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Abstract: With the development of artificial intelligence (AI), particularly in natural language 

processing and machine learning, AI applications in code generation, error correction, and 

programming assistance have become more common. However, differences in code 

generation capabilities among models influence their practical applicability in programming 

tasks. To investigate this issue, this study evaluates the performance of five state-of-the-art 

large language models (LLMs)—GPT-4o, OpenAI o1, OpenAI o1 Pro, Claude 3.5, and 

Gemini 2.0—through a systematic comparative analysis across three programming languages: 

Python, Java, and Swift. The evaluation framework considers multiple aspects, including 

overall accuracy, code efficiency, time complexity, space complexity, and multi-solution 

generation capabilities.The experimental results reveal substantial variations among models: 

OpenAI o1 Pro and Gemini achieve the highest accuracy, GPT-4o generates the most concise 

code, and Claude 3.5 produces the greatest number of alternative solutions. However, all 

models exhibit lower performance in Swift compared to Python and Java, likely due to the 

limited availability of training data in Swift. An in-depth error analysis identifies differences 

in model adaptability across programming languages and highlights key limitations of AI-

assisted programming. These findings provide insights for developers and users of AI-

assisted programming tools, supporting more informed decision-making in selecting and 

applying these technologies in different programming contexts. 

Keywords: Ai-Assisted Programming, Code Generation, Large Language Models 

1. Introduction 

In recent years, artificial intelligence (AI) has experienced rapid development, particularly in the 

fields of natural language processing and machine learning. As these technologies continue to 

advance, an increasing number of industries have begun integrating AI into their workflows, sparking 

transformative changes across various sectors. Within this context, AI-assisted programming has 

garnered significant attention. AI systems can assist developers by interpreting error messages, 

identifying and analyzing bugs, and providing conceptual expansion through interactive dialogues. 

Moreover, AI can generate relevant code based on given requirements or a developer’s conceptual 

framework, shifting the programmer’s role from "writing code from scratch" to "reading, evaluating, 

and refining existing code." This shift significantly reduces the burden of coding and enhances overall 

efficiency [1]. Against this backdrop, the primary aim of this study is to assess the effectiveness of 

several leading Large Language models in programming tasks, specifically GPT-4o, OpenAI o1, 
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Claude 3.5, and Gemini 2.0. By subjecting these models to a variety of code generation tasks, this 

research seeks to explore their capabilities and overall performance. 

Since the initial release of GPT-3 by OpenAI in 2020, AI tools have undergone rapid growth and 

iterations. For instance, OpenAI's models have evolved from GPT-3, launched in mid-2020, to GPT-

3.5 in late 2022, followed by OpenAI o1 in 2023, and the release of o1 pro in 2024. Each iteration 

has brought improvements in model size, optimization of pretraining datasets, and more advanced 

reinforcement learning methods. These advancements have significantly enhanced the accuracy of 

code generation, increased the ability to handle complex algorithmic tasks, and strengthened the 

model’s reasoning capabilities across various programming languages. In addition, other public AI 

models have also been released. For example, Claude, developed by Anthropic, has shown 

outstanding performance in code generation, automated testing, and debugging across multiple 

programming languages. Furthermore, in 2023, Google launched Bard (now rebranded as Gemini), 

with continuous iterations and improvements. As these AI tools evolve, their potential for enhancing 

the accuracy and usability of AI-assisted programming continues to grow, alleviating concerns about 

potential errors and misguidance. 

As AI models continue to evolve, tests assessing the programming capabilities of different AI 

models have also progressed. However, existing research on this topic tends to exhibit several 

limitations [2, 3]. For instance, many studies focus primarily on evaluating a single model [4-6], with 

limited comparative analysis between different models. Additionally, the programming languages 

used for testing are predominantly mainstream programming languages such as Python and Java, 

leaving a gap in the testing of less common programming languages [3]. These limitations may result 

in an incomplete evaluation of the AI models' programming capabilities, failing to fully capture their 

performance across diverse programming environments. 

To address the gaps in current research, this study takes a more comprehensive approach by 

comparing multiple leading Large Language models (e.g., GPT-4o, OpenAI o1, Claude 3.5, and 

Gemini 2.0). It also includes cross-programming language comparisons, evaluating model 

performance across both mainstream and less common programming languages. This quantitative 

methodology provides a broader and more nuanced understanding of the models' capabilities, 

addressing the limitations of previous studies that focused on a single model or programming 

language. The main objectives are as follows: 

• To evaluate the efficiency of various models released by OpenAI, as well as Claude 3.5 and 

Gemini 2.0, across a range of code generation tasks. 

• To compare the performance of these Large Language models under different programming 

language environments. 

• To identify the challenges and limitations associated with using Large Language models in 

programming. 

