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Abstract: Micro-robots designed for low Reynolds number environments are bound to 

overcome significant viscous resistance and operate using non-reciprocal motion patterns. So, 

this article will develop a biomimetic robot inspired by flagellar propulsion like some bacteria 

or sperm, and an analysis of this robot’s dynamic performances, employing computational 

modeling and experimental validation. The similar results between the ideal situation 

simulated in MATLAB and experimental data show that this kind of robot can provide good 

energy efficiency and optimized motion in viscous fluids for biomedical and microfluidic 

applications. 

Keywords: Low Reynolds number, Scallop Theory, non-reciprocal movements, energy-
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1. Introduction 

This article thoroughly investigates the performance of robotic systems operating under low Reynolds 

number conditions, where viscous forces are more significant than inertial forces. In such scenarios, 

fluid dynamics at the microscopic scale display characteristics that differ markedly from those at the 

macroscopic scale. According to the scallop theorem [1], mutual motion cannot result in net 

displacement. This necessitates innovative designs for micro-robots to overcome viscous resistance 

effectively. 

Micro-robots have significant potential for various applications, especially in the biomedical field 

[2]. For instance, this micro-robotic can navigate blood vessels and other bodily fluids, facilitating 

targeted drug delivery to specific locations. This capability not only boosts therapeutic efficacy but 

also minimizes potential side effects associated with systemic treatments. Furthermore, micro-robots 

can fulfill crucial functions in real-time physiological monitoring, enabling the detection of early 

disease indicators, such as cancer or infections, and collecting biological samples for further analysis 

[3]. Despite the considerable potential of these technologies, the design and control of micro-robots 

encounter significant challenges when operating in low Reynolds number environments. 

Extensive research has been dedicated to comprehending low Reynolds number fluid dynamics, 

particularly in biological organisms like bacteria and sperm, which exhibit effective locomotion 

strategies to traverse high-viscosity environments [4]. Inspired by these movement patterns, this 

article aims to design a biomimetic micro-robot that integrates flagellar propulsion mechanisms, 

emulating the natural motion of these organisms. Using a computational model, this research 

examines the dynamic performance of the proposed robotic design in viscous fluids [5]. The results 

of this investigation are intended to offer a solid theoretical framework and practical insights that can 
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enhance the energy efficiency and motion control of micro-robots in low Reynolds number conditions 

[6]. 

2. Theoretical framework 

2.1. Calculation example 

In Figure 1, an explicit situation is shown for calculating a microorganism's biggest velocity with the 

change of the pitch angle of its tail. 

 

Figure 1: explicit situation of a microorganism 

2.2. Calculating bacterial motion 

Table 1: Parameters necessary for calculating bacterial motion 

Symbol parameter value 

𝜇0 Viscosity of water at 25°C in Pa·s 0.89e-3 

𝐿 Length of flagellar filament in meters 10e-6 

𝑟 Radius of flagellar helix in meters 20e-9 

𝑝 Pitch of flagellar helix in meters 2e-6 

𝑤𝑓  Flagellar rotation rate in rad/s (200 Hz) 2*pi*200 

𝑎 Cell width / 2 in meters 1e-6 

𝑏 Cell length / 2 in meters 1e-6 

𝑑 Diameter of the flagellar helix 2 * r 

𝛼𝑐, 𝛽𝑐 Drag coefficients of cell body  

𝛼𝑓, 𝛽𝑓 , 𝛾𝑓   Drag coefficients of cell body  

𝑣𝑁, 𝑣𝑇 velocities in the normal and tangential directions  

𝑑𝐹𝑁 , 𝑑𝐹𝑇 Hydrodynamic forces acting on ds in the normal and 

tangential directions 

 

 

In the following stages, the final velocities will be calculated in the normal and tangential directions 

step by step. The parameters used for calculating bacterial motion are listed in Table 1. The first step 

is about calculating the Drag coefficients of the cell body [7]: 

Assuming that the shape of a cell body is a spheroid, the drag coefficients, α_c, and β_c, are 

formulated by viscosity and cell shape in traditional low-Reynolds-number hydrodynamics. So in a 

polymer solution, the viscosity, μ, in α_c should be modified to μ_N^*,μ_T^* in each direction (but 

the value should be the same), a virtual space around the cell body moves as the cell body moves 

translationally, and the virtual space doesn’t move when the cell body rotates. Therefore the equations 

are written below. 
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Then, assuming that the shape of a flagellum is a helical thin filament, the drag 

coefficients,α_(f),β_(f,) γ_(f) are given as follows in the traditional RFT [8] 

