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Abstract: In this paper, a kernel-limit learning machine method based on an improved vector-
weighted average algorithm is proposed for enhancing the accuracy of concrete compressive
strength prediction. Quantitative relationships between components and compressive strength
are revealed by Pearson correlation analysis: cement content shows the strongest positive
correlation (r=0.50), followed by superplasticizer (r=0.37) and age (r=0.33), while water
content shows a significant negative correlation (r=-0.29). The prediction model based on this
model showed good performance in both the training and test sets, with a coefficient of
determination (R?) of 0.913 and a root mean square error (RMSEC) of 4.875 for the training
set, and R? of 0.867 and RMSEP of 6.171 for the test set, It is worth noting that the model's
prediction accuracy in the test set decreased by only 0.046 units of R? compared with the
training set, and the error increase remained reasonable. and the error increase remains within
areasonable range, indicating that the improved algorithm has excellent generalization ability
and engineering applicability. By integrating feature correlation and intelligent algorithm
optimization, this study not only provides a new method for concrete material strength
prediction, but also constructs a quantitative model that can provide an important theoretical
support for the optimal design of concrete proportion and the assessment of structural
durability of engineering structures, which is of practical application value for improving the
efficiency of concrete material research and development and the level of engineering quality
control.

Keywords: Vector weighted average algorithm, Kernel limit learning machine, Concrete
compressive strength.

1. Introduction

The prediction of concrete compressive strength is one of the core topics in the field of construction
engineering and materials science. As the most widely used building material in the world, the
mechanical properties of concrete directly determine the safety, durability and economy of buildings.
Traditionally, the determination of compressive strength mainly relies on destructive testing of
standard laboratory curing specimens, which is a time-consuming and costly method that takes up to
28 days and is difficult to meet the demand for real-time quality control and construction efficiency
in modern engineering [1]. In addition, the strength of concrete is subject to the nonlinear coupling
of water-cement ratio, aggregate properties, additive types and curing conditions, etc., and its inner
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mechanism is complex, so it is difficult for traditional empirical formulas or statistical models to
accurately describe the complex relationship between the variables. With the advancement of green
building and intelligent construction concepts, how to quickly and non-destructively predict the
strength of concrete during the construction phase and reduce the waste of resources through ratio
optimization has become a key issue to be solved by the industry. In this context, intelligent prediction
methods integrating material science, data analysis and computer technology have gradually become
a research hotspot [2].

Machine learning algorithms provide breakthrough solutions for concrete strength prediction. By
mining the hidden laws in the historical experimental data, machine learning is able to establish a
nonlinear mapping model between the input variables (e.g., cement content, fly ash admixture, age,
etc.) and the compressive strength, overcoming the theoretical limitations of the traditional methods
[3]. Algorithms such as Random Forest [4] and Support Vector Machine [5] can identify the key
influencing factors through feature importance analysis; neural networks, especially deep learning
models, exhibit higher prediction accuracy under complex proportioning conditions by virtue of the
ability of multilayer nonlinear transformation [6]. In this paper, the kernel limit learning machine is
improved based on the vector weighted average algorithm for prediction of compressive strength of
concrete.

2.  Data set sources and data analysis

We use the open source dataset for experiments, the source of the dataset is kaggle, the dataset
contains the content and proportion of the basic components of concrete such as cement, blast furnace
slag, fly ash, water, superplasticizers, coarse aggregates, fine aggregates, and age, and the target
variable is the compressive strength of concrete, a total of 1,030 pieces of data, this paper selects
some of the data to show, as shown in Table 1.

Table 1: Modelling assessment.

Blast . Concrete
Fly - Coarse Fine .

Cement Furnace Ash Water Superplasticizer Aggregate  Aggrogate Age compressive

Slag strength
540.0 0.0 0.0 1620 25 1040.0 676.0 28 79.99
540.0 0.0 0.0 1620 25 1055.0 676.0 28 61.89
332.5 142.5 0.0 228.0 0.0 932.0 594.0 270 40.27
332.5 142.5 0.0 228.0 0.0 932.0 594.0 365 41.05
198.6 132.4 0.0 192.0 0.0 978.4 825.5 360 44.30
266.0 114.0 0.0 228.0 0.0 932.0 670.0 90  47.03
380.0 95.0 0.0 228.0 0.0 932.0 594.0 365 43.70
380.0 95.0 0.0 228.0 0.0 932.0 594.0 28  36.45
266.0 114.0 0.0 228.0 0.0 932.0 670.0 28 4585
475.0 0.0 0.0 228.0 0.0 932.0 594.0 28 39.29
198.6 132.4 0.0 192.0 0.0 978.4 825.5 90  38.07
198.6 132.4 00 1920 0.0 978.4 825.5 28  28.02