2. Related Work  

2.1. Code Generation 

2.1.1. Code Generation Models 

Before the emergence of deep learning and Large Language models, research on automated code 

generation primarily focused on “program synthesis” and traditional rule- or template-based 

approaches. Program synthesis typically relies on specific types of specifications, logical reasoning, 

or input–output examples to produce small-scale programs that meet user requirements. As an 

example, Gulwani [7] describes a method for string processing that leverages user-provided examples. 

This strategy not only decreases the prior knowledge required of developers but also significantly 
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enhances automation in certain specialized settings. In contrast, another common approach involves 

the use of domain-specific languages (DSLs) or template-driven methods, where predefined syntactic 

rules or scaffolding enable rapid creation of project skeletons or repetitive code [8]. Although these 

two categories of methods do alleviate some of the burden on developers, they both lack broad 

generality and demand a high level of technical proficiency from users, rendering them relatively 

limited in terms of extensibility. Consequently, they tend to be confined to specialized programming 

contexts, and thus have not seen widespread adoption in more complex or diverse development needs. 

The following sections further examine how deep learning and Large Language models have 

capitalized on these foundations to achieve notable breakthroughs and expansions. 

Early sequence-to-sequence (Seq2Seq) approaches, typically using RNN/LSTM encoder-decoder 

structures [9], showed promise yet struggled with lengthy contexts and the complex syntax–semantics 

of code. To mitigate these limitations, the Transformer architecture [10] introduced self-attention, 

improving parallel computation and handling of long-range dependencies. Consequently, 

Transformer-based pretrained models—such as Code2Vec [11] and CodeBERT [12] —achieved 

notable success in tasks including code search, clone detection, and comment generation, with 

CodeBERT in particular demonstrating strong multilingual capabilities [13]. Beyond these models, 

deep learning–based code completion tools (e.g., TabNine) embed neural networks into IDEs to 

provide context-aware suggestions, but still face challenges in covering large-scale project contexts, 

managing complex dependencies, and lowering the technical barriers to widespread “mass-market” 

adoption. 

In recent years, the field of code generation has undergone significant transformation with the 

emergence of Large Language models (LLMs) such as GPT-3 and later versions (Generative Pre-

trained Transformer). Leveraging the Transformer architecture’s strong capability to capture long-

range dependencies, these models are trained on vast corpora of text and code, thus improving 

performance on specific tasks while addressing the limitations of earlier Seq2Seq and traditional 

Transformer-based systems [14]. More importantly, GPT-based methods often adopt dialogue- or 

prompt-oriented interfaces, enabling users to iteratively refine or debug code through natural 

language, which not only lowers the technical barrier but also propels these tools toward broader 

public adoption [15]. Exemplified by OpenAI Codex and GitHub Copilot, GPT-driven solutions can 

dynamically assist with code completion, error correction, and annotation, benefiting both novice and 

experienced developers alike [16]. The development and iteration of generative AI technologies have 

seen significant progress in recent years. OpenAI has introduced its model “OpenAI o1,” Google has 

developed the “Gemini” model, and Anthropic has advanced its “Claude” system, all contributing to 

the enhancement of code generation capabilities. These advancements have fostered rapid progress 

in dialogue-based code generation, broadening its potential applications in software development and 

related fields. 

2.1.2. Evaluation Datasets  

Initially, code generation evaluation datasets were often limited to simple algorithmic tasks in a single 

programming language, such as the small-scale problem sets provided by online coding platforms 

[17, 18]. These early datasets primarily served to validate a model’s feasibility in basic algorithmic 

and syntactic aspects. However, as research advanced and Large Language models (LLMs) gained 

prominence, relying on single-programming language and relatively small collections of problems 

proved insufficient for comprehensively assessing a model’s generality and practical applicability. 

Researchers thus shifted their focus to multi-programming language, medium- and large-scale 

datasets, exemplified by HumanEval [16] and APPS [18]. The former targets the function-generation 

capabilities of large models like Codex in Python, supplementing tasks with unit tests to quantify 

correctness, whereas the latter compiles programming competition problems ranging from basic to 
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advanced, thereby more effectively evaluating a model’s algorithmic proficiency and logical 

reasoning. 

With the emergence of GPT-series models [14], whose ease of use and conversational interfaces 

expanded the scope of feasible evaluation strategies, researchers have increasingly adopted multi-

programming language or cross-programming language datasets to investigate how well these models 

comprehend and transfer knowledge across diverse programming language features [19]. For instance, 

some platforms have begun extensively gathering questions and solutions from programming 

competitions or job interviews in open-source ecosystems, deploying these resources to evaluate a 

model’s capability in multi-programming language settings. 

In recent years, new evaluation benchmarks have been proposed to more comprehensively assess 

code generation models' capabilities. For example, BigCodeBench is a novel code generation 

benchmark that improves upon existing ones like HumanEval by incorporating more diverse function 

calls and complex instructions, aiming to evaluate the true programming capabilities of Large 

Language models in a more realistic setting [20]. Additionally, MEGAVERSE is a benchmark that 

evaluates Large Language models across natural languages, modalities, models, and tasks, with a 

particular focus on non-English languages. This benchmark comprises 22 datasets covering 83 natural 

languages, including low-resource African languages, as well as two multimodal datasets, providing 

a comprehensive assessment of models' multilingual and multimodal capabilities [21]. 

