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Abstract: In this paper, a kernel-limit learning machine method based on an improved vector-

weighted average algorithm is proposed for enhancing the accuracy of concrete compressive 

strength prediction. Quantitative relationships between components and compressive strength 

are revealed by Pearson correlation analysis: cement content shows the strongest positive 

correlation (r=0.50), followed by superplasticizer (r=0.37) and age (r=0.33), while water 

content shows a significant negative correlation (r=-0.29). The prediction model based on this 

model showed good performance in both the training and test sets, with a coefficient of 

determination (R²) of 0.913 and a root mean square error (RMSEC) of 4.875 for the training 

set, and R² of 0.867 and RMSEP of 6.171 for the test set, It is worth noting that the model's 

prediction accuracy in the test set decreased by only 0.046 units of R² compared with the 

training set, and the error increase remained reasonable. and the error increase remains within 

a reasonable range, indicating that the improved algorithm has excellent generalization ability 

and engineering applicability. By integrating feature correlation and intelligent algorithm 

optimization, this study not only provides a new method for concrete material strength 

prediction, but also constructs a quantitative model that can provide an important theoretical 

support for the optimal design of concrete proportion and the assessment of structural 

durability of engineering structures, which is of practical application value for improving the 

efficiency of concrete material research and development and the level of engineering quality 

control. 

Keywords: Vector weighted average algorithm, Kernel limit learning machine, Concrete 

compressive strength. 

1. Introduction 

The prediction of concrete compressive strength is one of the core topics in the field of construction 

engineering and materials science. As the most widely used building material in the world, the 

mechanical properties of concrete directly determine the safety, durability and economy of buildings. 

Traditionally, the determination of compressive strength mainly relies on destructive testing of 

standard laboratory curing specimens, which is a time-consuming and costly method that takes up to 

28 days and is difficult to meet the demand for real-time quality control and construction efficiency 

in modern engineering [1]. In addition, the strength of concrete is subject to the nonlinear coupling 

of water-cement ratio, aggregate properties, additive types and curing conditions, etc., and its inner 
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mechanism is complex, so it is difficult for traditional empirical formulas or statistical models to 

accurately describe the complex relationship between the variables. With the advancement of green 

building and intelligent construction concepts, how to quickly and non-destructively predict the 

strength of concrete during the construction phase and reduce the waste of resources through ratio 

optimization has become a key issue to be solved by the industry. In this context, intelligent prediction 

methods integrating material science, data analysis and computer technology have gradually become 

a research hotspot [2]. 

Machine learning algorithms provide breakthrough solutions for concrete strength prediction. By 

mining the hidden laws in the historical experimental data, machine learning is able to establish a 

nonlinear mapping model between the input variables (e.g., cement content, fly ash admixture, age, 

etc.) and the compressive strength, overcoming the theoretical limitations of the traditional methods 

[3]. Algorithms such as Random Forest [4] and Support Vector Machine [5] can identify the key 

influencing factors through feature importance analysis; neural networks, especially deep learning 

models, exhibit higher prediction accuracy under complex proportioning conditions by virtue of the 

ability of multilayer nonlinear transformation [6]. In this paper, the kernel limit learning machine is 

improved based on the vector weighted average algorithm for prediction of compressive strength of 

concrete. 

2. Data set sources and data analysis 

We use the open source dataset for experiments, the source of the dataset is kaggle, the dataset 

contains the content and proportion of the basic components of concrete such as cement, blast furnace 

slag, fly ash, water, superplasticizers, coarse aggregates, fine aggregates, and age, and the target 

variable is the compressive strength of concrete, a total of 1,030 pieces of data, this paper selects 

some of the data to show, as shown in Table 1. 

Table 1: Modelling assessment. 

