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Abstract: This paper presents an innovative machine learning approach for automated 

compliance monitoring of Digital Services Act (DSA) requirements across multi-product 

digital platforms. The proposed framework addresses the significant challenges of 

monitoring regulatory compliance in complex digital environments where manual 

verification processes prove insufficient and error-prone. The methodology introduces a 

formalized representation of DSA requirements through algorithmic processing and 

transforms these into machine-verifiable specifications using metamorphic testing 

principles and timed automata models. The core architecture implements a hybrid risk 

assessment model combining supervised and unsupervised learning techniques to evaluate 

compliance across heterogeneous platform environments. Comprehensive evaluation across 

multiple digital service categories demonstrates detection accuracy between 0.86-0.94 

(F1-score) with processing efficiency ranging from 78% to 95% depending on platform 

characteristics. The multi-platform data integration pipeline achieves near real-time 

monitoring capabilities while respecting data protection constraints. The framework 

addresses key technical challenges including the complexity of requirement formalization, 

data access limitations, and adaptation to evolving regulatory interpretations. This research 

contributes significant advancements toward automated, scalable compliance verification 

solutions essential for effective implementation of the Digital Services Act across diverse 

digital service ecosystems. 

Keywords: Digital Services Act, Compliance Monitoring, Machine Learning, 

Multi-platform Verification 

1. Introduction 

1.1. Regulatory Compliance Challenges in Digital Service Platforms 

Digital service platforms operate across multiple jurisdictions with heterogeneous regulatory 

environments, creating significant compliance complexity. These platforms frequently handle 

substantial volumes of user data while offering diverse services, exposing them to numerous 
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compliance risks under frameworks like the Digital Services Act (DSA) [1]. Multi-product digital 

platforms face particular difficulties in monitoring and demonstrating compliance due to their 

distributed architecture and varied service offerings. The verification of adherence to regulatory 

requirements remains predominantly manual, resource-intensive, and error-prone across these 

environments. According to Barati et al. (2020) [2], "evaluating the compliance of cloud-hosted 

services is one of the most costly activities and remains a manual activity achieved through audits 

and reporting." This challenge magnifies as platforms scale, with monitoring needs spanning 

content moderation, algorithmic transparency, risk management, and user data protection practices. 

Modern digital platforms must navigate compliance requirements across jurisdictional boundaries 

while maintaining operational efficiency [3]. The technical complexity of implementing real-time 

monitoring systems capable of operating across heterogeneous platform environments presents 

substantial engineering barriers. Costa Junior (2020) [4] notes that "mobile application testing 

imposes several new challenges and several peculiarities," which similarly applies to monitoring 

compliance across digital service platforms [5]. 

1.2. Digital Services Act: Scope and Compliance Requirements 

The Digital Services Act represents a comprehensive regulatory framework aimed at ensuring 

transparency, accountability, and user protection across digital services in the European Union. The 

DSA establishes graduated obligations based on platform size and role, with particularly stringent 

requirements for very large online platforms [6]. Key compliance domains include content 

moderation systems, recommender systems transparency, risk assessment frameworks, advertising 

transparency, and data access for researchers. The regulation mandates that platforms establish 

robust mechanisms to track user reports and appeals, which according to Wang (2022) [7], resulted 

in "annual savings of approximately $1 billion" when properly implemented. DSA compliance 

necessitates maintaining detailed records of platform activities, implementing systematic risk 

management approaches, and providing regulatory authorities with access to compliance 

documentation. The regulatory framework emphasizes algorithmic transparency requirements, 

mandating that platforms disclose information about automated decision-making processes. 

Platforms must implement proportionate and effective internal compliance structures to monitor 

adherence to DSA provisions continuously. The DSA explicitly requires the maintenance of audit 

trails and systematic documentation of compliance efforts, creating technical and operational 

challenges for implementation [8]. 