𝛼𝑓 =
2𝜋𝜇𝐿

(log[𝑑/2𝑝] + 1/2)(4𝜋2𝑟2 + 𝑝2) × (8𝜋2𝑟2 + 𝑝2)
 (3) 

 

𝛽𝑓 =
2𝜋𝜇𝐿

(log[𝑑/2𝑝] + 1/2)(4𝜋2𝑟2 + 𝑝2) × (4𝜋2𝑟2 + 2𝑝2)𝑟2
 (4) 

 

𝛾𝑓 =
2𝜋𝜇𝐿

(log[𝑑/2𝑝] + 1/2)(4𝜋2𝑟2 + 𝑝2) × (−2𝜋𝑟2𝑝)
 (5) 

 

The next step is to note that the actual motor torque has been reported to remain approximately 

constant up to a specific knee rotation rate. Beyond this point, it decreases gradually with increasing 

rotation rate, as documented in sources [9,10], and [11]. It is assumed that the motor torque decreases 

linearly with the motor rotation rate, especially since the motor in a free-swimming cell typically 

operates above this knee rotation rate. 

The simultaneous equations from 6 to 10 were analytically resolved as follows: 

𝐾0 = − (
𝜔𝑓

𝛼𝑐𝛽𝑐 + 𝛼𝑓𝛽𝑐

) (6) 

 

𝑣 = 𝐾0𝛽𝑐𝛾𝑓  (7) 

Subsequent to that, calculating the value of v_N,v_T, which can be expressed by using v and ω_fas 

shown below: 

tan[𝜃] =
𝑝

2𝜋𝑟
 (8) 

 

𝑣𝑁 = 𝑣 cos[𝜃] − 𝑟𝜔𝑓 sin[𝜃] (9) 

 

𝑣𝑇 = 𝑣 sin[𝜃] + 𝑟𝜔𝑓 cos[𝜃] (10) 
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Figure 2: The bacterium achieves its highest speed when the angle is 45 degrees. 

Equipped with the final velocities in each direction, a figure aimed at determining the angle at 

which the bacterium achieves its highest speed is created by MATLAB, and the specific code will be 

shown in the Appendix. According to Figure 2, when theta is equal to (√2)/2≈0.71, then the velocity 

is the biggest one. So the theta of the flagellum should be 45 degrees in the following design and 

experiments, which shows maximum propulsion efficiency for bacterial flagellum with similar 

configurations under low Reynolds conditions. 

2.3. Simulation and modeling 

The simulated prototype in SolidWorks is shown in Figure 3. The plan is to make the flagella tilt at a 

45-degree Angle, mimicking the shape of sperm [12]. 

 

Figure 3: Simulation prototypes on SolidWorks 

2.4. The explanation of the design and limitations 

This section outlines the design choices for the robot. Its shape enables efficient spiral propulsion in 

low Reynolds number environments, where viscous forces dominate and fluid resistance is significant. 

Similar to how bacteria generate thrust with their rotating flagella, the spiral structure effectively 

propels fluid through rotation, allowing for stable motion. The cylindrical body minimizes fluid 

separation and disturbances, promoting smooth flow while reducing drag. Furthermore, the inclusion 

of a spiral tail enhances thrust in viscous fluids. This design is particularly well-suited for microfluidic 

and biomedical applications, facilitating precise operations in blood, viscous solutions, or microtubes.  

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/147/2025.22229 

43 



 

 

However, aiming to apply it in biomedical and microfluidic fields, there are some limitations 

remaining as I mentioned in the discussion and conclusion. The following contents ignore the non-

Newtonian effects and simplify the detailed energy analysis. What’s more, the robust error analysis 

is simplified as well. 

3. Experiment setup 

After all the stages above, the robot prototype is printed out by the 3D printer, aiming to test its 

dynamic performance in different liquids. And at the same time, simulation of its dynamic 

performance will be tested in MATLAB. 