These new evaluation benchmarks offer researchers more comprehensive tools to assess Large 

Language models' performance in code generation tasks, particularly in multilingual and real-world 

application scenarios. 

2.1.3. Evaluation Standards 

When evaluating code generation models, different standards are typically adopted depending on the 

focus or specific requirements. For instance, when the primary concern is whether the model can 

generate correct code, metrics such as accuracy or Pass@k are often employed. An illustrative 

example is the HumanEval benchmark proposed by Chen, et al. [16] for assessing Codex, which 

quantifies code generation accuracy through a large collection of Python function tasks and 

corresponding test cases. Conversely, when the emphasis lies in aspects like readability and 

maintainability, researchers generally utilize static analysis tools or manual review procedures to 

evaluate code quality—such as the empirical study conducted by Nguyen and Nadi [22] on GitHub 

Copilot—by combining lint tools with developer feedback to systematically investigate potential 

security issues and maintainability metrics [18, 23]. Moreover, to address the "one problem, multiple 

solutions" phenomenon and account for the unique syntactic and semantic characteristics of code, 

researchers have proposed various evaluation methods. For instance, Zhangyin, et al. [12] introduced 

CodeBERT, which laid a foundation for semantic similarity metrics in code understanding; Ren, et 

al. [23] explored graph-based approaches to capture structural information in code; and Wang, et al. 

[24] highlighted the importance of alignment at both the token and structural levels. Building on these 

advancements, CodeBLEU was developed as a more code-specific automated evaluation metric, 

extending traditional text similarity measures by incorporating syntax and semantic matching, making 

it particularly suitable for code-related tasks [25]. 

2.2. Code Generation Application 

2.2.1. Student Use Cases 

With the rapid development of generative AI technologies, education has become a key domain where 

these tools are widely applied. For students, generative AI has introduced transformative changes in 

the way they learn and understand programming concepts. 
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For instance, students can submit complex code examples to generative AI tools, requesting them 

to refactor the code for improved readability or to decompose intricate functions into more 

manageable and comprehensible segments [26]. These strategies enable students to better process 

programming materials and enhance their understanding of both the code itself and broader 

programming concepts [27]. Furthermore, students can articulate their ideas in natural language, 

allowing the AI to generate syntactically rigorous code based on their thought processes. This 

approach enables students to focus on constructing their ideas and strategies using natural language, 

without the need to concentrate excessively on complex code details. According to a survey 

conducted by Yan, et al. [1], many students found this method highly practical, as it allowed them to 

concentrate on higher-level programming logic without being hindered by intricate syntax. This not 

only improved their learning experience but also fostered critical thinking and creativity [28]. 

In addition, Lau and Guo [26] highlighted in their study that a significant portion of current 

programming curricula focuses on teaching students to memorize syntax and mechanisms. This 

approach often frustrates students who are more inclined toward creative projects. Generative AI, by 

assisting with code generation, allows students to concentrate more on creative design and problem-

solving processes during class. This shift not only enhances students' learning motivation but also 

further stimulates their interest in programming and fosters their creativity. 

2.2.2. Applications in the Workplace 

Although students primarily use generative AI to support their learning process, educators and 

professional programmers utilize these tools to meet their unique demands. By leveraging generative 

AI for code generation, they can significantly enhance the efficiency of their teaching or professional 

workflows. 

For example, in the context of programming education, example-based learning is often regarded 

as an effective teaching strategy [29]. A complete programming example typically includes a problem 

statement, a feasible solution, and detailed line-by-line explanations. However, for educators, creating 

a sufficient number of programming exercises along with corresponding solutions and explanations 

is often a time-consuming task. In practice, educators tend to provide only a limited number of 

examples, which may fail to fully meet students' learning needs in programming [30]. By automating 

the generation of these teaching resources, generative AI enables educators to maintain the same level 

of teaching effort while improving students' learning efficiency, ultimately enhancing the overall 

effectiveness of teaching [31]. 

For programmers, using AI to assist in code generation significantly improves productivity. For 

instance, a study conducted by Cui et al. (2024) at companies such as Microsoft and Accenture 

demonstrated that developers utilizing AI coding assistants achieved approximately 25% higher task 

completion rates compared to those who did not use such tools. The productivity boost was 

particularly significant for less experienced developers. While AI-generated code may not always be 

entirely accurate, its primary value lies in shifting the process from "writing code from scratch" to 

"reviewing and modifying AI-generated code." This shift greatly reduces the time required to 

complete coding tasks. 