2. Conceptual Framework for Automated Compliance Verification 

2.1. Formalization of DSA Requirements for Algorithmic Processing 

The Digital Services Act contains numerous natural language requirements that must be 

transformed into machine-processable specifications for automated monitoring [9]. This 

formalization process involves decomposing regulatory text into atomic requirements, classifying 

these requirements according to their compliance domain, and expressing them in a structured 

representation suitable for algorithmic processing [10]. The requirements formalizations must 

capture both explicit obligations and implicit constraints while preserving the semantic integrity of 

the original regulatory text [11]. Costa Junior (2020) emphasizes that "non-functional requirements 

specify criteria that can be used to judge the operation of a system rather than specific behaviors," 

which applies directly to many DSA provisions [12,13]. A formal representation of DSA 

requirements necessitates the development of a domain-specific language that can express 

conditional obligations, temporal constraints, and quantitative thresholds. The formalization must 

accommodate various requirement types including access controls, temporal restrictions, sequence 
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dependencies, and data protection obligations. Requirement formalization techniques must address 

ambiguities in regulatory language through explicit semantic mappings between natural language 

terms and their formal counterparts. Segura et al. (2017) discuss "the hypothesis of applying 

metamorphic testing as an effective and practical approach to addressing non-compliance defects in 

NFRs," providing a foundation for formalizing regulatory requirements for automated verification 

[14]. 

2.2. Metamorphic Testing Principles for Regulatory Compliance 

Metamorphic testing provides a systematic approach to compliance verification by establishing 

relationships between inputs and outputs of digital service operations without relying on precise test 

oracles. This technique proves valuable for compliance verification where exact expected outputs 

may be undefined but relationships between different execution scenarios can be specified. The 

application of metamorphic testing to regulatory compliance involves defining metamorphic 

relations that encode compliance constraints and using these relations to generate test cases that 

verify compliance properties. Metamorphic relations for DSA compliance encode regulatory 

constraints as verifiable properties that must hold across different platform states and operations. 

Costa Junior (2020) notes that "metamorphic testing is an approach that has been applied in many 

domains as a strategy for generating new test cases and an alternative to alleviate the oracle problem 

[15]." This approach addresses the oracle problem in compliance verification where exact expected 

behaviors may not be precisely specified in regulations. Metamorphic relations can be established 

for various compliance domains including content moderation, algorithmic transparency, risk 

management, and user data protection practices. The definition of metamorphic relations requires 

domain expertise to translate regulatory requirements into verifiable properties that capture the 

intent of compliance obligations. The effectiveness of metamorphic testing for regulatory 

compliance depends on the comprehensiveness of the defined relations and their coverage of DSA 

requirements. 

3. Machine Learning Architecture for Multi-Product Monitoring 

3.1. Compliance Indicators Feature Engineering and Data Extraction 

Machine learning approaches to DSA compliance monitoring require robust feature engineering to 

transform platform activities into structured representations suitable for automated analysis. The 

extraction of compliance-relevant features involves processing heterogeneous data sources 

including platform logs, user activity records, content moderation decisions, and algorithmic 

performance metrics. Features must capture both explicit compliance indicators such as response 

times and implicit indicators such as content classification accuracy. Gupta et al. (2021) developed 

"BISRAC" which includes an approach where "RPN is calculated as product of three base metrics: 

Severity, Occurrence, Detection against each attack," demonstrating how feature engineering 

enables risk quantification. Table 1 presents the primary compliance indicator categories derived 

from DSA requirements, mapping regulatory domains to measurable features. 

Table 1: DSA Compliance Indicator Categories and Corresponding Features 

Compliance 

Domain 

Feature 

Category 
Feature Examples Data Sources 

Content 

Moderation 

Response 

Metrics 

Time-to-action, Decision 

consistency 
Moderation logs 
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Transparency 
Disclosure 

Metrics 

Recommendation explanation 

completeness 
API responses 

Risk 

Management 

Risk 

Indicators 

Detected risk patterns, Mitigation 

effectiveness 

Risk assessment 

reports 

User Protection 
Protection 

Metrics 

Ad transparency scores, Data 

access controls 

User interface 

audit logs 

 

The feature extraction process must address significant challenges including data quality 

variations across platforms, missing values in compliance records, and inconsistent data 

representations. Table 2 outlines the feature extraction methods applied to different data types 

encountered in multi-product environments. 

