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Abstract: Medical image registration represents a pivotal element in the field of disease image 

analysis, acting as the essential precursor for a multitude of sophisticated analytical tasks. In 

recent years, traditional methodologies have encountered significant challenges in meeting 

the evolving demands of clinical practice. In contrast, deep learning-based strategies have 

emerged as powerful alternatives, showcasing their ability to facilitate more rapid and 

accurate registration processes, thereby exerting a profound impact on clinical applications. 

Within the specialized domain of medical imaging, the intricate level of expertise required 

for domain knowledge imposes rigorous standards on annotators, which in turn leads to 

increased annotation costs. As a result, the efficacy of supervised learning approaches 

compared to unsupervised learning methodologies can exhibit substantial variability in real-

world applications. This paper systematically utilizes a diverse array of medical imaging 

datasets to rigorously assess the performance outcomes of both supervised and unsupervised 

learning techniques, specifically in relation to their practical applications in the medical 

imaging landscape. 
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1. Introduction 

In recent years, with the development of artificial intelligence technology represented by deep neural 

networks, deep learning has been widely used in various fields. From satellite remote sensing image 

detection to crop pest and disease identification, deep learning technology has spread to all corners 

of national defense and people's livelihood. In the field of medical imaging, doctors or researchers 

often need to know some details of a specific internal tissue and organ in order to make the right 

treatment decision when performing quantitative analysis, real-time monitoring, and treatment 

planning. Therefore, medical image processing has become an indispensable part of disease diagnosis 

and treatment, and it is becoming increasingly important. However, China's current doctor-patient 

ratio is only 1:950, ranking 96th in the world. Among them, doctors in tertiary hospitals have an 

average of 6.7 visits per day, and this data has risen to 9.1 in grassroots hospitals [1], compared with 

the average daily diagnosis and treatment of about 5 doctors in Europe and the United States, which 

shows that China's doctor resources are in a scarce state. How to apply deep learning technology to 

the field of medical imaging, improve the efficiency of diagnosis and treatment, and relieve the 

pressure of doctors' diagnosis and treatment has attracted more and more attention. 
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Traditional methods are inadequate for clinical needs; deep learning techniques offer faster, more 

precise registration, significantly influencing clinical practice. In medical imaging, the specialized 

knowledge required imposes high costs for annotation. Consequently, the effectiveness of supervised 

versus unsupervised learning methods can differ markedly in application. This paper will analyze 

results from both approaches across multiple datasets, highlighting their respective advantages and 

limitations, necessitating tailored methods for varying scenarios. 

2. Theoretical Basis for Supervised and Unsupervised Learning 

2.1. Overview of Machine Learning 

Neural networks have achieved significant success across various research domains due to their 

robust feature learning capabilities, including speech and image recognition, image segmentation, 

and natural language processing. The deep learning implementation process involves feature 

extraction from data to develop a model capable of generalizing to unknown data. Deep learning is 

categorized into supervised learning, which addresses specific tasks through training data pairs, and 

unsupervised learning, which leverages unlabeled data to learn prior information for diverse tasks. 

While supervised learning offers stable performance for specific tasks, it lacks robustness. In contrast, 

unsupervised learning capitalizes on the data distribution of unlabeled images, eliminating the need 

for cumbersome data labeling, which can compromise model accuracy.  

2.2. Supervised Learning Theory 

Well-known algorithms for supervised learning include support vector machines (SVMs), decision 

trees, random forests, and convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) in the form of deep learning. There are two main algorithms commonly used in medical 

images: 

A support vector machine (SVM) is a classifier that identifies distinct classes by determining the 

optimal hyperplane in feature space, maximizing the margin between categories defined by the 

nearest support vectors. SVMs excel with small to medium datasets, particularly when category 

boundaries are clear, and effectively address linearly separable and non-separable problems using 

kernel methods. They are widely applied in medicine for categorical assessments, such as diagnosing 

osteoporosis. 

