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Abstract: In recent years, intelligent vehicle technology has developed rapidly, with major 

breakthroughs in autonomous driving as well as advanced driver-assistance systems. Due to 

advances in sensors, artificial intelligence (AI), and vehicle-to-everything (V2X), intelligent 

vehicles have seen significant improvements in environmental perception, path planning, and 

decision-making. However, society lacks clarity on the development, implementation, and 

classification of autonomous driving in intelligent vehicles. Thus, this paper explores the 

evolution of advanced driving systems in intelligent vehicles, clarifies key component 

relationships, and analyzes the prospects and challenges of autonomous driving technology. 

Through an analysis of recent literature and data from the Society of Automotive Engineers 

(SAE) and official websites of auto parts suppliers, the latest developments are highlighted. 

Besides, it defines intelligent vehicles as integrated systems of perception, decision-making, 

and control, and investigates their progression toward L3 to L5 autonomous driving. The 

results suggest that intelligent vehicles will be at the core of the future automotive industry, 

with autonomous driving technology, powered by sensors, algorithms, and control systems, 

enabling full automation. 

Keywords: Intelligent vehicles, PID control systems, Advanced Driver Assistance Systems 

(ADAS), Autonomous driving technology, Vehicular LiDAR sensors 

1. Introduction 

Intelligent vehicles merge sensors, artificial intelligence (AI), communication, positioning, as well 

as control systems, driving advancements in automotive technology. In recent years, the adoption of 

128-line LiDAR, the development of self-learning AI models, and the use of 5G have accelerated 

the evolution of intelligent connected vehicles (ICVs) toward higher-level autonomous driving [1]. 

Despite advances in intelligent vehicle technology and new smart driving systems from major 

automakers, public understanding of smart vehicle classification, functions, and capabilities remains 

limited. Existing research mainly examines individual technologies in intelligent vehicles, with 

fewer comprehensive reviews on their evolution, integration, and future trends. Thus, an in-depth 

study is needed to trace the evolution of intelligent vehicle technologies, explore the integration of 

various systems, and examine their future development trajectories. This paper aims to explore the 

technological framework and development trends of intelligent vehicles, focusing on the role of 

intelligent driving systems in advancing autonomous driving. As such, it investigates the historical 

development, technological progress, and integration of components, highlighting the impact of 

driving assistance systems. By analyzing existing literature and industry data, this paper explores 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/141/2025.22055 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

273 



 

 

the challenges and development directions of intelligent driving technology, offering insights for 

innovation in the intelligent vehicle sector. 

2. Overview of the Intelligent Vehicles 

2.1. The Evolution of Intelligent Vehicles 

The intelligent vehicle technology has evolved from computer-assisted control to AI-driven systems, 

advancing perception, decision-making, and control. In the 1950s, the introduction of computer 

technology laid the foundation for vehicle automation, driving the early development of Electronic 

Control Units (ECUs) and supporting the evolution of intelligent driving systems [2]. In the 1980s, 

the application of neural networks enhanced the adaptability of autonomous driving in complex 

environments, accelerating progress in pattern recognition, path planning, and intelligent control 

systems. In the 21st century, intelligent vehicle technology advanced toward higher levels of 

automation and commercialization. In 2011, the Hongqi HQ3 autonomous driving test validated the 

stability of intelligent decision-making systems in complex environments, providing a reference for 

commercialization [3]. This test proved long-distance autonomous driving feasible and validated key 

modules like sensor fusion, path planning, and decision control, supporting L3+ systems. In 2018, 

NVIDIA launched the Jetson AGX Xavier platform with high-performance GPUs and deep learning 

accelerators. This boosted computing power for real-time perception, decision-making, and control. 

In 2024, Tesla’s FSD V12 adopted an end-to-end neural network architecture, achieving autonomous 

driving control through large-scale data training. Compared to traditional rule-based and modular 

autonomous driving systems, this end-to-end learning approach reduces the limitations of manually 

defined rules, improves adaptability to complex traffic environments, and marks a shift from 

symbolic logic reasoning to data-driven deep learning models. This breakthrough refines path 

planning and driving strategies, speeding up L4-L5 autonomy. 

2.2. Key Technological Breakthroughs and Innovations in Intelligent Vehicle Systems 

The autonomous driving has evolved via three key phases, high-definition (HD) mapping, map-free 

planning, and AI-based learning, which aims to minimize dependencies, enhance adaptability, and 

improve autonomous decision-making.  

The HD mapping phase (2022-2023) relied on mapping vehicles to create high-precision road 

models for navigation. While this approach provided accurate positioning, its dependence on static 

data limited real-time adaptability, making it unsuitable for dynamic road conditions. The map-free 

planning phase (2023-2024) adopted rule-based path planning, utilizing code-driven algorithms to 

interpret traffic signals and driving logic for better adaptability in complex environments. Tesla’s 

early FSD versions (pre-V12) utilized this approach. However, since rule-driven systems cannot 

predefine all possible scenarios, human intervention remained necessary, restricting full autonomy. 