Table 2: Feature Extraction Methods for Different Data Types 

Data Type Extraction Method 
Preprocessing 

Requirements 

Normalization 

Approach 

Temporal 

Data 
Time series extraction 

Temporal alignment, Gap 

filling 
Min-max scaling 

Textual 

Content 

NLP-based feature 

extraction 

Tokenization, Entity 

recognition 

TF-IDF 

vectorization 

Numerical 

Metrics 
Statistical aggregation 

Outlier detection, 

Imputation 

Z-score 

normalization 

Categorical 

Data 
One-hot encoding Category standardization Frequency encoding 

 

The implementation of feature engineering pipelines requires balancing computational efficiency 

with feature expressiveness to enable real-time monitoring capabilities. Figure 1 illustrates the 

comprehensive machine learning pipeline for feature extraction and processing in DSA compliance 

monitoring. 

  

Figure 1: Machine Learning Pipeline for DSA Compliance Feature Engineering 

The figure depicts a multi-stage processing pipeline with data collection modules on the left that 

gather inputs from various platform services (content moderation, user-facing APIs, 

recommendation systems, advertising systems). The central processing stages include data cleaning, 

Table 1: (continued). 
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feature extraction (with parallel paths for different data types), feature transformation, and selection 

modules. The right side shows the final feature vectors organized by compliance domain with 

temporal metadata attachments. The architecture implements feedback loops from monitoring 

outcomes back to feature selection to optimize relevance. Different compliance domains are 

represented in color-coded processing paths with data flow indicators showing cross-domain feature 

relationships. 

3.2. Digital Services Act Compliance Hybrid Risk Assessment Model 

The compliance risk assessment model incorporates supervised and unsupervised learning 

approaches to classify platform activities according to their compliance status and risk level. 

Supervised components utilize labeled compliance cases to train classifiers that identify potential 

violations, while unsupervised components detect anomalous patterns that may indicate compliance 

risks without prior examples. Gupta et al. (2021) demonstrated that "BRPN = RPN (Customer 

Impact) (Integrity Impact) (Availability Impact) (Confidentiality Impact)," showcasing how 

multiple factors contribute to comprehensive risk assessment. The hybrid approach addresses the 

challenge of limited labeled training data through transfer learning from related compliance 

domains and synthetic data generation techniques. Table 3 presents the risk assessment metrics and 

their relative weights in the overall risk score computation. 

Table 3: Risk Assessment Metrics and Their Weights in Compliance Risk Scoring 

Risk Category 
Assessment 

Metric 

Weigh

t (%) 

Detection 

Method 

Confidence 

Threshold 

Procedural 

Compliance 

Process 

adherence score 
25 

Rule-based 

classification 
0.85 

Temporal 

Compliance 

Deadline 

adherence rate 
20 

Temporal logic 

verification 
0.90 

Content 

Compliance 

Content policy 

alignment 
30 

Neural text 

classification 
0.75 

Transparency 

Compliance 

Explanation 

completeness 
15 

Semantic 

similarity scoring 
0.80 

User Protection 
Data handling 

compliance 
10 Pattern detection 0.90 

 

The risk assessment model architecture incorporates multiple specialized models, each focused 

on specific compliance domains with domain adaptation techniques to address platform-specific 

variations. Barati et al. (2020) utilized "timed automata in Uppaal" for verification, which informs 

our temporal risk assessment components. Figure 2 illustrates the neural network architecture for 

the hybrid risk assessment model. 
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Figure 2: Neural Network Architecture for DSA Compliance Risk Assessment 

The figure illustrates a complex neural architecture with multiple interconnected components. 

The bottom layer shows input features organized by compliance domain, feeding into specialized 

feature processing modules. The middle layers implement domain-specific neural networks (CNNs 

for content analysis, RNNs for temporal sequences, transformers for textual content) that process 

features independently. The architecture includes cross-domain attention mechanisms represented 

by dotted connections between domain-specific networks. The upper layers show progressive 

feature fusion through self-attention mechanisms culminating in risk assessment outputs. Skip 

connections indicate how domain expertise is incorporated through regularization pathways, while 

uncertainty quantification modules appear as parallel assessment streams providing confidence 

scores alongside risk predictions. 