3.1. Dynamic simulation 

Using the code provided in Appendix 2, we can observe the ideal relationship in Figure 4 between 

the velocity and the rotation speed of the flagellum in water. 

  

Figure 4: The ideal relationship between the velocity and rotational speed 

3.2. Simulation in water 

Secondly, here is the prototype, which is hundreds of times bigger than the tiny robot. 

  

Figure 5: Beginning 
Figure 6: Ending 

The first picture is T1 and the second picture is T2, and I will document the distance the robot ran 

during the time. Then, we can calculate the velocity by the following equation: 

𝑉 =
𝐷

𝑇2 − 𝑇1
 (11) 
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After that, adjust the engine's rotation rate to investigate whether the velocity and rotation speed 

meet the aforementioned expectation. Here is the average of the three experiments :  

Table 2: the experimental results 

Rotation 

speed(rpm) 

Time beginning 

(s) 

Time end 

(s) 

Distance 

(m) 

Velocity 

(m/s) 

300 0 2.84 0.34 0.12 

600 0 1.27 0.33 0.26 

900 0 0.87 0.37 0.43 

1200 0 0.54 0.29 0.57 

1500 0 0.47 0.34 0.72 

 

Figure 7: The experimental results 

The comparable results between the ideal situation simulated in MATLAB and the experimental 

data indicate that this type of robot can achieve good energy efficiency and optimised motion in 

viscous fluids for biomedical and microfluidic applications. The experimental results in Figure 7 

show a strong correlation between rotational speed and velocity, aligning with the MATLAB 

simulations in Figure 4. However, deviations at higher speeds(e.g., 1500 rpm) suggest potential 

nonlinear effects, such as increased turbulence or motor inefficiency, which were not accounted for 

in the idealised model. 

4. Discussion and conclusion 

Based on bionic design and theoretical analysis, this paper proposes a microrobot suitable for a low 

Reynolds number environment. Its movement mechanism is based on the flagellar propulsion 

principle of bacteria and sperm. Combined with computational fluid dynamics models and 

experimental verification, this study reveals the key role of non-reciprocal motion modes in viscosity-

dominated environments. The theoretical derivation shows that when the inclination Angle of the 

flagellar spiral structure is 45 degrees, the robot can obtain the maximum propulsion speed (about 

0.72 m/s), which is highly consistent with the MATLAB simulation results (the speed increases 

linearly with the speed under ideal conditions). Experimental data further validate the design's high 

energy utilization in Newtonian fluids, where the steady-state velocity is positively correlated with 

the rotation rate (up to 0.72 m/s at 1500 rpm), confirming the advantages of the helical structure in 

overcoming viscous resistance. Moreover, the 45-degree helical angle shown in Figure 2 maximizes 

propulsion efficiency, which is critical for biomedical applications with stringent energy constraints. 

On this basis, future designs could explore adaptive angles to handle varying fluid viscosities. 

However, this study still has some limitations: the complex rheological properties of non-

Newtonian fluids are not considered, the energy dissipation model is simplified, and the experimental 
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prototype size is different from the actual micron-scale robot. Future work needs to further explore 

the stability of motion in non-uniform flow fields, multi-physical coupling effects (such as 

electromagnetic drive and fluid interaction), and optimization of miniaturized manufacturing 

processes. Beyond that, real-world biomedical fluids (e.g., blood [13]) exhibit shear-thing behavior, 

which may significantly alter propulsion dynamics. Addressing this requires incorporating 

viscoelastic fluid models in future studies. The results of this study provide a theoretical basis and 

technical reference for the applications of biomedical targeted drug delivery, microfluidic 

manipulation, and in vivo diagnosis, as well as promote the practical process of microrobot design in 

a low Reynolds number environment. 