The AI-based autonomous learning phase (2024-present) marks a shift to data-driven autonomous 

driving. End-to-end neural networks use large-scale driving data to train models that mimic human 

decision-making, reducing dependence on pre-programmed rules. Tesla’s FSD V12 exemplifies this 

shift, thus marking the transition from rule-based logic to deep learning-driven autonomy. However, 

challenges such as data quality, training costs, and algorithm generalization persist, posing obstacles 

to full implementation. 

The trend in intelligent driving is toward reduced human intervention, increased adaptability, and 

advancement toward L4-L5 autonomy. And breakthroughs will hinge on optimizing data training, 

boosting computational efficiency, and refining real-time decision-making to ensure safer and more 

reliable autonomous driving systems. 
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2.3. Autonomous Driving Classification and Sensor Distribution 

The classification of autonomous driving technology was initially introduced by the U.S. National 

Highway Traffic Safety Administration (NHTSA), which developed a five-level system from L0 

(manual driving) to L5 (fully autonomous driving). This classification provided a framework for the 

global development of intelligent driving technology and influenced standardization efforts in other 

countries. Many countries have localized this system, such as Germany, which refined it to meet the 

requirements of its automotive industry, China, which emphasizes the integration of intelligent and 

connected technologies while aligning with international standards, and the European Union, which 

introduced a six-level system for a more precise depiction of technology development stages [2]. 

Despite varying standards across countries, the core principle remains: classification depends on 

automation level and driver involvement. For example, the EU emphasizes driver monitoring, while 

the U.S. focuses on automation capabilities. 

At L0, there is no automation, and the driver is responsible for all driving tasks. At L1, driving 

assistance features like Adaptive Cruise Control (ACC) are introduced, but the driver must be ready 

to take control at any moment. L2 adds lane-keeping to longitudinal control, requiring the driver to 

remain attentive and intervene when needed. L3 enables the vehicle to autonomously manage all 

driving tasks in certain conditions, but the driver must intervene in more complex environments. At 

L4, the vehicle can drive autonomously in most situations without driver intervention and will enter a 

minimal risk state if the driver fails to respond to a takeover request. L5 represents full autonomy, 

where the vehicle can manage all driving tasks in any environment without any need for driver 

intervention. Figure 1 illustrates the sensor distribution for L4 and L5 vehicles, ensuring accurate 

perception and decision-making in complex driving environments [4]. These classifications reflect 

the gradual progress of autonomous driving technology, from driver assistance to full automation. 

 

Figure 1: Distribution of Autonomous Driving Sensors 

3. The Perception System and Technological Evolution in Autonomous Driving Systems 

3.1. Perception Systems and Intelligent Driving Technologies 

The Autoware architecture is the world’s first “All-in-One” open-source software for autonomous 

driving, consisting of sensing, computing, and actuation. The computing module handles perception, 

planning, and decision-making, with perception focused on positioning, detection, and prediction 

through cameras, radars, sensor fusion, and deep learning [2,5]. 

3.1.1. Vehicular Camera Technologies and Applications 

Vehicular cameras are essential components of autonomous driving and driver assistance systems, 

providing environmental perception. These cameras are categorized by their installation positions: 

front, rear, and side-mounted. Each serves a specific function, such as lane boundary detection, 
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rearview imaging, and lateral safety monitoring. As autonomous technology advances, the number 

and precision of cameras improve, with monocular, binocular, and triocular cameras providing 

accurate three-dimensional data for complex driving tasks. Table 1 shows the installation positions 

and functions of these cameras: front cameras detect lanes, rear cameras assist with parking, and 

side cameras ensure lateral safety. 

Table 1: Installation Positions and Functions of Vehicular Cameras 

Type Front-mounted Rear-mounted Side-mounted 

Installation 
Front upper windshield, 

grille, or bumper 
Outside the trunk lid 

Bottom of door mirror, 

B-pillar 

Function 

Detect lane boundary, 

Distinguish warm body 

objects during nighttime 

driving 

Provide rear-view image, 

work together with 

rear-view radar, assist to 

back a car 

Provide lateral vision, 

ensure safety when 

overtaking 

 

The number of lenses in vehicular cameras plays a crucial role in boosting depth perception and 

stereoscopic vision capabilities. Monocular cameras are suitable for basic object detection, while 

binocular and triocular cameras provide accurate three-dimensional information through disparity, 

meeting the high precision requirements of autonomous driving systems. Binocular cameras utilize 

the principle of disparity to capture three-dimensional information, thus providing high frame rates, 

enhanced reliability, and reduced sensitivity to lighting conditions. And they are commonly used in 

EyeSight driving assist technology. Triocular cameras, equipped with three lenses arranged in a 

120-degree configuration, provide a broader field of view, minimize data errors, and are better 

suited for complex driving environments, as demonstrated by the use of Tesla’s triocular lenses [1]. 