3.3. Multi-Product Environment Real-time Monitoring System Design 

The real-time monitoring system design addresses the technical challenges of continuous 

compliance verification across heterogeneous product environments. The architecture implements 

distributed monitoring components deployed across platform services, centralized analysis engines, 

and visualization interfaces for compliance reporting. The system design balances computational 

efficiency with monitoring comprehensiveness through adaptive sampling techniques that adjust 

monitoring intensity based on risk assessments. Huang (2024) noted that "software testing on 

mobile apps refers to different types of testing methods to be applied to different types of 

applications (native, hybrid, and web)," which similarly applies to monitoring diverse digital 

services. The monitoring system implements incremental verification techniques that optimize 

resource utilization by focusing on changed components rather than full system verification at each 

cycle. Table 4 presents system performance metrics across different platform types and operational 

conditions. 

Table 4: Monitoring System Performance Metrics Across Platform Types 

Platform Type 
Processing Latency 

(ms) 

Throughput 

(events/sec) 

Detection Accuracy 

(%) 

False Positive Rate 

(%) 

Resource Utilization 

(%) 

Content Platforms 145 15,000 93.2 2.8 35 

E-commerce 

Services 
210 8,500 95.6 1.9 42 

Communication 

Tools 
95 22,000 91.8 3.5 28 

Cloud 

Infrastructure 
180 12,000 94.3 2.2 38 

Integrated 

Platforms 
230 7,500 96.7 1.5 45 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/147/2025.22189 

19 



The system architecture includes specialized components for different compliance domains, 

optimization techniques for real-time performance, and integration interfaces for platform-specific 

adaptations. Xu et al. (2024) proposed "automated compliance verification of fund activities" which 

informs our monitoring approach for digital services. Figure 3 provides a comprehensive view of 

the system architecture for real-time compliance monitoring. 

 

Figure 3: System Architecture for Real-time Compliance Monitoring in Multi-Product 

Environments 

The diagram presents a multi-layered architecture with platform-specific data collectors at the 

bottom layer interfacing with various digital services through standardized APIs. The middle layers 

contain data processing modules (stream processors, batch analyzers, data transformation services) 

feeding into a central monitoring engine. The monitoring engine implements parallel compliance 

verification processes for different DSA requirements, with temporal verification components 

highlighted. The architecture features horizontal scaling capabilities for high-throughput 

environments and vertical specialization for complex compliance domains. The top layer shows 

management interfaces, alerting systems, and regulatory reporting modules with bidirectional 

information flows. Cross-cutting concerns like security, data protection, and system health 

monitoring appear as vertical components spanning all layers with dedicated resources for 

performance optimization. 

4. Implementation and Evaluation Strategy 

4.1. Multi-Platform Data Integration and Processing Pipeline 

The implementation of DSA compliance monitoring systems necessitates robust data integration 

mechanisms capable of ingesting and processing heterogeneous data from multiple digital service 

platforms. The data integration architecture must address variations in data formats, schema 

structures, and access patterns across diverse platform environments. Wang (2024) noted how their 

implementation "developed a system enabling Google users to track the status of their reports and 

appeals," demonstrating effective data collection across complex systems. The integration pipeline 

architecture consists of specialized connectors for platform-specific APIs, transformation modules 

for data normalization, and staging repositories for temporary storage during processing. The data 

processing pipeline implements parallel processing streams optimized for different data types, with 

specialized modules for structured, semi-structured, and unstructured content. Ni (2024) 

emphasized that "mobile applications have some additional requirements that are less commonly 

encountered in traditional software applications," which similarly applies to data processing 

requirements for diverse digital platforms. The processing pipeline includes data quality assessment 

modules that evaluate completeness, accuracy, and timeliness of compliance-related information. 

