Fuller (ADF) test (Mushtaq et 
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al.[15]), white noise test, and correlation test; Section 4 details the methodology and model 

construction; Section 5 presents the model prediction results and performance comparisons with 

benchmarks (PSO-SVM, Grid-RF, GA-RF); Section 6 concludes the study and proposes further 

research prospects. 

2. Data 

2.1. Data Source 

The study utilizes data from Tushare, a professional financial data platform for quantitative research, 

covering stocks, funds, and futures. The research focuses on stock 300056.SZ (Zhongchuang 

Environmental Protection) from February 13, 2014, to December 30, 2022. The dataset includes nine 

variables: Open, High, Low, Close, Change, Pct_chg, Vol, and Amount, comprising 1924 data points. 

2.2. Feature Construction 

To build an effective prediction model, this paper selects the following features as model inputs. 

These features reflect the operating status of the stock market from multiple perspectives and enhance 

the model's ability to capture market trends. The following are the selected features and their 

definitions. (Table 1). 

Table 1: Feature Selection 

Category Feature Category Feature 

Basic Price 

Features 

Open 
Market Activity Features 

Volume(Vol) 

High Amount 

Low 
Price Change Features 

Change 

Close Pct_chg 

Category Feature Equation 

Technical 

Analysis 

Indicators 

Exponential 

Moving Average 

(EMA) 

𝐸𝑀𝐴𝑡 = 𝛼 · 𝑃𝑟𝑖𝑐𝑒𝑡 + (1 − 𝛼) · 𝐸𝑀𝐴𝑡−1 

α=span+12,where span is the smoothing parameter and is set 

to 7 in this paper. 

Relative 

Strength Index 

(RSI) 

RSI = 100 −
100

1 + 𝑅𝑆
 

Among them,RS =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠
 ,which is calculated by 

averaging the gains and losses over a certain period. 

 

Change represent the difference between the current day's closing price and the previous trading 

day's closing price, capturing the absolute change in stock price. Meanwhile, Pct_chg denotes the 

percentage change between the current day's closing price and the previous trading day's closing price, 

quantifying the relative change in stock price. 

2.3. Data Processing 

2.3.1. Missing Value Handling 

Due to the closure of the stock market on weekends and holidays, the original data contains missing 

values. This paper employs linear interpolation to fill in the missing values. By calculating the linear 

relationship between the preceding and succeeding valid data points, the missing values are estimated 
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while retaining the time series characteristics of the data, providing a reliable basis for subsequent 

analysis. 

2.3.2. Data Normalization 

To eliminate the differences in scales and ranges of different features, this paper adopts the Min-Max 

normalization method to scale each feature's data into the [0, 1] interval, thereby enhancing the 

model's training effectiveness and prediction accuracy. The Min-Max normalization formula is as 

follows: (Equation 1) 

 𝑥_𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛 (𝑥)
 (1) 

where x is a value in the original data, min(x) and max(x) are the minimum and maximum values in 

the dataset, respectively. 

3. Time Series Analysis 

3.1. Initial Data Time Series Plot 

After completing data preprocessing, this paper conducts a time series analysis to understand the data 

characteristics better and lay the foundation for subsequent model construction. First, the time series 

plot of the stock closing price is drawn. (Figure 1). 

 

Figure 1: Time series plot of the raw data 

3.2. Stationarity Test 

3.2.1. ADF Test 

The ADF test assesses stationarity by testing the null hypothesis of a unit root (non-stationarity) 

against the alternative of stationarity. A p-value below 0.05 rejects the null hypothesis, indicating 

stationarity. For the raw data, the ADF test yields a p-value of 0.093, failing to reject the null 

hypothesis and confirming non-stationarity.To achieve stationarity, first-order differencing is applied, 

and the test is repeated. The differenced time series exhibits more uniform fluctuations. (Figure 2). 

The ADF test results for the differenced data show a p-value significantly below 0.05, rejecting the 

null hypothesis and confirming stationarity. 
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Figure 2: Time series plot of data after first-order differencing 

3.2.2. Lag Order Selection 

The selection of lag order is crucial for the accuracy of the time series model. This paper examines 

the autocorrelation function (ACF) plot and partial autocorrelation function (PACF) plot, revealing 

periodicity in the sequence. (Figure 3, Figure 4). Further, by combining the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), the optimal lag order is determined to be 

7. 

  

Figure 3: ACF plot                  Figure 4: PACF plot 

3.2.3. White Noise Test (Pure Randomness Test) 

The white noise test is crucial for assessing time series predictability. A non-white noise sequence 

contains structured information suitable for modeling. This study applies the Ljung-Box Q test to the 

original and first-order differenced time series. (Table 3). With p-values significantly below 0.05, the 

null hypothesis is rejected, confirming significant autocorrelation and non-white noise characteristics. 