The application of SLAM (Simultaneous Localization and Mapping) technology in autonomous 

driving depends on three-dimensional environmental data provided by binocular cameras. SLAM 

collects real-time data from the surrounding environment to assist autonomous driving systems in 

path planning and decision-making, which enhances the precision and dependability of autonomous 

driving, particularly in challenging conditions. Binocular cameras collect three-dimensional data via 

disparity calculations, facilitating precise path planning. Leading automakers like Subaru and Tesla 

have widely adopted this technology, integrating SLAM to enhance decision-making capabilities. 

3.1.2. Vehicular Radar Technologies and Functions 

Vehicle radar technologies are mainly divided into millimeter-wave radars, LiDARs, and ultrasonic 

radars. These radars work by emitting waves or lasers and receiving echoes to measure information 

such as the distance, speed, and azimuth of target objects, which is crucial for autonomous driving. 

Millimeter-wave radars measure distance with high resolution, performing well in various weather 

conditions. They are mainly used for short- and medium-range detection but can be impacted by 

severe weather. LiDARs create high-precision 3D maps using lasers, thus allowing accurate object 

detection and shape identification, making them ideal for obstacle detection and path planning in 

complex environments. The main disadvantage of LiDARs is their high cost and limited scanning 

range [6]. Ultrasonic radars are used for short-range detection, like parking and low-speed driving. 

They are cost-effective and lightweight but vulnerable to interference from noise, dust, and weather. 

And temperature also affects the operation of ultrasonic radars, and the specific impact mechanism is 

as follows: 

 c = c0 + 0.607T (1) 
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where = 332m/s (T = 0), and T is the temperature (in Celsius). Temperature variations affect the 

propagation speed of ultrasonic waves, thereby influencing detection accuracy. Reverse-parking 

ultrasonic radars are the most widely used application of ultrasonic radar [3]. 

The working principle of LiDARs is similar to that of millimeter-wave radars. They primarily emit 

lasers, receive the reflected waves, and process the data. By emitting lasers and receiving the echoes, 

LiDARs generate 3D point clouds. To accurately locate targets and convert them into real-world 3D 

coordinates, LiDARs use Cartesian coordinate transformation: 

 {
𝑥 = 𝑟 cos 𝜔 sin(𝛼 + 𝛿)
𝑦 = 𝑟 cos 𝜔 cos(𝛼 + 𝛿)
𝑧 = 𝑟 sin 𝜔                      

 (2) 

where 𝑟is the distance between LiDAR and detection target, 𝜔 is the laser vertical angle, 𝛼 is laser 

horizontal rotation angle, 𝛿 is channel horizontal offset angle. By utilizing these parameters, LiDARs 

can convert point cloud data into 3D maps, thus providing accurate spatial information for 

autonomous driving systems [1]. 

As illustrated in Table 2, different radar technologies have unique advantages and limitations. 

Millimeter-wave radars excel in short- and medium-range detection and perform well in various 

weather conditions. LiDARs generate high-precision 3D point cloud maps, but they are expensive 

and have a limited scanning range. Ultrasonic radars are commonly used for short-range obstacle 

detection due to their low cost but are easily affected by external interference. 

Table 2: Comparison of Radar Technologies in Automotive Applications 

Type Function Advantages Disadvantages 
Common 

Models 

Detection 

Error 

Millimeter- 

Wave 

Radar 

Monitor the 

distance, speed, 

and azimuth of the 

target 

High resolution, 

suitable for 

various weather 

conditions 

Poor long-range 

accuracy; insensitive 

to non-metallic 

materials 

ARS408 

±0.05m 

for 

0-20m; 

±0.4m 

for 

0-100m 

LiDAR 

Create 3D point 

cloud maps of the 

surroundings, 

help with path 

planning and 

obstacle detection 

High precision, 

strong object 

recognition 

ability, not 

affected by light 

Expensive, limited 

scan range 

RoboSense 

128-line 

±0.03m 

for 

0-230m 

Ultrasonic 

Radar 

Detect 

close-range 

obstacles, assist 

with parking and 

low-speed 

operation 

Low cost, 

suitable for 

short-range 

detection 

Affected by external 

interference, less 

accurate at long 

distances 

AK2 

Large 

error for 

long 

distances 

 

The vehicle’s kinematic model, integrated with radar technology, enables target prediction and 

trajectory planning, as illustrated in Figure 2. The Ackermann steering model is commonly applied to 

calculate a vehicle’s speed, angle, and other parameters, aiding autonomous driving systems in 

decision-making [1]. And the system processes vehicle state information, including speed, angular 

velocity, wheel angle, and curvature, to control the vehicle’s actuators. 
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Figure 2: Vehicle Kinematic Model 

 
𝑑𝑥

𝑑𝑡
= 𝑣 cos(𝛽 + 𝜃) (3) 

 
𝑑𝑦

𝑑𝑡
= 𝑣 sin(𝛽 + 𝜃) (4) 

where M represents the vehicle’s center of mass, v represents the current velocity vector of the 

vehicle, 𝜃 represents the current heading angle of the vehicle, and 𝛽 represents the angle between 

the current velocity direction of the vehicle and the vehicle’s heading angle, which can be called the 

vehicle’s center of mass offset angle. 