It is very important to analyze the relationship between each basic component and the compressive
strength of concrete, we use the method of Pearson correlation analysis to calculate the correlation
between each cement component and the compressive strength of concrete, calculate the correlation
coefficients between them and draw the correlation heat map, as shown in Figure 1, and sorted
according to the degree of correlation with concrete, as shown in Figure 2.
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Figure 1: The correlation heat map.
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Figure 2: The degree of correlation with concrete.

From the correlation matrix, it can be seen that the most positively correlated variable with the
compressive strength of concrete is cement, with a positive correlation coefficient of 0.5; followed
by superplasticizer, with a correlation coefficient of 0.37, and age is also an important factor affecting
the compressive strength of concrete, with a correlation coefficient of 0.33. It is worth noting that

water has a negative correlation with the compressive strength of concrete, with a correlation
coefficient of -0.29.

3.  Method
3.1. Vector Weighted Average Algorithm

Vector weighted average algorithm is a data fusion method that integrates information from multiple
vectors by assigning different weights, and its core idea is to assign specific weight coefficients to
each vector according to the difference in importance or reliability of each vector, and then generate
the integrated result vector by weighted summation [7]. In the calculation process, each input vector
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will be multiplied with its corresponding weight, the larger the weight value represents the higher
contribution of the vector to the final result, and after all the weighted vectors are superimposed, the
sum of the weights is usually normalized to ensure the stability of the result. The key to this algorithm
lies in the reasonable setting of the weights, which can either be specified manually based on a priori
knowledge or automatically optimized through statistical analysis of data or machine learning models
[8]. The pseudo-code of the vector weighted average algorithm is shown in Figure 3.

1) Input the max. no. of generation (Maxg), and population size (Np)

2) Produce an initial population of Np solution vectors at random {P°={x?.xg,...,x%p})
3) Evaluate each solution vector by the fitness function, f(x/),i = 1,2, .., Np

4) Obtain the best solution vector (x;,)

5) while g < Maxg do

) fori=1to Np do

7)) Choose randomly a # b # ¢ # i from the interval {1, Np}

8) Compute the solution vectors zlf’and szby Eq. (21} % Updating process

9) Compute the solution vector uf by Eq. (25) % vector combination process
10) Compute the local search phase by Eq. (26) % Local search process

1) Compute the OF value (f (uf))

12) M fuf) < f(x7) then x* = uf

13)  Otherwise x/ ™' = xf

{

14)  end for
15)  Update the best vector (x)
16) g=g+1

17)  end while
18)  Return x; as the final solution

Figure 3: The pseudo-code of the vector weighted average algorithm.
3.2. Kernel limit learning machine

Kernel Extreme Learning Machine (KELM) is an efficient machine learning model that combines the
Extreme Learning Machine (ELM) framework with the kernel method, aiming to improve the
generalization ability and stability of traditional ELM through nonlinear mapping, while retaining its
fast training characteristics. Traditional ELM avoids the time-consuming gradient descent process in
traditional neural networks by randomly initializing the weights of a single hidden-layer neural
network and solving the output weights directly analytically, but the randomness of its hidden-layer
parameters may lead to fluctuations in the model's performance, and its generalization ability is
limited especially under complex data distributions [9].The core improvement of the KELM lies in
the introduction of the kernel trick, which implicitly maps the original data to a high-dimensional
feature space. thereby bypassing explicit random weight generation and constructing nonlinear
decision boundaries directly by measuring the similarity between samples through the kernel function
[10]. The schematic diagram of Kernel Extreme Learning Machine (KELM) is shown in Fig. 4.
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Figure 4: The pseudo-code of the vector weighted average algorithm.

3.3. Kernel limit learning machine optimized for vector weighted average algorithm

The performance of KELM is highly dependent on the selection of the kernel function and its
parameters, for example, the bandwidth parameter of the Gaussian kernel determines the degree of
local sensitivity of the feature space, which needs to be adjusted according to the characteristics of
the data in order to adapt to the nonlinear structure. Compared with the traditional ELM, KELM
eliminates the instability caused by the randomness of the hidden layer through kernel mapping,
which significantly improves the robustness and consistency of the model, especially in the small-
sample or high-dimensional nonlinear tasks.

