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Abstract: Brain-Computer Interface (BCI) has gained significant attention due to its potential 

to transform human-computer interaction (HCI), especially through non-invasive methods 

like electroencephalography (EEG). This essay explores the fundamental principles of 

non-invasive BCIs, focusing on EEG-based signal acquisition, preprocessing, and decoding 

techniques. It examines the role of various machine learning and deep learning algorithms in 

enhancing the accuracy and efficiency of neural signal interpretation, including supervised 

learning, unsupervised learning, CNN, RNN, and transformers. These key techniques used in 

BCI are fundamental to promoting communication between humans and computers by 

building a direct bridge between the brain’s neural systems to commands that computers can 

understand. Developments in these areas show significant impacts in the HCI field, ranging 

from enhanced accessibility for rehabilitation/assistive technologies to more optimized user 

experience in gaming, smart home automation, etc. The prospects of non-invasive 

brain-computer interfaces (BCIs) are highly promising in transforming human-computer 

interactions to be more intuitive, adaptive, and accessible. 

Keywords: Brain-Computer Interface, Human-Computer Interaction, EEG, Machine 

Learning 

1. Introduction 

The Brain-Computer Interface (BCI) technology, particularly non-invasive technologies, has taken 

center stage in innovation due to the fact that it can transform human-computer interaction (HCI). It 

incorporates three main steps to link human brain signals to direct computer commands: acquiring 

neural signals from the brain, decoding the signals to obtain simple intentions, and analyzing these 

intentions to translate them into different computer output forms. Unlike invasive BCIs that require 

surgical implants, non-invasive BCIs employ external sensors, such as EEG or fNIRS, to record 

brain activity painlessly and without the need for surgeries. Such an approach makes BCIs more 

accessible by providing an alternative means for people with physical disabilities to interact with the 

world and also new ways for the general population to communicate with technology.The 

advancement of non-invasive brain-computer interfaces (BCIs) demonstrates significant potential to 

unveil novel opportunities in human-computer interaction (HCI) by improving user experience and 

introducing innovative paradigms of computer interaction. This essay explores the technological 

advancements in non-invasive BCI systems that shape HCI, focusing on key components such as 

signal acquisition, neural decoding models, and machine learning algorithm contributions to 

optimizing the performance of BCI. The purpose of this research is to examine how advancements in 
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non-invasive BCI systems enhance HCI, while also exploring the theoretical foundations of the 

models and techniques that contribute to the accuracy and efficiency of BCI-driven interactions. 

2. Signal Acquisition 

2.1. EEG: The Most Widely Used Technique 

Electroencephalography (EEG) has become the most widely used technique for non-invasive brain 

signal acquisition as it has high temporal resolutions and is supported by multiple sophisticated 

analytical methods [1]. Electroencephalography (EEG) employs electrodes affixed to the scalp to 

assess and document the brain's electrical activity produced by neuronal functions. These electrodes 

are capable of capturing voltage variations stemming from ionic movements within neurons, which 

can subsequently be analyzed to produce visual representations of brainwave patterns. 

EEG demonstrates multiple advantages that promote efficient communications with electrical 

devices. Firstly, it offers exceptional temporal resolution on the order of milliseconds, which makes it 

ideal for capturing rapid brain activity such as motor commands, cognitive processing, and neural 

responses to stimuli. Such rapid capturing can be especially useful in the medical field. For instance, 

the detection of epileptic seizures requires accurate capturing and timing of electrical discharges, 

which can be effectively done by EEG [2]. The capability to monitor cerebral activity in near 

real-time through EEG facilitates advancements in Human-Computer Interaction, where prompt 

feedback frequently improves the efficacy of communication. Secondly, existing mathematical 

algorithms for decoding and analyzing EEG data are already mature, hence EEG can be applied to not 

only clinical settings, but also other areas such as autonomous control of robotics, rehabilitation, 

neuroimaging entertainment, neural science research, etc. [3]. 

2.2. Recent Advancement: Dry Electrodes 

Despite EEG’s benefits and wide usage, the traditional method of EEG signal acquisition with 

gel-based electrodes comes with inconveniences. With conventional EEG systems, a conductive gel 

is generally required to be applied between the electrode and the scalp to ensure proper signal 

transmission. However, this conductive gel makes preparation tasks time-consuming and can cause 

discomfort for the user, especially during long time use. Frequent reapplication, skin irritation, and 

the messiness of the gel can deter individuals from using EEG systems for long periods of time or in 

non-clinical settings. These practical barriers reduce the usability of EEG in BCIs, where ease of use 

and comfort are crucial for promoting prolonged engagement and interaction with devices. 