3. Methodology 

This study aims to evaluate the performance of Large Language Models (LLMs) in programming 

tasks and compare the differences in code generation, logical reasoning, and problem-solving abilities 

among different models. We selected five representative LLMs (GPT-4o, OpenAI-o1, OpenAI-o1 

pro, Claude 3.5, and Gemini 2.0) and used the programming problems provided by the LeetCode 
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platform1 as the test dataset. To comprehensively evaluate the performance of LLMs under different 

programming paradigms, we chose three programming languages: Python, Java, and Swift. The 

evaluation metrics include total score, average lines of code, time/space complexity, and multi-answer 

generation capability. Through multi-dimensional evaluation, we aim to gain an in-depth 

understanding of the capabilities of LLMs in programming tasks and provide a reference for future 

research. 

3.1. Selection of AI System 

This study selected five Large Language models (LLMs) for analysis, each chosen for specific 

reasons to provide a comprehensive evaluation of LLM capabilities: 

GPT-4o: As the culmination of the ChatGPT series, GPT-4o represents the pinnacle of its natural 

language processing (NLP) capabilities. Its selection provides an ideal baseline for tracing the 

evolutionary trajectory and performance improvements within this model family [32]. 

OpenAI-o1: OpenAI's o1-based series is purported to employ a more advanced reasoning 

methodology and a tighter logical framework, demonstrating superior performance in complex 

problem-solving and scientific inquiry. OpenAI-o1 was therefore included to specifically investigate 

these advancements in logical reasoning [33]. 

OpenAI-o1 pro: The most recent iteration from OpenAI, OpenAI-o1 pro, builds upon OpenAI-

o1 by extending processing time, theoretically leading to more reliable and in-depth responses. 

Despite the increased computational cost, OpenAI-o1 pro was included to explore model performance 

on particularly intricate and demanding tasks [34]. 

Claude 3.5: Developed by Anthropic, Claude 3.5 is recognized for its exceptional performance in 

programming tasks. Its inclusion provides a valuable benchmark against the ChatGPT series, 

particularly in the area of code generation [35]. 

Gemini 2.0: Developed by Google, Gemini 2.0 has been reported to exhibit robust performance 

in advanced reasoning tasks, encompassing mathematics and coding. This capability makes it well-

suited for evaluating model proficiencies in logical reasoning and problem-solving [36]. 

This diverse selection of LLMs, spanning different architectures and specialized strengths, allows 

for a thorough comparison of their performance across a range of programming challenges. 

3.2. Selection of Dataset 

In this study, we employ coding problems from the LeetCode platform as our primary testing dataset, 

for the following reasons: 

• Extensive and Diverse Problem Set 

• LeetCode offers a large and systematically tiered set of problems, spanning a broad range of 

difficulties and covering various common algorithms and data structures. Compared to other 

potential problem sets, LeetCode is widely used in the industry, thus making it more representative 

and comparable in a research context. 

• Primarily Algorithmic Tasks with Clear Difficulty Labels 

• LeetCode’s problems predominantly focus on algorithmic challenges and data structure exercises, 

with labels such as Easy, Medium, and Hard. These straightforward difficulty levels enable a direct 

and layered evaluation of how different AI models perform under varying degrees of complexity. 

• Multi-Programming Language Support 

 
1 LeetCode is a popular online platform for coding practice and competitive programming, providing a wide range of coding 

challenges. Website: https://leetcode.com 
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• LeetCode’s problems offer solutions in multiple programming languages, enabling cross-pro

gramming language comparisons of model performance under a consistent set of tasks. 

• Convenient Online Testing Environment 

• LeetCode’s built-in code execution and testing functionality allows for rapid verification of 

whether AI-generated solutions pass official test cases. This feature substantially reduces the 

testing overhead and enhances both objectivity and reproducibility of the results in research 

scenarios. 

Overall, the combination of clear difficulty tiers, multi-programming language support, and a user-

friendly online testing framework makes LeetCode an ideal platform for assessing the performance 

of Large Language models in programming tasks. 

3.3. Selection of Programming Language 

This study selects three programming languages—Python, Java, and Swift—to evaluate the 

performance of LLMs in different programming language environments. Python is the leading 

programming language in the AI field, particularly in machine learning and deep learning, with many 

foundational AI models being built using Python [37]. Therefore, Python is chosen as the first 

programming language to assess the performance of LLMs in a mainstream language within the AI 

domain. Although Java is less widely used in AI compared to Python, it is an overall mainstream 

programming language with extensive application across various domains [38]. Thus, Java is selected 

as the second programming language to test the performance of LLMs in another widely used 

language. Swift, primarily used for iOS development, has a smaller user base and is considered a 

relatively niche programming language. However, due to its more limited usage, Swift provides a 

valuable contrast and allows for the assessment of LLM performance in a low-resource language 

environment [38]. Therefore, Swift is selected as the third programming language for testing. 

3.4. Evaluation Strategy 

In this study, we employ the following evaluation metrics to comprehensively assess the performance 

of the models: 

Total Score: The LeetCode platform provides a set of test cases for each problem. For each model-

generated solution, a score of 1 is awarded for every passed test case. The total score for each model 

is the sum of scores obtained across all problems. This metric directly reflects the model's accuracy 

in solving programming problems. 