The algorithm uses a two-level weight update strategy:

1. Sample-level weights: adjusted in real time according to the prediction errors of the samples
during training. The samples with wrong prediction will be weighted down to prevent the model from
overfitting the local noise; the weights of correctly predicted samples will be gradually increased to
strengthen the model's capture of stable patterns.

2. Kernel function level weights: Fusing the outputs of multiple kernel functions (e.g., Gaussian
kernel, linear kernel), the weights of different kernels are dynamically adjusted to balance the model's
local fitting ability and global generalizability. For example, for data regions with fuzzy boundaries,
the algorithm may increase the weight of the Gaussian kernel to capture details; for linearly separable
regions, it focuses on the simplicity of the linear kernel.

4. Result

In the experimental setup, the Kernel Extreme Learning Machine (KELM) adopts the radial basis
(RBF) kernel function, the regularization parameter C is set to 100 to balance the risk of overfitting,
and the kernel parameter gamma is set to 0.1 to control the kernel function bandwidth; the vector
weighted averaging algorithm assigns dynamic weights to the training set by calculating the
information entropy of the feature vectors in the training set, and the entropy weighting threshold is
set to 0.7 to screen the effective features. The dataset was divided into training set and test set
according to 7:3, and the optimization parameters were optimized using 5-fold cross-validation; the
regression performance was evaluated by mean square error (MSE), mean absolute error (MAE) and
coefficient of determination (R?); all experiments were repeated independently for 10 times to take
the mean; the data were preprocessed using Z-score standardization to eliminate the effect of
magnitude.

The model was introduced for training, and a line graph of the actual values of the training set
versus the predicted values of the model was output, with the actual concrete strength in red and the
predicted values of our model in blue. The line plot of actual values versus predicted values of the
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model for the training set is shown in Figure 5, and the line plot of actual values versus predicted
values of the model for the test set is shown in Figure 6.

Comparison of training set prediction results

(R2 =0.91382 RMSE= 4.8754 MSE= 23.7698 RPD= 3.4064)
a0 T T T T

T T
—#—true value
——INFO-KELM Predicted value ||

Forecast result

0 100 200 300 400 500 600 700 800
Prediction sample

Figure 5: The line plot of actual values versus predicted values of the model for the training set.
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Figure 6: The line plot of actual values versus predicted values of the model for the test set.

From the prediction effect of the training set and test set, our model can predict the concrete
compressive strength more accurately from the perspective of quantization.

Secondly, we use the quantitative method to observe more intuitively the prediction ability of our
model for concrete strength on the training and test sets. The scatter plot of the actual values of the
predicted values in the training set is shown in Fig. 7, and the scatter plot of the actual values of the
predicted values in the test set is shown in Fig. 8.
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Figure 7: The line plot of actual values versus predicted values of the model for the test set.
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Figure 8: The line plot of actual values versus predicted values of the model for the test set.

From the scatter distributions of predicted-actual values in the training and test sets, it is clear that
our model is able to predict the concrete compressive strength relatively accurately. From the
quantitative point of view, the R2 of the training set is 0.913 and the RMSEC is 4.875, and the R2 of
the test set is 0.867 and the RMSEP is 6.171.Among them, the test set is lower than the training set
by 0.046 in R2, which indicates that the effect of the test set is reduced compared with the training
set, but the value of the reduction is not large, which indicates that the model's ability to generalize is
better.

5. Conclusion

This article uses the Newton Raphson algorithm to optimize the XGBoost model and applies it to
advertising click prediction tasks. Through the analysis of experimental data, we found that there is a
certain correlation between advertising click through rate and multiple variables. Among them, the
variable most positively correlated with ad click through rate is ad position, with a correlation
coefficient of 0.08; The variable most negatively correlated with ad click through rate is browsing
history, with a correlation coefficient of -0.08. These correlation analyses provide important reference
for the construction of the model.During the model training process, we observed that the fitness
curve of the model showed a significant downward trend, gradually decreasing from the initial 0.184
to 0.148, indicating that the predictive performance of the model continued to improve with the
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progress of training. This trend further validates the effectiveness of the Newton Raphson algorithm
in optimizing the XGBoost model.In addition, this study also reveals the significant impact of
advertising location and browsing history on ad click through rates. The position of advertisements
is positively correlated with click through rates, indicating that the more prominent the advertisement
is on the page, the greater the likelihood of users clicking.
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