As a result, recent advancements in EEG technology have led to the development of dry electrodes, 

electrodes that do not need conductive gel. Instead, these electrodes are designed to make direct 

contact with the skin, so skin preparation or gel application is no longer needed. Dry electrodes 

typically work by using materials with high surface area or advanced conductive coatings to ensure 

low impedance between the electrode and the scalp. Liao et al. conducted a study that illustrates how 

a dry electrode technology, produced through an injection molding manufacturing process, can attain 

signal quality on par with conventional gel electrodes, thereby presenting a feasible alternative for 

practical applications. The research highlighted that dry electrodes not only reduced the discomfort 

associated with gel-based systems but also increased the efficiency of EEG signal acquisition, 

enabling quicker setup times and improving the overall user experience [4]. These electrodes are 

proven to be useful for applications that require quick setup and comfort, such as in mobile or 

consumer-grade BCIs, neurofeedback systems, and cognitive monitoring applications. This 

development also opens up opportunities for EEG systems to be used continuously over extended 

periods, such as in sleep studies, cognitive training, or real-time brain-computer interaction scenarios. 

The user-friendly nature and low maintenance demands of dry electrodes render them particularly 
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suitable for consumer-oriented applications, enabling users to utilize them comfortably in domestic, 

professional, or mobile environments without compromising data integrity. 

3. Neural Decoding Models 

3.1. Preprocessing Techniques 

Raw EEG signals obtained from the brain are inherently noisy and complex, since various 

components contributes to the data. Other than brain activity related to user intentions, EEG signals 

are also composed of artifacts introduced by external sources, such as eye movements, muscle 

contractions, and environmental noise. Therefore, it is crucial to employ preprocessing techniques to 

clean and filter the raw data before these neural signals can be further decoded. This essay will 

discuss several preprocessing techniques improving the quality of EEG signals, such as ICA, 

band-pass filtering, and baseline correction.  

In a systematic evaluation of diverse preprocessing methodologies, Coelli et al. sought to identify 

the most efficient techniques for the purification of EEG signals prior to their application in neural 

decoding. Their study compared several noise reduction techniques and established that Independent 

Component Analysis (ICA) is still among the most efficient techniques for removing artifacts like eye 

blinks and muscle contractions. ICA is a blind source separation technique that decomposes a 

multivariate signal into statistically independent components. It is particularly effective at identifying 

and isolating artifacts by separating the neural activity from the noise. The authors highlighted ICA's 

flexibility in handling various types of artifacts and its widespread application in EEG-based BCI 

systems.  

Other than ICA, band-pass filtering is another essential method that excludes irrelevant 

frequencies, focusing the analysis on the frequency bands that correspond to only the relevant brain 

activity. Coelli et al. emphasized the importance of choosing the correct frequency range, as each 

frequency band conveys distinct forms of cognitive and motor information. For example, filtering for 

alpha (8–13 Hz) and beta (13–30 Hz) bands is particularly useful in motor imagery or relaxation tasks, 

as these are the bands typically associated with brain activity during these states. Their findings 

suggest that band-pass filtering, combined with ICA, produces higher signal quality and better 

performance in decoding models [5]. 

Baseline correction is another preprocessing technique that is crucial for enhancing signal quality. 

This technique involves adjusting the EEG signals to a common reference point, typically the average 

signal across all channels, to remove any systematic variations that might occur during the recording 

session. This normalization process helps ensure that the recorded signals reflect the brain's true 

activity rather than being distorted by extraneous factors.  

3.2. Decoding Models 

After preprocessing raw neural signals, various decoding models can be applied based on the scenario 

and the type of data to translate signals into simple intentions. This essay will look at two frequently 

used models: Linear Discriminant Analysis and Kalman Filters. 

EEG signal categorisation using Linear Discriminant Analysis (LDA) is popular. LDA is a 

supervised learning technique that finds a linear combination of features to distinguish data classes. 

LDA is commonly used in BCIs to classify brain states or intentions, such as picturing movement or 

focussing on a task. LDA presupposes that class data are normally distributed and feature covariance 

is the same. The method then projects the data onto a lower-dimensional space where the classes are 

most distinct to maximise separation. LDA is useful in BCI applications involving motor imagery or 

simple mental instructions because it can efficiently isolate brain activity associated with each 

intention based on frequency or spatial factors. 
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On the other hand, Kalman Filters are particularly useful in regression-based decoding tasks, 

where continuous outputs such as cursor movement or control of robotic limbs are required. Kalman 

Filters are recursive, state-space models that predict the current state of a system based on previous 

states and noisy observations. This method uses a two-step process: the prediction step, which 

estimates the next state of the system based on prior information, and the update step, which refines 

this estimate by incorporating the most recent measurements. Kalman Filters are especially effective 

in dynamic BCI systems where the user’s intentions evolve continuously over time, as they are able to 

incorporate both previous and current data to provide accurate predictions of the user’s movements. It 

significantly improved the real-time control of devices by reducing latency and improving the 

accuracy of movement predictions, even in the presence of noisy EEG signals [6]. 

4. Machine Learning Algorithms in Brain-Computer Interfaces 

As AI has become the focal point of technology, Machine learning (ML) is also revolutionizing the 

field of BCI, acting as a powerful tool for classifying, predicting, and personalising neural signals.  

ML techniques have been shown exceptionally in translating large amounts of neural signals into 

meaningful information that can be used for complex intent detection, movement prediction, and 

adaptive BCI systems. The techniques that can be applied to EEG data include supervised / 

unsupervised learning, convolutional neural networks (CNN), recurrent neural networks (RNN), 

transformers, etc. They enable BCIs to learn complex hierarchical patterns from raw data and further 

improve the ability for computers to accurately understand and obtain human’s needs. 