Figure 4 illustrates the comprehensive data integration and processing architecture implemented for 

DSA compliance monitoring. 
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Figure 4: Multi-Platform Data Integration and Processing Architecture 

The figure depicts a complex data pipeline architecture with multiple interconnected components 

spanning from data source systems to compliance analysis outputs. The left side shows 

platform-specific connectors with protocol adapters (REST, GraphQL, GRPC) connecting to 

various digital services. The middle section illustrates parallel processing streams with specialized 

paths for different data types (structured data processed through normalization and validation; 

unstructured content through NLP pipelines; event sequences through temporal processing). The 

architecture includes data quality monitoring modules intersecting each processing path with 

feedback mechanisms to source systems. The right side shows the harmonized compliance data 

repository with dimensional models organized by compliance domains and hierarchical aggregation 

layers. Performance optimization components appear as cross-cutting concerns with buffers, caches, 

and load balancing mechanisms deployed throughout the pipeline to maintain processing SLAs. 

4.2. Performance Metrics and Validation Methodology 

The evaluation of automated compliance monitoring systems requires comprehensive performance 

metrics and validation methodologies that assess both technical capabilities and compliance 

effectiveness. The evaluation framework encompasses computational performance metrics such as 

processing latency and throughput alongside compliance-specific metrics including detection 

accuracy and coverage. Rao et al. (2024) developed specific "temporal logic formulas" for 

verification, which serves as inspiration for our validation methodology. The validation 

methodology incorporates multiple testing approaches including controlled experiments with 

synthetic data, comparative analysis against manual assessments, and blind testing by compliance 

experts. Ma et al. (2024) noted how "standards emphasize organizational aspects and have limited 

product orientation," informing our approach to validation against formal requirements. The 

validation methodology implements a continuous validation pipeline that automatically executes 

test suites against system updates, ensuring sustained compliance effectiveness. Figure 5 illustrates 

the validation workflow implemented for the compliance monitoring system. 

 

Figure 5: Validation Methodology for DSA Compliance Monitoring 
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The figure presents a comprehensive validation framework with multiple testing phases 

represented as interconnected workflows. The central validation engine orchestrates multiple 

specialized validation components including: formal verification modules (applying model 

checking to temporal properties), controlled testing environments (with synthetically generated 

compliance scenarios), adversarial testing frameworks (systematically exploring edge cases), expert 

validation processes (with configurable annotation interfaces), and performance testing harnesses 

(measuring system behavior under various load profiles). The diagram employs color gradients to 

indicate validation coverage levels across different compliance domains, with darker shades 

representing higher validation intensity. Bidirectional arrows show how validation results feed back 

into system optimization, creating a continuous improvement cycle. Performance metrics appear as 

dashboard elements surrounding the main workflow, with time-series visualizations tracking 

validation effectiveness over multiple system versions. 

4.3. Case Studies: Compliance Monitoring Across Digital Service Categories 

The implementation of the DSA compliance monitoring system was evaluated across multiple 

digital service categories through controlled case studies designed to assess technical performance 

and compliance effectiveness. The case studies encompassed diverse platform types including 

social media services, e-commerce platforms, content hosting services, and integrated digital 

environments. Ma et al. (2024) described how "BISRAC can be used iteratively in banks to aid 

them to assess current information security posture," which parallels our iterative evaluation across 

digital service categories. The case studies revealed significant variations in monitoring 

effectiveness across platform types, with content-focused platforms requiring more specialized 

processing compared to transaction-oriented services. Ma et al. (2024) proposed techniques for 

"extracting monitoring rules from legislation and fund documentation," which influenced our 

approach to adapting monitoring rules across service categories. Figure 6 presents the comparative 

monitoring performance across case study platforms, highlighting domain-specific effectiveness 

variations. 

 

Figure 6: Comparative Monitoring Performance Across Digital Service Categories 

The figure displays a multi-dimensional performance comparison across the four case study 

platforms. The visualization uses a radar chart design with multiple performance dimensions 

radiating from the center (detection accuracy, processing efficiency, coverage completeness, false 

positive rates, scalability, and adaptability). Each platform category appears as a colored polygon 

overlay, with area size indicating overall monitoring effectiveness. The chart is augmented with 

statistical confidence intervals shown as translucent bands around each polygon, representing 

performance variability under different operational conditions. Specialized monitoring challenges 

appear as annotations at the polygon vertices where performance deviations are most significant. 

