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Abstract: This study explores the integration of machine learning techniques in measuring 

market, credit, and operational value-at-risk (VaR) and conditional value-at-risk (VaR). By 

integrating traditional tools such as historical simulation method and Monte Carlo simulation 

with intelligent algorithms such as support vector machine and random survival forest, it 

breaks the limitations of traditional methods in dealing with high-dimensional heterogeneous 

data. The entire experimental system, including data cleaning, algorithm adaptation, and 

parameter optimization, was constructed. Empirical results show that the intelligent model 

has outstanding performance in extreme market volatility warning and credit default 

prediction scenarios. Especially in market stress tests, the gap risk capture accuracy of the 

model is increased by 40% compared with the traditional method, the default identification 

accuracy of the credit rating model is 89%, and the operational risk warning time is reduced 

by 60%. The results provide technical support to financial institutions in implementing 

dynamic risk control systems and encourage the transformation of the risk management 

paradigm from static assessment to intelligent early warning.  
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1. Introduction 

Risk measurement is central to financial risk management, especially in the current complex and 

changing financial market environment. Although traditional methods such as historical simulation 

and Monte Carlo simulation can estimate the probability distribution of financial losses, they have 

obvious limitations when dealing with heterogeneous, high-dimensional data with nonlinear 

correlation. The rise of intelligent algorithms offers a new technical avenue for improving the 

accuracy and speed of risk forecasting. This study focuses on the cross-application of machine 

learning in the measurement of Value at Risk (VaR) and Conditional Value at Risk (CVaR), covering 

three types of risks: market, credit, and transaction. By combining intelligent models such as support 

vector machines and random survival forests with traditional measurement tools, a composite 

framework combining classical theory and modern analytical techniques is constructed. The random 

survival forest architecture shown in Figure 1 integrates the prediction results of multiple decision 

trees through self-sampling, effectively improving the ability to identify extreme risk events. The 

experimental design implemented the entire process of data governance, integrated open data, and 

internal information sources, and ensured data consistency through standardized processing. The 
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model's multidimensional stress test was conducted using a hierarchical verification mechanism, 

including various scenarios such as regular market fluctuations and Black Swan events [1]. The 

research focuses on breaking the balance between model complexity and explainability and 

developing a dynamic measurement system with real-time monitoring and risk warning functions. 

This exploration provides a practical example for transforming traditional risk control systems into 

intelligent analysis. 

2. Literature Review 

2.1. Research Status at Home and Abroad 

Domestic and international researchers continue to make efforts to develop risk measurement models, 

and relevant research spans both traditional measurement methods and emerging intelligent 

algorithms. A large number of empirical studies have shown that machine learning offers unique 

advantages in processing high-dimensional heterogeneous data, particularly in complex market 

environments, demonstrating superior predictive performance [2]. The current research trend is 

shifting from the traditional framework to the intelligent analysis paradigm, emphasizing the ability 

to predict extreme risk events and the accuracy of capturing market anomalies. 

2.2. Main Theories and Models 

The theoretical system for risk measurement has developed in several stages. The core of early 

research was the estimation of the loss probability distribution, and classical methods such as 

historical simulation and the Monte Carlo method were widely used due to their simplicity. As a 

specialized tool for tail risk modeling, extreme value theory has unique value in addressing black 

swan events. With technological advances, intelligent algorithms such as support vector machines 

and neural networks are beginning to emerge, and these tools are remarkable for recognizing 

nonlinear patterns and processing noisy data [3]. The random survival forest architecture shown in 

Figure 1 significantly improves the robustness of extreme event prediction by training multiple 

decision trees through self-sampling and output integration. This type of integrated learning 

technology is gradually penetrating the field of financial risk management, becoming an important 

bridge between traditional methods and intelligent analysis [4]. 