Convolutional Neural Networks (CNNs) are prominent deep learning algorithms known for their 

self-learning and intelligent processing capabilities. Comprising an input layer, convolutional layer, 

activation function layer, pooling layer, and fully connected layer, CNNs process original image data 

to extract features, reduce computational load, and adapt to image dislocation. They are crucial in 

medical imaging interpretation and serve as a leading recognition method in computer vision, 

facilitating tasks such as image recognition, classification, segmentation, labeling, and generation 

through extensive data training. 

2.3. Unsupervised Learning Theory 

The biggest feature of the unsupervised learning method [2-4] is that the trained model can be used 

as general prior information in image reconstruction under different imaging conditions. At the same 

time, the separation of prior terms and data fidelity terms in the reconstruction of the algorithm 

eliminates the data sensitivity caused by data acquisition bias. From the perspective of learning data 

distribution, unsupervised learning methods vary. In general, the following unsupervised algorithms 

are available in medical images: autoencoder (AE) learning [5, 6] (e.g., denoising autoencoding (DAE) 
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[5] and variational autoencoding (VAE) [6], generative adversarial networks (GANs) [7], SimCRL, 

etc. 

SimCLR (Simple Contrastive Learning of Representations) is a self-supervised learning method 

used to learn useful feature representations from unlabeled data. The core idea of SimCLR is to learn 

by contrastively comparing the relative relationships between positive samples (similar image pairs) 

and negative samples (dissimilar image pairs) [8]. 

The learning of an autoencoder (AE) simply retains the information of the original input data and 

does not ensure a useful representation of the features. This is because the autoencoder may simply 

copy the original input, or simply pick features that slightly alter the reconstruction error, but do not 

contain particularly useful information. In order to avoid the above situation and to be able to learn 

better feature representations, it is necessary to give certain constraints to the data representation. 

Denoising autoencoders can solve this problem by reconstructing input data that contains noise [9].  

The function of the denoising autoencoder is to learn the raw data of the superimposed noise, and 

the features it learns are almost the same as those learned from the data of the unsuperimposed noise, 

but the denoising autoencoder learns the features from the input of the superimposed noise is more 

robust, and can avoid the above problems encountered by the autoencoder and simply learn the same 

eigenvalues. 

A generative adversarial network (GAN) comprises a generative model and a discriminative model. 

The generative model captures the sample data distribution, while the discriminative model acts as a 

binary classifier to distinguish real data from generated samples. The optimization process is a "binary 

minima game," where one model's parameters are fixed while the other's are updated alternately, 

enabling the generative model to estimate the data distribution. GANs have significantly advanced 

unsupervised learning and image generation, expanding from initial applications in image generation 

to various computer vision domains, including image segmentation, video prediction, and style 

transfer.[10]  

3. The Application of Supervised Learning and Unsupervised Learning in the Diagnosis of 

Medical Imaging Diseases 

3.1. Case Overview 

Diabetic retinopathy is one of the ocular complications due to diabetes that involves diseases and 

abnormal changes in the retina. Diabetic retinopathy can be divided into two stages: (1) Early non-

proliferative diabetic retinopathy (NPDR). (2) Proliferative diabetic retinopathy (PDR). If diabetic 

retinopathy worsens, it can lead to retinal ischemia, which stimulates the growth of new blood vessels. 

Early diagnosis and treatment can slow the progression of diabetic retinopathy and reduce the risk of 

blindness [11]. 

3.2. Supervised Learning Cases 

In the classification criteria for diabetic retinopathy, the division of fundus image quadrants requires 

the network to have the knowledge of the location of the image elements, and if the network model 

wants to have a better disease classification ability, the network model needs to have the ability to 

process location information. In order to solve the problem, Hinton et al. [12] proposed a new type 

of convolutional neural network, capsule network, to solve the above problems. The structure of the 

capsule network is precisely to enable the neural network to correctly recognize the relationship 

between the parts in the image, and it advocates to preserving the relative relationship between the 

parts of the image and carrying out further processing. This method achieves excellent results in 

identifying the same object at different angles. Therefore, on this basis, this chapter proposes a capsule 

network-based diagnostic model for diabetic retinopathy DRCaps, and achieves a binary accuracy of 
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0.9658 and a Penta classification accuracy of 0.8183 on the KaggIe APTOS 2019 dataset. The 

methodology proposed in this chapter is analyzed in detail below.The overall capsule network model 

consists of a feature extraction module, a capsule module, and a decoder module. 