5. Appendix 

5.1. Code 1 

% Given constants and parameters 

mu_0 = 0.89e-3; % Viscosity of water at 25°C in Pa·s 

L = 10e-6; % Length of flagellar filament in meters 

r = 20e-9; % Radius of flagellar helix in meters 

p = 2e-6; % Pitch of flagellar helix in meters 

omega_f =2*pi*200; % Flagellar rotation rate in rad/s (200 Hz) 

a = 1e-6; % Cell width / 2 in meters 

b = 1e-6; % Cell length / 2 in meters 

d = 2 * r; % Diameter of the flagellar helix 

theta = linspace(0,pi/2,400); %helical angle of flageller helix; 

% Corrected equations from the paper 

alpha_c = -6 * pi * mu_0 * a * (1 - (1/5) * (1 - (a/b))); 

beta_c = -8 * pi * mu_0 * a^3 * (1 - (3/5) * (1 - (a/b))); 

alpha_f = 2 * pi * mu_0 * L / (log(d/(2*p)) + 0.5) * (4 * pi^2 * 

r^2 + p^2) * (8 * pi^2 * r^2 + (mu_0/mu_0) * p^2); 

beta_f = 2 * pi * mu_0 * L / (log(d/(2*p)) + 0.5) * (4 * pi^2 * 

r^2 + p^2) * (2 * p^2 + (mu_0/mu_0) * 4 * pi^2 * r^2) * r^2; 

gamma_f = 2 * pi * mu_0 * L / (log(d/(2*p)) + 0.5) * (4 * pi^2 * 

r^2 + p^2) * (2 - (mu_0/mu_0)) * (-2 * pi * r^2 * p); 

 

% Calculation of K0, v, and omega_c, V_N and V_T; 

K0 = -omega_f/((alpha_c * beta_c)+(alpha_f * beta_c)); 

v = K0 * beta_c * gamma_f; 

V_N = abs(v*cos(theta)-r*omega_f*sin(theta)); 

V_T = v*sin(theta)+r*omega_f*cos(theta); 

 

% Display the calculated speeds 

figure;% creates a new figure window 

plot(theta,V_N,'r'); 

title('the velocity in normal diretion and tangential diretion'); 

hold on; 

plot(theta,V_T,'b'); 

xlabel('theta'); 

ylabel('V_N / V_T');  
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5.2. Code 2 

% Parameters 

R_head = 0.012; % Head radius (m) 

R_body = 0.012; % Body radius (m) 

L_body = 0.11;  % Body length (m) 

L_tail = 0.1;   % Tail length (m) 

slope = 45;     % Helix slope (degrees) 

R_helix = 0.01; % Helix radius (m) 

 

% Fluid properties 

rho = 1000; % Water density (kg/m^3) 

 

% Drag coefficients 

Cd_head = 0.47; % Approximate drag coefficient for a hemisphere 

Cd_body = 1.2;  % Approximate drag coefficient for a cylinder 

 

% Cross-sectional areas 

A_head = pi * R_head^2; % Cross-sectional area of the head (m^2) 

A_body = 2 * R_body * L_body; % Cross-sectional area of the body 

(m^2) 

 

% Range of rotational rates 

rpm_range = 100:50:1500; % Rotation speed range (rpm) 

velocities = zeros(size(rpm_range)); % To store calculated 

velocities 

 

% Loop over each rotational rate 

for j = 1:length(rpm_range) 

    rpm = rpm_range(j); % Current rotational rate 

    omega = rpm * 2 * pi / 60; % Convert rpm to rad/s 

 

    % Calculate propulsive force (simplified model) 

    F_prop = 2 * pi * R_helix * omega * L_tail; % Propulsive force 

in N (arbitrary units) 

 

    % Initial guess for velocity (m/s) 

    v = 0.01; 

 

    % Iteratively solve for the velocity where F_prop = F_drag 

    for i = 1:1000 

        % Drag forces 

        F_drag_head = 0.5 * Cd_head * rho * v^2 * A_head; 

        F_drag_body = 0.5 * Cd_body * rho * v^2 * A_body; 

 

        % Total drag force 

        F_drag_total = F_drag_head + F_drag_body; 

 

        % Net force (should be zero at steady state) 
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        F_net = F_prop - F_drag_total; 

 

        % Adjust velocity based on net force (simple iterative 

approach) 

        v = v + 0.0001 * F_net; % Adjust velocity towards balance 

    end 

     

    % Store the calculated velocity 

    velocities(j) = v; 

end 

 

% Plotting the results 

figure; 

plot(rpm_range, velocities, 'b-', 'LineWidth', 2); 

xlabel('Rotation Rate (rpm)'); 

ylabel('Steady-State Velocity (m/s)'); 

title('Velocity vs. Rotation Rate of the Flagellum in Water'); 

grid on; 
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