Average Lines of Code: The number of lines of code serves as an indicator of the conciseness 

and efficiency of the generated code. Utilizing existing libraries or predefined functions effectively 

reduces the number of lines required. A lower average lines of code count suggests a higher level of 

proficiency in programming language usage and efficient coding practices. 

Time/Space Complexity: LeetCode provides runtime and memory usage data for each 

submission. However, given the potential for fluctuations in these measurements on the platform, this 

study evaluates models based on their time and space complexity. Specifically, for a given problem, 

the time/space complexities of the solutions generated by different models are compared. For instance, 

if four models produce solutions with O(n) time complexity and one model produces a solution with 

O(n^2) time complexity, the O(n^2) solution is assigned a score of 0, while the O(n) solutions are 

each assigned a score of 1. This metric reflects the efficiency of the generated code. 

Number of Multiple Answer Responses: In some instances, the models may generate multiple 

potential solutions for a given problem. This capability is considered to reflect the model's ability to 

analyze and approach problems from multiple perspectives, providing diverse and potentially 
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valuable solutions. Therefore, the number of multiple answer responses is included as an evaluation 

metric to assess the model's comprehensive problem-solving capabilities. 

4. Experiment Results 

4.1. Overall Performance Comparison 

This section presents the results of the evaluation conducted on multiple models across different 

programming languages. The models assessed include GPT 4o, OpenAI o1, OpenAI o1 pro, Claude 

3.5, and Gemini 2.0. The performance of these models was evaluated based on several key metrics: 

overall score, number of correct answers, average lines of code, time complexity score, space 

complexity score, and the number of multiple-answer situations. As shown in Table 1, the 

performance of the models varies significantly across different programming languages.  

Table 1 : Model Performance Comparison Across Programming Languages 

Model 
Porgramming 

Language 

Overall 

Score 

Average 

Lines 

of Code 

Time 

Complexity 

Score 

Space 

Complexity 

Score 

Multiple-

Answers Count 

GPT-4o 

Python3 376 13.3 9 6 5 

Java 373 20.2 4 3 3 

Swift 351 20.1 12 3 2 

OpenAI-

o1 

Python3 376 17.1 12 6 15 

Java 377 22.3 9 3 20 

Swift 351 22.6 14 3 5 

OpenAI-

o1 pro 

Python3 378 15.5 14 3 24 

Java 377 22.1 5 2 19 

Swift 365 23.4 18 2 20 

Claude 3.5 

Python3 370 14.1 10 3 34 

Java 371 20.8 10 0 15 

Swift 345 21.4 12 0 6 

Gemini 

2.0 

Python3 378 13.7 6 3 10 

Java 381 21.3 2 3 9 

Swift 352 21.2 12 3 6 

4.1.1. Overall Score 

Figure 1 presents a comparative performance analysis of various models across different 

programming languages. As shown, the models exhibit similar performance in both Python and Java, 

with a score rate of 97% or higher out of the maximum possible score of 383. In contrast, the models' 

performance in Swift, a less commonly used programming language, shows a notable decline. From 

an inter-model comparison perspective, Gemini achieves the highest scores in both Python and Java, 

outperforming all other models. The second-best performing model is OpenAI o1 pro, which 

surpasses both OpenAI o1 and GPT 4o. On the other hand, Claude 3.5 demonstrates the weakest 

performance, scoring lower than all other models in both Python and Java. In the case of Swift, 

OpenAI o1 pro stands out with a significant performance gap compared to the other models. Overall, 

Gemini performs well in both Python and Java, but the performance gap between it and other well-

performing models, such as o1 pro, is marginal. In contrast, o1 pro performs the best in Swift, with a 

noticeable performance gap over the other models, demonstrating a clear advantage in competence. 
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This highlights the superior capability of OpenAI o1 pro in handling Swift, a relatively less widely 

used programming language. 

 

Figure 1 : Model Performance Comparison Across Programming Languages. 

4.1.2. Average Lines of Code 

As illustrated in Figure 2, GPT-4o generates the most concise code in both Python and Java, 

producing significantly fewer average lines of code compared to the other models. This effect is 

particularly pronounced in Python, where GPT-4o exhibits a substantially lower average line count, 

indicating high efficiency in code generation for these two programming languages. However, in 

Swift, GPT-4o produces a notably higher number of lines of code than the other models, suggesting 

reduced efficiency in code generation for this programming language. 

In contrast, OpenAI o1, OpenAI o1 pro, Claude 3.5, and Gemini 2.0 demonstrate relatively similar 

performance in terms of average lines of code generated. While their line counts generally exceed 

those of GPT-4o, the differences are not as pronounced. Notably, Gemini 2.0, despite generating 

slightly more lines of code, maintains a relatively high level of accuracy, indicating an effective 

understanding and application of programming languages. 