3.2. Design and Implementation of Driver Assistance Systems 

Adaptive Cruise Control (ACC) and Lane Keeping Assistance (LKA) aretwo of the most advanced 

and mature driver assistance systems. And the combination of these two functions enables partial 

automation of driving and plays a crucial role in advancing higher levels of autonomous driving [7]. 

As the evolution of cruise control, ACC addresses the limitations of conventional systems that are 

unable to adjust to the varying speeds of surrounding vehicles, thus making them suitable only for 

simple traffic scenarios [8]. In contrast, ACC uses millimeter-wave radars and sensors, employing 

PID control to adjust speed based on errors, effectively responding to speed changes in real-time. 

For full-speed adaptive cruise control, accurate and timely speed adjustments at low speeds require 

continuous tuning of PID parameters. However, traditional PID control alone cannot address the 

complexities of real-world driving conditions. To improve safety, comfort, and efficiency, ACC 

must integrate additional control algorithms that combine data from various sources for more 

comprehensive control [9]. The LKA utilizes high-resolution front cameras, millimeter-wave radars, 

and LiDAR to detect lane boundaries. The system monitors the vehicle’s position and body posture 

in the lane through multiple sensors. Wheel speed sensors and the Inertial Measurement Unit (IMU) 

measure the vehicle’s speed, distance, and angle changes. The system calculates data including the 

vehicle’s deviation from the lane centerline and the angle between its driving direction and the lane 

markings. When the vehicle starts to drift out of the lane, the control system calculates the required 

steering angle using preset PID control and model predictive control algorithms, automatically 

adjusting the steering to keep the vehicle centered within the lane [10]. As shown in Figure 3, the 

function of PID control is illustrated [11]. 
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Figure 3: Function of PID control 

3.3. Functions and Impacts of Advanced Driving Assistance Systems 

Advanced Driving Assistance Systems (ADAS) are vital to the progress of intelligent vehicles and 

act as a key factor in achieving complete autonomous driving. By enhancing a vehicle’s perception, 

decision-making, and control abilities, ADAS not only increases driving safety and comfort but also 

significantly eases the driver’s workload, improving the overall driving experience. In terms of 

safety, ADAS features like ACC, LKA, and Forward Collision Warning monitor the surrounding 

road environment in real-time. When potential risks are identified, the system quickly alerts the 

driver or takes automatic actions such as braking or steering, thus greatly lowering the chances of a 

collision. ADAS proves particularly advantageous in extreme weather conditions. Vehicle radar and 

cameras are less affected by weather, continuously providing accurate environmental information to 

the driver, which improves judgment and enhances safety. In addition, ADAS greatly enhances 

driving convenience and comfort. For example, the automatic parking system allows for precise 

parking, reducing the need for driver intervention. ACC adjusts the vehicle’s speed according to the 

traffic ahead, reducing the frequency of accelerator and brake pedal use. Additionally, the system 

can automatically adjust the chassis stiffness to improve ride comfort, thus enhancing the overall 

user experience. Future intelligent driving technology will integrate AI and visual language models, 

improving vehicle adaptability in real-world scenarios. Through continuous learning, the system 

will improve its accuracy in tasks such as traffic sign recognition, lane changing, and overtaking, 

thereby enhancing the intelligence of autonomous driving [12]. 

4. Conclusion 

This study explores the application of Advanced Driving Assistance Systems (ADAS) in intelligent 

vehicles and the challenges of autonomous driving technology. The results indicate that with the 

upgrades in perception systems, the introduction of artificial intelligence, and improvements in chip 

computing power, future intelligent driving systems will be more accurate and effective. Despite 

progress in safety, convenience, and comfort, intelligent driving systems still encounter technical 

bottlenecks, particularly in adapting to traditional vehicles and handling performance challenges in 

complex environments and extreme weather. Limitations of the study include limited predictions 

about future technologies, lack of empirical data, and insufficient analysis of system performance in 

different environments. Future research will aim to improve the adaptability of intelligent driving 

systems, resolve technical challenges, optimize communication, and explore advanced AI and deep 

learning algorithms to enhance decision-making and adaptability. 
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