4.1. Popular ML Techniques in BCI 

Supervised learning techniques, with common examples being support vector machines (SVM), 

linear discriminant analysis (LDA), and random forests, are applied to BCI systems for classifying 

brain activity into specific categories such as movement intentions and cognitive states. These 

algorithms rely on labeled training data, where the neural signals are paired with their corresponding 

intentions or actions. After training on the labeled dataset, the model can predict the user’s intentions 

based on new, unseen EEG data. 

On the other hand, unsupervised learning techniques, such as k-means clustering or principal 

component analysis (PCA), are useful for extracting underlying patterns from unlabeled data, which 

can be very helpful in exploratory phases or when there is a lack of labeled data. These techniques can 

be employed to identify new brainwave patterns without manual labeling. 

Both machine learning and deep learning methods like CNN have showed promise in improving 

BCI accuracy and efficiency in recent years. Convolutional neural networks (CNNs) use 

convolutional filters in both temporal and spectral domains to discover key brain electrical activity 

patterns without prior knowledge of feature relevance. They are therefore ideal for analysing 

image-like electroencephalogram (EEG) signals [7]. 

In addition to CNNs, recurrent neural networks (RNNs) have been explored for BCI applications. 

RNNs, which are particularly well-suited to sequential data processing, can learn temporal 

dependencies in EEG signals over time. This benefits tasks such as continuous motor movement 

prediction or cognitive state monitoring, where past brain activity influences future behavior. RNNs 

can capture such temporal structures, and hence, they are well suited to real-time BCIs in which 

ongoing updates to the user intention are required. 

Transformers, a more recent development in deep learning, have also begun to show promise in 

the realm of EEG-based BCIs. Unlike RNNs, where data processing is sequential, transformers can 

concurrently process various parts of the input data, making it more efficient and better for long-range 
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dependencies. This feature makes transformers particularly suitable for high-dimensional EEG data, 

where there could be many channels with complex interactions over time. 

4.2. Example Applications of ML in BCI 

This section of the essay will demonstrate a few successful examples of ML techniques and 

algorithms applied to BCI, enhancing human computer interactions. 

Vernon Lawhern et al. created a compact CNN architecture for EEG-based BCIs that classifies 

motor imagery EEG data better. This CNN structure learns features from raw EEG data, unlike 

typical classification algorithms that need considerable feature extraction and operator tweaking. 

Their research describes it as a lightweight CNN with few convolutional layers that preserves EEG 

spatial and temporal patterns. This tiny architecture allows real-time deployment with lower 

computing costs, which is critical for wearable or mobile BCIs. The model outperforms LDA and 

SVM in classification precision and reduces feature engineering, making BCI systems more 

automated and scalable [8]. 

Additionally, Jahanikia et al. demonstrate in their research the use of ML paradigms for detecting 

mental states related to inner speech, enabling users to control external devices via thought alone. The 

study applies a range of supervised learning techniques, including Support Vector Machines (SVM) 

and Random Forests, to classify neural signals associated with speech production. This project offers 

a potential method for individuals with speech impairments to communicate using only brain activity. 

The ability to decode inner speech commands can lead to more intuitive, non-invasive 

communication tools, advancing BCIs toward more seamless user experiences [9]. 

Acı et al. used machine learning to discriminate mental focus states in users using a passive 

EEG-based BCI system, demonstrating the impact of ML on BCI systems. They classified attention 

states from EEG data using supervised learning approaches like Linear Discriminant Analysis (LDA) 

and K-Nearest Neighbours (KNN) and unsupervised methods like Principal Component Analysis 

(PCA). Their research shows that the system can accurately categorise attention-related cognitive 

states, making it realistic for passive brain-computer interface (BCI) systems to measure and respond 

to user interaction. Such technology could be used in education to assess attention levels in real time 

or in healthcare to monitor cognitive states. This work shows how ML may improve human-computer 

interactions [10]. 

5. Conclusion 

This essay explored key aspects of non-invasive BCI, including signal acquisition, neural decoding 

methods, and machine learning algorithms. The development of these aspects greatly shaped user 

experiences in BCI and shows significant promise in advancing human-computer interaction. 

Examining the contents covered in this essay, there are also areas for improvement. While the essay 

discusses signal acquisition, decoding, and machine learning applications, there is no further 

comparison of different algorithms and their specific uses. More detailed experimental data or case 

studies could be included in future research to make the analysis stronger. Further, it did not dive 

deeply into examples of how BCIs are practically implemented in real-world HCI applications. 

Future research could provide in-depth case studies or application examples, such as BCIs in assistive 

mobility tasks for individuals with disabilities. Looking ahead, the future of non-invasive BCIs is to 

not only enhance HCI but also open up entirely new dimensions of human-computer interaction, with 

the potential to significantly impact fields such as healthcare, gaming, smart home automation, and 

personalized learning.  
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