Overall, while GPT-4o demonstrates superior performance in Python and Java, Gemini 2.0 

exhibits strong cross-programming language capabilities by producing relatively concise code while 

maintaining high accuracy. This suggests a deeper comprehension of programming languages and an 

enhanced ability to generate efficient code across multiple programming environments. 
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Figure 2 : Average Lines of Code Generated by Different Models. 

4.1.3. Time complexity and Space complexity 

From Figure 3, it can be observed that, with respect to time complexity, the models perform 

significantly better in Swift compared to Python and Java. According to our scoring methodology, a 

score of 0 for all AI models in a given language indicates that all models provide the same complexity 

answers for all programming problems within that language. Therefore, a higher total score for 

models in a particular language suggests a greater tendency for different models to produce varying 

complexity answers, indicating greater instability in terms of complexity in their responses. The 

information from the figure illustrates that, in Swift, there is considerable variation in the time 

complexity answers provided by different models across different problems, with this variation 

consistently observed across multiple problems. In contrast, Java receives the lowest scores among 

the three programming languages, suggesting that, when addressing programming problems in Java, 

the models tend to provide more consistent time complexity answers. This disparity can be attributed 

to the training data discussed earlier. As Swift is a less commonly used programming language, it 

likely lacks sufficient training samples, leading to a lack of reference templates when models 

encounter Swift-related problems, which results in greater variation in time complexity. Conversely, 

Java, being a widely used language, benefits from a larger number of training samples, allowing 

models to generate more consistent time complexity answers for Java-related problems based on the 

best reference templates, thus resulting in more stable time complexity. 

Additionally, OpenAI o1 Pro achieves the highest scores in both Swift and Python, indicating that, 

when coding in these languages, OpenAI o1 Pro is more likely to provide the lowest time complexity 

answers across a greater number of problems compared to other models. This further highlights the 

superior performance of OpenAI o1 Pro in handling Swift, a less widely used programming language, 

compared to other models. 

From Figure 4, it can be observed that the overall scores of different models in terms of space 

complexity are relatively low, and in all three programming languages, these scores are significantly 

lower than the scores for time complexity. This suggests that, when addressing programming 

problems, the models tend to provide consistent space complexity answers across the three 

programming languages. In other words, the space complexity of the answers generated by AI models 

remains relatively stable. 

13.3

22.3 22.1
20.8 21.3

20.2
22.6 23.4

21.4 21.2
20.1

17.1
15.5

14.1 13.7

0

5

10

15

20

25

ChatGPT 4o OpenAI o1 OpenAI o1 pro Claude 3.5 Gemini 2.0

Average Lines of Code

Python3 Java Swift

Proceedings of  SEML 2025 Workshop:  Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/146/2025.TJ22242 

118 



 

 

 

Figure 3 : Time Complexity Scores of Different Models. 

 

Figure 4 : Space Complexity Scores of Different Models. 

4.1.4. Multiple-Answers Count 

Figure 5 illustrates significant variations in the number of multiple answers generated across different 

models and programming languages. Among these models, Claude 3.5 stands out, particularly in 

Python3, followed by OpenAI o1 pro. This suggests that these models are particularly effective at 

generating multiple answers for Python3. 

In contrast, GPT 4o and Gemini 2.0 generate relatively fewer answers across all programming 

languages, with GPT 4o showing the lowest performance in Swift and Java. Similarly, Gemini 2.0 

also generates fewer answers in Java and Swift. 

It is noteworthy that o1 Pro provides a relatively balanced number of multiple answers across all 

three programming languages, with a significantly higher number of answers generated in Swift 

compared to other models. This suggests that o1 Pro exhibits strong adaptability in generating 

multiple answers, offering diverse solutions that are not constrained by the programming language 

itself, and demonstrates superior proficiency in handling the Swift language compared to other 

models. 
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Figure 5 : Multiple-Answers Count of Different Models. 

4.2. Expanded Performance Analysis 

4.2.1. Performance Analysis by Task Difficulty 

Based on the data presented in Table 2 and Figure 6, it can be inferred that, when the problem 

difficulty is relatively low, models with superior capabilities, such as OpenAI o1 pro, do not fully 

exhibit their potential advantages. Specifically, in the easy difficulty category, due to inherent 

instability in the AI model responses, OpenAI o1 pro occasionally produces errors on simpler tasks, 

even though such errors are not observed in the responses of GPT-4o and OpenAI o1. As a result, o1 

pro ranks fourth in terms of accuracy in the easy category. 

However, as the difficulty level increases—particularly in the medium and hard categories—the 

advantages of higher-performing models become more pronounced. These models demonstrate 

superior adaptability and problem-solving abilities, especially in dealing with complex issues. 