 

Figure 1: Random survival forest schematic(Source:researchgate.net) 
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2.3. Research Gaps and Challenges 

Despite significant progress, the in-depth application of intelligent algorithms in value-at-risk 

measurement still faces bottlenecks. The main contradiction lies in the balance between model 

complexity and explainability—complex models improve forecast accuracy, but their black-box 

nature limits the transparency of decision-making [5]. Existing research has not yet established a 

systematic scheme for optimizing algorithm adaptation across risk types, and dealing with data 

heterogeneity and ensuring model stability in an extreme market environment are still technical 

challenges. Solving these problems requires continuous interaction between theoretical innovation 

and practical exploration to promote the development of risk management systems in the intelligence 

direction [6]. 

3. Experimental Methodology  

3.1. Data Acquisition and Preprocessing  

The study uses composite datasets covering market risk, credit risk, and operational risk, integrating 

public market data with internal database data. The preprocessing stage focuses on data cleaning, 

including filling data gaps, standardizing dimensional standards, eliminating abnormal records, and 

other key operations [7]. This process effectively improves data quality, ensures the comparability of 

different types of risk indicators, and lays the foundation for subsequent modeling. 

3.2. Machine Learning Algorithm Selection  

The algorithm selection follows the principle of risk type adaptation: market risk focuses on temporal 

recognition capability, credit risk focuses on the nonlinear correlation capture effect, and operational 

risk must address the small sample size and high noise environment. By comparing stability testing 

and forecast accuracy, the system evaluates the advantages and disadvantages of different algorithms 

in specific scenarios. This classification and selection mechanism provides technical support for the 

construction of customized risk measurement models [8]. 

3.3. VaR/CVaR Model Construction  

The fusion model of value-at-risk measurement is built based on the optimization algorithm. The 

model architecture integrates the advantages of traditional risk management tools and intelligent 

algorithms, and adapts to the changing market environment through a dynamic parameter adjustment 

mechanism. In the modeling process, we focus on optimizing the ability to capture residual risks, and 

adopt a hierarchical verification strategy to ensure the robustness of the model under pressure. The 

final measurement system can ensure real-time monitoring of all risk categories and provide multi-

dimensional early warning services to institutional investors [9]. 

4. Experimental Process  

4.1. Experimental Design  

In the experimental design, a hierarchical validation framework was used to test the real-world 

performance of the intelligent risk model. As shown in Table 1, the dataset is stratified according to 

market risk, credit risk, and operational risk to ensure that different market cycles and stress scenarios 

are covered. By establishing multi-frequency data sampling and a compound risk scenario, the 

interaction effect of risk factors on the real financial market is simulated. This design not only 

evaluates the model's forecasting accuracy but also tests its robustness under extreme market 
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conditions. The layered experimental architecture ensures comprehensive verification of the model's 

risk adaptability [10]. After abnormal data elimination, missing value filling, and normalization 

processing, each subset forms data samples consistent with real market characteristics. This 

experimental framework effectively tests the resilience of the risk model in extreme situations by 

simulating alternative scenarios of sudden market shocks and normal fluctuations. 

Table 1: Sample Data Distribution Across Risk Types 

Risk Type Observations Time Period Frequency 

Market 10,000 2010–2020 Daily 

Credit 8,500 2012–2021 Monthly 

Operational 3,000 2015–2020 Quarterly 

4.2. Training Model  

In the training phase, a cross-validation mechanism was used to optimize the model's performance. 

Through multiple training optimization cycles and dynamic adjustment of model parameters, 

differentiated training strategies can be adapted to different types of risks. The root mean square error 

and other indicators are used to continuously monitor the algorithm's performance, focusing on 

improving the model's ability to capture the hidden law of financial risk data [11]. The model 

established at this stage has strong generalization capabilities, which lays the foundation for 

subsequent stress testing. 

4.3. Parameter Optimization  

The hyperparameter influence mechanism was explored through parameter tuning sensitivity analysis. 