The Feature Extraction Module is the part of DRCaps that completes the feature extraction 

function, which is composed of a frequency domain attention module and a convolutional layer 

module for extracting features, which makes the model pay more attention to the lesion part by 

applying the attention mechanism to the feature map, and the residual module with a jump connection 

ensures the depth of the network, and the features extracted in the front part of the network can be 

transmitted to the rear network. 

The Capsule Layer consists of the Primary Capsule Layer and the Digital Capsule Layer, which 

encodes the feature map for the digital capsule layer, converts it into a vector, and inputs the digital 

capsule layer for classification tasks. 

The decoder part is composed of a deconvolution layer, which forms an encoder-decoder structure 

with the front feature extraction network, and the decoder part tries to reconstruct the feature map and 

make the image as close to the original image as possible. 

This paper compares its method with classical network structures and existing literature. The 

comparison is divided into two parts: the first part enhances the persuasiveness of network data 

through experiments on various parameters across multiple architectures, ultimately selecting the best 

results for comparison. The second part evaluates experimental results from prior studies. Table 3.9 

presents classification task results from three models on Kaggle APTOS 2019: VGG16 at 0.7271, 

Inception-V3 at 0.7217, and ResNet50 at 0.7135, with this paper achieving 0.8183. Additionally, the 

dichotomous classification results show VGG16 at 0.929, Inception-V3 at 0.935, and ResNet50 at 

0.845, while this paper's method outperforms with 0.9658. 

3.3. Unsupervised Learning Cases 

Machine learning for diabetic retinopathy leverages computational and statistical techniques to 

analyze medical images, aiding in the diagnosis and treatment of diabetes-related ocular 

complications. However, annotating fundus images is a labor-intensive and costly endeavor, 

necessitating expert input and often resulting in subjective inconsistencies. Self-supervised learning, 

an unsupervised approach, addresses this by learning from unlabeled data, thereby alleviating the 

annotation burden on clinicians and reducing associated costs. Given the scarcity of labeled diabetic 

retinopathy data, self-supervised learning can utilize unlabeled datasets to enhance training sample 

availability. This method mitigates the subjective biases inherent in manual labeling, as it typically 

operates independently of human-generated labels. In this context, the SImCRL model exemplifies 

the application of self-supervised learning. 

Data augmentation 

Data augmentation augments the training dataset by applying various random transformations to 

the input image to generate multiple different perspectives, which helps the model learn more robust 

and useful feature representations. The model randomly selects a sub-region of the fundus image, 

crops a fixed-size image from it, randomly adjusts the fundus image to different sizes, and fills in the 

blank parts. This helps the model learn features at different sizes. This is followed by a random 

horizontal flip to flip the image horizontally with a certain probability. Finally, the color dithering 

process is performed with a certain probability to randomly adjust the brightness, contrast, saturation 

and hue of the image. This helps the model learn features under different lighting conditions.  

Embedding coding 

The embedding encoding part is the process of converting a data-enhanced image into a feature 

vector. This is usually done through a neural network. The goal of embedding encoding is to map the 

image into a low-dimensional feature space for subsequent contrast loss calculations. 
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Comparison loss 

Contrast loss is the core component used to train the model so that fundus image features that have 

undergone data augmentation and embedding coding are better clustered together in the feature space. 

Contrast loss is achieved by maximizing the similarity between positive samples (similar image pairs) 

and minimizing the similarity between negative samples (dissimilar image pairs).  