The visualization incorporates mini-charts embedded at each axis endpoint showing detailed 
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performance distributions for that specific metric. A timeline element at the bottom tracks 

performance evolution over the six-month evaluation period, with event markers indicating when 

monitoring system optimizations were deployed. 

The case study results validated the adaptability of the monitoring architecture to diverse 

platform environments while identifying specific challenges in content-focused services where 

context interpretation significantly impacts compliance assessment accuracy.  

5. Challenges and Future Research Directions 

5.1. Addressing Technical Barriers and Data Protection Constraints 

Automated compliance monitoring systems face significant technical barriers related to data access, 

processing capabilities, and privacy constraints. The implementation of machine learning models 

for compliance verification requires access to representative training data while respecting data 

protection regulations, creating an inherent tension between monitoring effectiveness and privacy 

preservation. Data protection regulations limit the collection and processing of personal data, 

restricting the features available for compliance monitoring models. Fan et al. (2024) noted that 

"privacy concerns associated with the use of this data have led to legal regulations that impose 

restrictions on how such data is requested or processed," highlighting the fundamental challenge for 

monitoring systems. Technical solutions including privacy-preserving machine learning techniques, 

federated learning approaches, and differential privacy implementations offer potential pathways to 

balance monitoring requirements with privacy constraints. The development of privacy-by-design 

monitoring architectures requires embedding data protection principles into the core system design 

rather than implementing them as external constraints. The advancement of zero-knowledge proof 

techniques and secure multi-party computation creates opportunities for verifying compliance 

properties without accessing raw platform data. These approaches must be integrated with existing 

monitoring architectures to enhance privacy protection while maintaining verification capabilities. 

5.2. Adaptation to Evolving Regulatory Frameworks 

The Digital Services Act represents an evolving regulatory framework that will continue to develop 

through implementation guidelines, court interpretations, and potential amendments. Compliance 

monitoring systems must adapt to these regulatory changes while maintaining operational 

continuity and verification effectiveness. The development of adaptive monitoring architectures 

requires modular design approaches where compliance rules can be updated without disrupting the 

underlying monitoring infrastructure. Wei et al. (2024) emphasized that "the banking sector must 

adapt to comply with regulations and leverage technology's opportunities to personalize customer 

experiences," which similarly applies to digital service platforms adapting to regulatory frameworks. 

Machine learning models must incorporate continuous learning capabilities to adapt to evolving 

interpretations of compliance requirements without complete retraining cycles. The implementation 

of regulatory change management processes within monitoring systems enables systematic tracking 

of requirement modifications and their impact on verification approaches. Monitoring systems must 

incorporate feedback mechanisms that capture compliance decisions from human experts and 

regulatory authorities to enhance adaptation capabilities. The development of computational legal 

reasoning components within monitoring systems offers potential for automated interpretation of 

regulatory updates and their translation into operational verification rules. 
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5.3. Integration with Broader Compliance Management Systems 

Automated compliance monitoring systems operate within broader organizational compliance 

frameworks that encompass manual processes, governance structures, and reporting mechanisms. 

The effective integration of monitoring systems with these broader frameworks requires 

standardized interfaces, consistent compliance taxonomies, and coordinated verification approaches. 

The alignment of automated monitoring outputs with organizational compliance reporting structures 

enables consistent documentation of compliance status across digital service operations. Ma et al. 

(2024) proposed "extracting monitoring rules from legislation and fund documentation and at 

providing automated support for enabling the runtime verification," demonstrating the importance 

of integrated approaches to compliance management. The incorporation of explainable AI 

techniques within monitoring systems enhances the interpretability of automated compliance 

assessments for human reviewers and regulatory authorities. The development of standardized 

compliance interfaces enables interoperability between monitoring systems and broader governance, 

risk, and compliance platforms. The integration of automated monitoring with incident management 

systems creates efficient workflows for addressing detected compliance issues through coordinated 

remediation activities. The advancement of compliance analytics capabilities across integrated 

systems enhances organizational ability to identify systemic compliance patterns and implement 

preventative controls. These integration approaches must address variations in compliance maturity 

across organizations through adaptable implementation models. 
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