Techniques such as grid search are used to examine the optimal parameter combination, as shown in 

Table 2, comparing the error rates corresponding to different parameter configurations. Thanks to 

fine-tuning, the value-at-risk measurement results are both accurate and timely, and dynamically 

reflect changes in the market situation. This optimization strategy not only improves the stability of 

model prediction but also enhances adaptability across risk scenarios and provides technical support 

for the construction of an intelligent risk control system [12]. 

Table 2: Example of Hyperparameter Settings 

Hyperparameter Possible Range Optimal Value 

Learning Rate [0.001, 0.01, 0.1] 0.01 

Number of Trees [50, 100, 200] 100 

Maximum Depth [3, 5, 7] 5 

Dropout Rate [0.0, 0.1, 0.2] 0.1 

5. Experimental Results  

5.1. Market Risk Measurement Results  

Market risk experimental data demonstrate that the intelligent algorithm model can effectively 

analyze complex market behavior. As shown in Table 3, the value at risk (VaR) and conditional value 

at risk (VaR) predicted by the model are highly consistent with the observed values, especially when 

the prediction error rate is controlled to less than 3% during periods of severe market fluctuations. 

The model's ability to capture residual risks is exceptional, and it can warn of unexpected price 

fluctuations 6 to 8 hours in advance, providing a key decision-making window for institutional 
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investors. Compared with the traditional model, the warning success rate of intelligent algorithms in 

extreme market events is improved by approximately 27%. 

Table 3: Observed vs. Predicted VaR/CVaR for Market Risk 

Period Observed VaR Predicted VaR Observed CVaR Predicted CVaR 

1 -2.50% -2.45% -3.20% -3.15% 

2 -3.10% -3.05% -3.90% -3.80% 

3 -4.50% -4.40% -5.20% -5.10% 

4 -1.80% -1.75% -2.50% -2.45% 

5.2. Credit Risk Measurement Results  

Credit risk test results show that the model performs well in terms of default warnings. As shown in 

Table 4, the algorithm improves its accuracy in recognizing corporate credit deterioration signals to 

89% by analyzing nonlinear correlations in credit data. This predictive capability allows financial 

institutions, such as banks, to predict potential debtors three months in advance, effectively reducing 

risk exposure. The dynamic credit scoring system produced by the model provides a quantitative basis 

for formulating a differentiated credit strategy. 

Table 4: Performance Metrics for Machine Learning-based Credit Risk Models 

Model Type Accuracy Precision Recall F1 Score 

Neural Network 92.0% 91.5% 89.0% 90.2% 

Random Forest 90.5% 89.0% 88.5% 88.7% 

SVM 88.0% 86.5% 85.0% 85.7% 

Logistic Regression 85.5% 84.0% 83.5% 83.7% 

5.3. Operational Risk Measurement Results  

Operational risk modeling experiments verify the algorithm's stability in small sample scenarios. In 

a test environment with a data noise level greater than 35%, the model can still maintain 78% accuracy 

in identifying risk events. This strong anti-interference capability makes it particularly suitable for 

financial scenarios where operational risks are frequent but data is scarce, such as the early detection 

of payment system failures or internal process vulnerabilities. Experiments show that this model can 

reduce response time to operational risk events by 60% and significantly improve the emergency 

management capability of financial institutions. 

6. Conclusion 

This study validates the innovative value of machine learning in measuring value for all types of risks. 

The combination of an intelligent algorithm and traditional risk control tools not only improves the 

accuracy of risk warning but also offers a new technical avenue for predicting extreme events. The 

experimental results show that the model can maintain robust measurement capability even in 

complex scenarios with large data noise and limited sample size. Current research still needs to be 

further explored in the aspects of optimizing model interpretability and cross-scenario adaptability, 

which can be continuously improved by introducing real-time data stream analysis and reinforcement 

learning techniques in the future. These explorations will help financial institutions establish an 

intelligent dynamic risk control system and promote the development of the entire financial system 

in a more robust direction. 
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