Notably, OpenAI o1 pro shows a progressively widening gap in its score rate compared to other 

models. In the easy category, it ranks fourth, but in the medium category, it rises to first place. In the 

hard category, although all models experience a decline in their scores, o1 pro’s performance 

decreases at a slower rate and it retains its leading position. This suggests that, as the complexity of 

the problems increases, the true strengths of these models are realized, particularly for those that 

initially showed weaker performance on simpler tasks but performed better on more complex 

problems. 

In contrast, Claude 3.5, while ranking lowest in the overall score, shows a noticeable decline in 

performance as the difficulty increases. Nevertheless, in the easy category, it maintains a stable 

performance, scoring just below Gemini 2.0, and outperforming all the OpenAI models. This 

indicates that while Claude 3.5 struggles with more complex problems, it performs relatively well on 

simpler tasks. 
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Table 2 : The Specific Scores of Different Models across Different Difficulty Levels. 

Model 
Programming 

Language 
Easy Medium Hard 

GPT-4o 

 

Python3 132 119 125 

Java 131 119 123 

Swift 126 106 119 

OpenAI-o1 

Python3 132 119 125 

Java 129 119 129 

Swift 125 105 121 

OpenAI-o1 pro 

Python3 130 119 129 

Java 132 119 126 

Swift 125 111 129 

Claude 3.5 

 

Python3 132 119 119 

Java 133 115 123 

Swift 126 110 109 

Gemini 2.0 

Python3 132 119 127 

Java 132 119 130 

Swift 129 107 116 

 

Figure 6 : Trend of Model Scoring Rates. 

4.2.2. Thinking Time Analysis 

In this study, we specifically recorded the average thinking times of the OpenAI o1 and OpenAI o1 

pro models when processing problems of varying difficulty levels. As shown in Table 3, the detailed 

data illustrate the distribution of thinking times across different difficulty levels for these models. 

Although the thinking times of other models are not displayed, they generally exhibit response times 

close to zero seconds, indicating minimal delay in generating answers. 

This disparity aligns with psychologist Daniel Kahneman's "Thinking, Fast and Slow" theory [39], 

which distinguishes between "System 1" (fast, intuitive thinking) and "System 2" (slow, deliberate 

thinking). In this framework, System 1 is characterized by quick, automatic responses to simple tasks, 

while System 2 involves thoughtful, logical reasoning when faced with complex problems. 
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Recent advancements have applied this theory to AI model design. For instance, Google's 

DeepMind researchers developed the Talker-Reasoner framework, enabling AI agents to perform 

both rapid and deliberate thinking to better handle complex tasks [40]. 

OpenAI's official documentation indicates that the thinking mechanism of OpenAI o1 and its 

derivatives aligns with the characteristics of System 2 [33], exhibiting a typical Think Slow approach. 

Before generating responses, these models engage in deeper reasoning and computation, whereas 

models with shorter response times are more likely to rely on a Think Fast strategy for rapid decision-

making. 

Notably, even among the o1 and o1 pro models, the average thinking time of o1 pro is 

approximately ten times longer than that of o1. Considering our previously recorded accuracy rates 

and overall scores, the increased thinking time did not significantly enhance accuracy for lower-

difficulty questions (classified as Easy and Medium in this study). However, for higher-difficulty 

questions (classified as Hard), the extended thinking time resulted in a notable improvement in 

efficiency. 

Nevertheless, whether such prolonged thinking times justify the modest accuracy gains remains a 

topic for further discussion. In practical applications, balancing thinking time with response speed to 

meet the demands of various scenarios is an area warranting deeper exploration. 

Table 3 : Comparison of Thinking Time. 

Model 
Programming 

Language 
Average Thinking Time (s) 

OpenAI-o1 

Python3 4 

Java 6.5 

Swift 8.0 

OpenAI-o1 pro 

Python3 75.8 

Java 80.3 

Swift 86.4 

4.2.3. Analysis of Incorrect Answer Types 

In this study, we categorized the errors made by different models in their responses into four types: 

argument or operation errors, runtime errors, answer discrepancy errors, and output format errors. 

Argument or operation error refer to fundamental mistakes that occur when using functions 

incorrectly or performing invalid operations on data structures. For instance, in the Swift code written 

by Claude 3.5 for the Wordladder II problem, the code attempts to access a property of an optional 

type without first unwrapping it. In Swift, optional types must be unwrapped before accessing their 

properties. The failure to perform this unwrapping step led to a compile error, causing the entire code 

to be non-functional. Such errors are indicative of a lack of proficiency with the programming 

language, often occurring among novice programmers. 

Runtime error occur when there are no syntax errors or issues with data structure operations, but 

problems arise during array manipulation due to insufficient consideration of boundary conditions. 

For example, attempting to access an element outside the bounds of an array can result in a runtime 

error. This error type indicates a failure to account for special cases in the problem-solving logic. 

While more advanced than simple syntax errors, runtime errors still cause program crashes due to 

accessing non-existent array elements, highlighting the lack of robustness in the code. 