Cement  

Blast 

Furnace 

Slag  

Fly 

Ash  
Water   Superplasticizer  

Coarse 

Aggregate   

Fine 

Aggregate 
Age  

Concrete 

compressive 

strength 

540.0  0.0  0.0  162.0  2.5  1040.0  676.0  28  79.99  

540.0  0.0  0.0  162.0  2.5  1055.0  676.0  28  61.89  

332.5  142.5  0.0  228.0  0.0  932.0  594.0  270  40.27  

332.5  142.5  0.0  228.0  0.0  932.0  594.0  365  41.05  

198.6  132.4  0.0  192.0  0.0  978.4  825.5  360  44.30  

266.0  114.0  0.0  228.0  0.0  932.0  670.0  90  47.03  

380.0  95.0  0.0  228.0  0.0  932.0  594.0  365  43.70  

380.0  95.0  0.0  228.0  0.0  932.0  594.0  28  36.45  

266.0  114.0  0.0  228.0  0.0  932.0  670.0  28  45.85  

475.0  0.0  0.0  228.0  0.0  932.0  594.0  28  39.29  

198.6  132.4  0.0  192.0  0.0  978.4  825.5  90  38.07  

198.6  132.4  0.0  192.0  0.0  978.4  825.5  28  28.02  

It is very important to analyze the relationship between each basic component and the compressive 

strength of concrete, we use the method of Pearson correlation analysis to calculate the correlation 

between each cement component and the compressive strength of concrete, calculate the correlation 

coefficients between them and draw the correlation heat map, as shown in Figure 1, and sorted 

according to the degree of correlation with concrete, as shown in Figure 2. 
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Figure 1: The correlation heat map. 

 

Figure 2: The degree of correlation with concrete. 

From the correlation matrix, it can be seen that the most positively correlated variable with the 

compressive strength of concrete is cement, with a positive correlation coefficient of 0.5; followed 

by superplasticizer, with a correlation coefficient of 0.37, and age is also an important factor affecting 

the compressive strength of concrete, with a correlation coefficient of 0.33. It is worth noting that 

water has a negative correlation with the compressive strength of concrete, with a correlation 

coefficient of -0.29. 

3. Method 

3.1. Vector Weighted Average Algorithm 

Vector weighted average algorithm is a data fusion method that integrates information from multiple 

vectors by assigning different weights, and its core idea is to assign specific weight coefficients to 

each vector according to the difference in importance or reliability of each vector, and then generate 

the integrated result vector by weighted summation [7]. In the calculation process, each input vector 

Proceedings of  the 3rd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/144/2025.21954 

98 



 

 

will be multiplied with its corresponding weight, the larger the weight value represents the higher 

contribution of the vector to the final result, and after all the weighted vectors are superimposed, the 

sum of the weights is usually normalized to ensure the stability of the result. The key to this algorithm 

lies in the reasonable setting of the weights, which can either be specified manually based on a priori 

knowledge or automatically optimized through statistical analysis of data or machine learning models 

[8]. The pseudo-code of the vector weighted average algorithm is shown in Figure 3. 

 

Figure 3: The pseudo-code of the vector weighted average algorithm. 

3.2. Kernel limit learning machine 

Kernel Extreme Learning Machine (KELM) is an efficient machine learning model that combines the 

Extreme Learning Machine (ELM) framework with the kernel method, aiming to improve the 

generalization ability and stability of traditional ELM through nonlinear mapping, while retaining its 

fast training characteristics. Traditional ELM avoids the time-consuming gradient descent process in 

traditional neural networks by randomly initializing the weights of a single hidden-layer neural 

network and solving the output weights directly analytically, but the randomness of its hidden-layer 

parameters may lead to fluctuations in the model's performance, and its generalization ability is 

limited especially under complex data distributions [9].The core improvement of the KELM lies in 

the introduction of the kernel trick, which implicitly maps the original data to a high-dimensional 

feature space. thereby bypassing explicit random weight generation and constructing nonlinear 

decision boundaries directly by measuring the similarity between samples through the kernel function 

[10]. The schematic diagram of Kernel Extreme Learning Machine (KELM) is shown in Fig. 4. 
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Figure 4: The pseudo-code of the vector weighted average algorithm. 

3.3. Kernel limit learning machine optimized for vector weighted average algorithm 

The performance of KELM is highly dependent on the selection of the kernel function and its 

parameters, for example, the bandwidth parameter of the Gaussian kernel determines the degree of 

local sensitivity of the feature space, which needs to be adjusted according to the characteristics of 

the data in order to adapt to the nonlinear structure. Compared with the traditional ELM, KELM 

eliminates the instability caused by the randomness of the hidden layer through kernel mapping, 

which significantly improves the robustness and consistency of the model, especially in the small-

sample or high-dimensional nonlinear tasks. 