This structured information provides a foundation for subsequent model development. 

Table 3: Ljung-Box Q test results of original data 

Lag order 
Original first-order differencing 

Ljung-Box p-value Ljung-Box  p-value 

1 1878.881       3.432*10-17 28.582 8.981*10-8 

2 3721.645 7.136*10-20 62.195 3.122*10-14 
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3 5529.718 6.274*10-21 70.649 3.115*10-15 

4 7307.374 5.774*10-20 70.705 1.612*10-14 

5 9059.881 2.213*10-21 75.613 6.929*10-15 

6 10789.887 3.369*10-23 90.909 1.961*10-17 

7 12492.283 4.723*10-23 94.400 1.540*10-17 

3.3. Correlation Analysis 

The study examines the linear relationships between each feature and the closing price via correlation 

analysis to inform feature selection and model construction(Figure 5). The results indicate strong 

positive correlations between Open, High, and Low prices and the closing price (coefficients > 0.85). 

EMA and RSI also show positive correlations (coefficients of 0.82 and 0.44, respectively). These 

significant linear relationships suggest that these features can serve as input variables for the Random 

Forest model to predict stock closing prices. 

 

Figure 5: Correlation coefficient heatmap 

4. Methodology 

4.1. Random Forest (RF) 

Random Forest (RF), proposed by Leo Breiman, is an ensemble learning algorithm that constructs 

multiple decision trees to enhance generalization. It uses Bootstrap sampling (Efron et al.[16]) to 

draw subsamples from the dataset, training each tree independently. During node splitting, trees select 

optimal split points from a random subset of features (Hasan et al.[17]), reducing overfitting and 

enabling high-dimensional data handling. The final prediction is aggregated via majority voting 

(classification) or averaging (regression), improving stability and accuracy. (Figure 6). 

Table 3: (continued). 
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Figure 6: Random Forest (RF) illustration 

4.2. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is an optimization algorithm that simulates the foraging behavior 

of bird flocks, achieving global optimization through particle collaboration. Each particle represents 

a potential solution and has position and velocity attributes. At the initial stage, the velocity vi(0) and 

position xi(0) of each particle are randomly initialized, and the individual best solution pbesti and 

global best solution gbest are recorded. The velocity and position of the particles are updated 

according to the following formulas: 

Velocity update formula:(Equation 2) 

 𝑣𝑖(𝑡 + 1) = 𝑤 · 𝑣𝑖(𝑡) + 𝑐1 · 𝑟1 · (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 · 𝑟2 · (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (2) 

Position update formula:(Equation 3) 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (3) 

where w is the inertia weight, c1 and c2 are learning factors, and r1 and r2 are random numbers that 

control the particle's dependence on individual and swarm experience. The algorithm iterates until a 

predefined termination condition is met, such as reaching the maximum number of iterations or the 

change in the solution being less than a set threshold. 

5. Results 

5.1. PSO-RF Prediction Results 

PSO-RF model’s parameter, search range, and optimized parameter settings are as follows. (Table 4). 

Table 4: PSO-RF model parameter search range and optimal parameter settings 

Parameter(RF) Search Range Best(RF) Parameter(PSO) Value 

N_estimators [50,500] 177 Swarm size 10 

Max_depth [10,50] 31 iterations 5 

Min_samples_split [10,50] 33 w 0.5 

Min_samples_leaf [10,50] 10 C1/C2 1/2 

 

To initially demonstrate the prediction performance of the PSO-RF model on stock prices, a 

prediction line chart is drawn. (Figure 7). Despite the impact of fitting for data on weekends and 

holidays when the stock market is closed, the PSO-RF model shows high accuracy in stock price 

prediction overall. 
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Figure 7: PSO-RF model prediction diagram 

5.2. Feature Importance Analysis of RF 

By summing the importance of features within the same category (e.g., Open, High, EMA, etc.), the 

total feature importance for each category is calculated. (Figure 8(a)). The analysis reveals that RSI 

has the greatest impact on model predictions, accounting for approximately 68.13% of the importance. 

This indicates a strong association between RSI and stock price changes. EMA, as a smoothing 

technical indicator, also significantly influences the prediction results. Other features, such as Amount 

and Vol, contribute to the model's predictions, while Open and High have relatively smaller impacts. 

From a temporal perspective, the importance of features at different lag days is shown. (Figure 8(b)). 

The results indicate that features from Day 1 (the previous day) have the greatest impact on model 

predictions, accounting for 67.58% of the importance. The importance of features decreases gradually 

with increasing lag days. This suggests that stock price predictions strongly depend on short-term 

features, especially those from the previous day, reflecting the inertia effect in stock price movements. 