Answer discrepancy error occur when the code runs correctly, but produces incorrect results for 

specific test cases. These errors are typically caused by insufficient consideration of edge cases and 

extreme values, similar to runtime errors. However, unlike runtime errors, these errors do not cause 
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the program to crash, allowing the code to continue running. This makes the code more robust than 

in cases of runtime errors. Nevertheless, the failure to account for certain conditions still leads to 

incorrect outputs in specific scenarios. 

Output format error occur when the output differs from the expected result, not due to content 

discrepancies, but due to formatting issues, such as extra spaces or punctuation differences. While 

these errors are flagged as incorrect by the automated system, manual verification by the researchers 

confirms that the content matches the expected result. Although automated systems classify these as 

errors, they are generally considered more acceptable due to their minor nature, typically stemming 

from formatting issues. Even experienced programmers may encounter such errors, which are 

generally regarded as less critical compared to other types of errors.  

Table 4 presents the error type statistics for different models across various programming 

languages. From the table, it is evident that the majority of errors in Python and Java are Answer 

Discrepancy Errors, where the code produces incorrect results for certain boundary conditions 

without affecting the overall functionality of the program. In contrast, Argument or Operation Errors, 

which stem from a lack of understanding of the programming language, and Runtime Errors, which 

have a more significant impact on the program's stability, are more commonly observed in Swift. This 

trend is consistent across all models. Therefore, we can infer that, as a less commonly used 

programming language, AI models may have insufficient training data for Swift, leading to a higher 

frequency of basic errors. Consequently, caution should be exercised when using AI to assist in 

writing code for rare programming languages. 

Table 4 : Error Type Statistics 

Model 
Programming 

Language 

Argument or 

operation 

errors 

Runtime 

errors 

Answer 

discrepancy 

errors 

Output 

format 

errors 

GPT-4o 

Python3 0 1 4 0 

Java 0 0 5 1 

Swift 2 6 10 0 

OpenAI-o1 

Python3 0 0 4 0 

Java 0 0 4 0 

Swift 2 7 9 0 

OpenAI-o1 pro 

Python3 0 0 3 0 

Java 0 1 3 0 

Swift 0 5 5 0 

Claude 3.5 

Python3 0 0 7 0 

Java 1 0 6 0 

Swift 4 4 15 0 

Gemini 2.0 

Python3 0 0 2 0 

Java 0 0 2 0 

Swift 2 6 8 0 

5. Conclusion 

This study systematically evaluates the performance of several mainstream Large Language models 

(GPT-4o, OpenAI o1, OpenAI o1 pro, Claude 3.5, and Gemini 2.0) across a series of code generation 

tasks in three programming languages: Python, Java, and Swift. By analyzing key metrics such as 

total score, average lines of code, time complexity, space complexity, and multi-answer generation 
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capability, this study provides a comprehensive comparison of the models' effectiveness in 

programming-related tasks. 

The results indicate that OpenAI o1 pro and Gemini outperform other models in overall accuracy. 

Meanwhile, “Think Slow” models, represented by OpenAI o1 pro and OpenAI o1, exhibit lower 

accuracy in handling low-difficulty programming tasks, sometimes falling behind “Think Fast” 

models. However, as task complexity increases, these “Think Slow” models demonstrate greater 

adaptability and problem-solving capabilities, suggesting that users should balance response time and 

accuracy based on task complexity. On the other hand, “Think Fast” models, despite their lower 

accuracy, exhibit notable strengths: GPT-4o generates the most concise code, indicating efficiency in 

solution formulation; Claude 3.5 generates multiple possible solutions, offering users a diverse range 

of options, and performs well on low-difficulty problems. Gemini, although categorized as a “Think 

Fast” model, achieves accuracy comparable to OpenAI o1 pro and OpenAI o1, highlighting its robust 

overall performance. 

A cross-programming language comparison indicates that all AI models perform well when 

handling widely used programming languages such as Python and Java. Although Gemini 

outperforms other models in these two languages, the performance gap between models remains 

relatively small. However, when processing Swift, a less commonly used programming language, the 

performance of all AI models declines. This decline is reflected in a reduction in accuracy and a 

decrease in multi-answer generation capability. Notably, OpenAI o1 Pro exhibits a more gradual 

decline in performance compared to other models, maintaining a substantial lead, which suggests that 

it is more effective in handling tasks related to Swift. 

Furthermore, error type analysis provides deeper insights into model performance across different 

programming languages. For Java and Python tasks, most errors involve formatting inconsistencies 

or logical mistakes that do not affect overall program execution. However, for Swift-related tasks, 

models frequently encounter fundamental syntax errors, operational mistakes, and critical logical 

errors that can cause program crashes. This finding suggests that models exhibit lower proficiency in 

niche programming languages, largely due to insufficient training data. It also highlights a key 

limitation of LLMs in programming—performance degradation in low-resource programming 

languages. Therefore, developers using AI models for niche programming language programming 

should exercise caution, verifying AI-generated code to enhance reliability. 
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