The algorithm uses a two-level weight update strategy:   

1. Sample-level weights: adjusted in real time according to the prediction errors of the samples 

during training. The samples with wrong prediction will be weighted down to prevent the model from 

overfitting the local noise; the weights of correctly predicted samples will be gradually increased to 

strengthen the model's capture of stable patterns.   

2. Kernel function level weights: Fusing the outputs of multiple kernel functions (e.g., Gaussian 

kernel, linear kernel), the weights of different kernels are dynamically adjusted to balance the model's 

local fitting ability and global generalizability. For example, for data regions with fuzzy boundaries, 

the algorithm may increase the weight of the Gaussian kernel to capture details; for linearly separable 

regions, it focuses on the simplicity of the linear kernel. 

4. Result 

In the experimental setup, the Kernel Extreme Learning Machine (KELM) adopts the radial basis 

(RBF) kernel function, the regularization parameter C is set to 100 to balance the risk of overfitting, 

and the kernel parameter gamma is set to 0.1 to control the kernel function bandwidth; the vector 

weighted averaging algorithm assigns dynamic weights to the training set by calculating the 

information entropy of the feature vectors in the training set, and the entropy weighting threshold is 

set to 0.7 to screen the effective features. The dataset was divided into training set and test set 

according to 7:3, and the optimization parameters were optimized using 5-fold cross-validation; the 

regression performance was evaluated by mean square error (MSE), mean absolute error (MAE) and 

coefficient of determination (R²); all experiments were repeated independently for 10 times to take 

the mean; the data were preprocessed using Z-score standardization to eliminate the effect of 

magnitude. 

The model was introduced for training, and a line graph of the actual values of the training set 

versus the predicted values of the model was output, with the actual concrete strength in red and the 

predicted values of our model in blue. The line plot of actual values versus predicted values of the 
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model for the training set is shown in Figure 5, and the line plot of actual values versus predicted 

values of the model for the test set is shown in Figure 6. 

 

Figure 5: The line plot of actual values versus predicted values of the model for the training set. 

 

Figure 6: The line plot of actual values versus predicted values of the model for the test set. 

From the prediction effect of the training set and test set, our model can predict the concrete 

compressive strength more accurately from the perspective of quantization. 

Secondly, we use the quantitative method to observe more intuitively the prediction ability of our 

model for concrete strength on the training and test sets. The scatter plot of the actual values of the 

predicted values in the training set is shown in Fig. 7, and the scatter plot of the actual values of the 

predicted values in the test set is shown in Fig. 8. 
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Figure 7: The line plot of actual values versus predicted values of the model for the test set. 

 

Figure 8: The line plot of actual values versus predicted values of the model for the test set. 

From the scatter distributions of predicted-actual values in the training and test sets, it is clear that 

our model is able to predict the concrete compressive strength relatively accurately. From the 

quantitative point of view, the R2 of the training set is 0.913 and the RMSEC is 4.875, and the R2 of 

the test set is 0.867 and the RMSEP is 6.171.Among them, the test set is lower than the training set 

by 0.046 in R2, which indicates that the effect of the test set is reduced compared with the training 

set, but the value of the reduction is not large, which indicates that the model's ability to generalize is 

better. 

5. Conclusion 

This article uses the Newton Raphson algorithm to optimize the XGBoost model and applies it to 

advertising click prediction tasks. Through the analysis of experimental data, we found that there is a 

certain correlation between advertising click through rate and multiple variables. Among them, the 

variable most positively correlated with ad click through rate is ad position, with a correlation 

coefficient of 0.08; The variable most negatively correlated with ad click through rate is browsing 

history, with a correlation coefficient of -0.08. These correlation analyses provide important reference 

for the construction of the model.During the model training process, we observed that the fitness 

curve of the model showed a significant downward trend, gradually decreasing from the initial 0.184 

to 0.148, indicating that the predictive performance of the model continued to improve with the 
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progress of training. This trend further validates the effectiveness of the Newton Raphson algorithm 

in optimizing the XGBoost model.In addition, this study also reveals the significant impact of 

advertising location and browsing history on ad click through rates. The position of advertisements 

is positively correlated with click through rates, indicating that the more prominent the advertisement 

is on the page, the greater the likelihood of users clicking. 
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