 

Figure 8(a): Importance by category   Figure 8(b): Importance by (Lag) Time 

5.3. Model Comparison 

To comprehensively evaluate the performance of the PSO-RF model, this paper compares it with 

three benchmark models: PSO-SVM, Grid-RF, and GA-RF. The parameter settings for each model 

are shown. (Table 5). 
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Table 5: Parameter settings for Benchmarks 

Model Best Parameter Value Parameter Value 

PSO-SVM 
PSO 

Swarm size 10 iterations 5 

w 0.5 C1､C2 1､2 

SVM C 60.332 Gamma 0.0001 

Grid-RF RF 
N_estimators 50 Max_depth 10 

Min_samples_split 10 Min_samples_leaf 4 

GA-RF 

GA 
Population_size 10 generations 10 

crossover_prob 0.7 mutation_prob 0.2 

RF 
N_estimators 88 Max_depth 12 

Min_samples_split 6 Min_samples_leaf 40 

 

The evaluation metrics include MAE, MSE, RMSE, and R², results are as follows. (Table 6). 

Table 6: Evaluation metrics results for each model 

 PSO-RF PSO-SVM Grid-RF GA-RF 

MAE 0.030 0.037 0.031 0.034 

MSE 1.732*10-3 2.209*10-3 1.813*10-3 2.124*10-3 

RMSE 0.041 0.047 0.042 0.046 

R2 0.943 0.924 0.940 0.927 

 

To more intuitively compare the prediction performance of the four models, prediction time series 

plots and Mean Relative Error (MRE) plots are drawn for all models. (Figure 9, Figure 10). The MRE 

during model training is defined as:(Equation 4) 

 𝑀𝑅𝐸 =
1

𝑁
∑ |

𝑌𝑖−𝑋𝑖

𝑌𝑖
|𝑁

𝑖=1  (4) 

where Xi is the predicted value, Yi is the actual value, and N is the total number of samples. The mean 

relative error is calculated using a 7-day lag as a sliding window to assess the prediction accuracy 

over a short time range. 

 

    Figure 9: Prediction diagram      Figure 10: Mean relative error diagram  

Time series plots indicate that the PSO-RF model outperforms other models, showing smoother 

performance and a higher fit with actual values, especially during volatility. It also exhibits lower 

MRE values and smaller error fluctuations, demonstrating superior accuracy and stability. 

Comparative analysis confirms its superior ability to capture market trends and fluctuations, 

particularly during major changes, making it the best-performing model in this experiment. The 

Diebold-Mariano (DM) test validates the PSO-RF model's superiority by assessing prediction 
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accuracy differences. Results show significant differences in prediction accuracy compared to 

benchmarks (P-value < 0.05), confirming its superiority (Table 6). 

Table 6: DM test results of PSO-RF with other models 

Model Benchmark P-value Benchmark P-value Benchmark P-value 

PSO-RF PSO-SVM 1.374*10-4 GA-RF 8.176*10-4 Grid-RF 0.049 

6. Discussion 

The PSO-RF model exhibits high accuracy and stability in stock price prediction, with R² = 0.943, 

MAE = 0.030, RMSE = 0.041, and MSE = 1.732×10⁻³. The Diebold-Mariano test confirms its 

superiority over benchmarks (PSO-SVM, Grid-RF, GA-RF) with P-values of less than 0.05. PSO's 

global search capability enhances hyperparameter optimization, overcoming grid search limitations 

and yielding lower RMSE (0.041 vs. 0.042 for Grid-RF). PSO also converges faster than GA (5 

iterations vs. 10) and achieves higher R² (0.943 vs. 0.927 for GA-RF). The choice of RF over SVM 

is significant, as RF's ability to handle high-dimensional data and avoid overfitting provides an 

advantage over SVM, which is more sensitive to kernel selection and computational complexity 

(MAE: 0.030 for PSO-RF vs. 0.037 for PSO-SVM). The synergistic effect between PSO and RF 

enhances performance, with PSO overcoming RF's local optimum limitations and RF providing 

feedback to PSO. Feature importance analysis highlights RSI (68.1%) and the lagged "Day 1" feature 

(67.6%) as critical for capturing short-term market fluctuations. 

7. Conclusion 

This study constructs a hybrid PSO-RF model for stock price prediction using historical data of 

Zhongchuang Environmental Protection (300056.SZ) from Tushare. The model incorporates features 

such as opening price, EMA, and RSI. Stationarity and autocorrelation are confirmed via ADF and 

Ljung-Box Q tests. PSO optimizes RF hyperparameters, achieving strong performance. The DM-test 

shows superiority over benchmarks (PSO-SVM, Grid-RF, GA-RF), with feature importance analysis 

highlighting RSI and Day 1 features. Future work can focus on expanding feature selection, 

improving optimization algorithms, validating model universality, and integrating deep learning 

techniques (e.g., LSTM, Transformer) with PSO to enhance stock market analysis. 
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