Experimental process 

The Kaggle APTOS dataset is a retinopathy detection dataset on the Kaggle platform, which is 

called "Diabetic Retinopathy Detection". This dataset contains a series of fundus images for the 

detection of diabetic retinopathy. The dataset includes 3662 training set images and 1928 test set 

images, each with a resolution of 2588×1958 pixels, divided into five levels of 0~4.  

The accuracy of the results compared to three different supervised learning methods on Kaggle 

APTOS 2019. The accuracy of the proposed method on the five classification tasks of the Kaggle 

APTOS dataset is 0.582 and 0.831 on the two classification tasks, indicating that the method has 

achieved good results on multiple datasets. 

4. Comparison of Supervised and Unsupervised Learning 

In the task of medical image disease diagnosis, supervised learning and unsupervised learning have 

their own advantages and limitations, and there are significant differences in their application 

scenarios and performance. 

4.1. Data Dependency and Annotation Costs  

Supervised learning necessitates substantial high-quality labeled datasets, with model performance 

closely tied to data size and quality. For instance, the DRCaps model attained notable accuracy in 

diabetic retinopathy classification (5-category 0.8183, binary classification 0.9658) due to accurately 

annotated fundus images from the Kaggle APTOS dataset. However, medical image annotation 

demands professional involvement, making it time-intensive and costly. Conversely, unsupervised 

learning employs self-supervised or generative techniques (e.g., SimCRL, GAN) to derive features 

from unlabeled data, significantly mitigating reliance on manual annotation. After training a 

SimCRL-based model on unlabeled data, the accuracy for the five-class task is 0.582 and 0.831 for 

the two-class task, which, while lower than supervised learning outcomes, effectively addresses 

labeling resource shortages. Furthermore, data augmentation methods (e.g., random cropping, color 

jitter) enhance the robustness of unsupervised models against data noise and imaging condition 

variability. 

4.2. Model Performance and Task Suitability 

Supervised learning is particularly effective for targeted classification and segmentation tasks, such 

as diabetic retinopathy grading. Models like CNNs and capsule networks can accurately capture 

lesion features through end-to-end training, though they risk overfitting due to labeling bias or limited 

data distribution. Traditional CNNs may lose spatial information from pooling, whereas capsule 

networks preserve spatial relationships via dynamic routing, enhancing classification accuracy. In 

contrast, unsupervised learning excels in generating feature representations, making it suitable for 

complex data distributions and multitasking.  

4.3. Generalization Ability and Robustness 

Supervised learning models are sensitive to labeled data distribution, leading to reduced 

generalization when training data differs from real-world scenarios (e.g., images from various 
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devices). For instance, ResNet50's accuracy on the Kaggle dataset (0.7135) is notably lower than that 

of capsule networks, highlighting its vulnerability to data variability. In contrast, unsupervised 

learning captures broader feature distributions from unlabeled data, demonstrating greater 

adaptability to variations in imaging conditions (e.g., lighting and noise). 

5. Conclusion 

Supervised learning is particularly well-suited for annotation tasks where ample resources and well-

defined objectives are available, such as in specialized disease screening within tertiary care facilities. 

Its high accuracy and interpretability align with the stringent reliability standards required for clinical 

diagnostics. Conversely, unsupervised learning proves beneficial in scenarios characterized by 

resource scarcity or the necessity for rapid adaptation to novel tasks, exemplified by initial screenings 

or epidemiological investigations in primary healthcare settings. Furthermore, generative models, 

including Generative Adversarial Networks (GANs), can facilitate the synthesis of medical images, 

enhance data augmentation, and support physician training, thereby broadening their applicability. In 

conclusion, the selection between these methodologies must consider data availability, task 

specifications, and budgetary limitations in real-world applications. Future investigations may delve 

into semi-supervised or hybrid learning paradigms, merging the precision of supervised approaches 

with the adaptability of unsupervised techniques, to foster the comprehensive advancement of 

medical imaging diagnostic technologies. 
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