
Advancing Multi-Agent Pathfinding in Gaming: A Review
of Cooperative, Dynamic, and Real-Time Algorithmic

Optimizations

Yujie Jin1∗, Yuhan Chen2, Chris Shen3

1University Of Leeds, Leeds, UK
2Nanjing University, Nanjing, China

3Dongsheng 1st High School, Erdos, China
*Corresponding Author. Email: mplau001@email.phoenix.edu

Abstract: Multi-agent pathfinding (MAPF) is a problem focused on coordinating multiple
agents to navigate from starting positions to goals in shared environments while avoiding col-
lisions. This capability is important for applications in areas such as computer gaming and
robotics, where efficient and safe navigation in complex environments is required. Although
advancements have been made, challenges remain in areas such as multi-agents cooperation,
MAPF under dynamic environments, and real-time MAPF. This paper reviews three advanced
MAPF algorithms: Cooperative Conflict-Based Search (Co-CBS), which extends the tradi-
tional CBS algorithm by introducing cooperative planning; Dynamic Incremental Conflict-
Based Search (DI-CBS), which adapts to environmental changes through integration with
ECT and SLPA* algorithms; and Bounded Multi-Agent A* (BMAA*), which enables agents
to independently plan paths using real-time heuristic search without explicit coordination.
Experimental results highlight the distinct characteristics and advantages of each algorithm
across different scenarios.

Keywords: Path Planning, Conflict Search, Dynamic Environment, Cooperative Algorithm,
Real-Time Search

1. Introduction

Pathfinding algorithms have always been a significant area of research within computer science and
artificial intelligence. In gaming, these algorithms encounter uniquely complex challenges not typ-
ically found in more static, primarily due to the unpredictable nature of game environments. For
example, some algorithm frameworks cannot solve the cooperative tasks of agents, which means all
NPCs cannot interact and coordinate with each other from the starting position to the target position
during the task. Secondly, the movement of character positions and task updates may require NPCs
to move in dynamic environments. Lastly, some non-real-time pathfinding algorithms may result in
multiple NPCs crowding and blocking the roads, even leading to deadlocks. That’s why Multi-Agent
Pathfinding (MAPF) is a key area, involving multiple agents planning paths in a shared environment

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

41

and avoiding collisions. Typical algorithms, such as Conflict-Based Search (CBS) [1], Windowed
Hierarchical Cooperative A* (WHCA*) [2] and Flow Annotated Replanning (FAR) [3], often suffer
from high search costs and are unable to adapt to more complex situations. Therefore, we review
improved algorithms such as Cooperative Conflict-Based Search (Co-CBS), Dynamic Incremental
Conflict-Based Search (DI-CBS) and Bounded Multi-Agent A* (BMAA*).

The first paper introduces Cooperative Conflict-Based Search (Co-CBS), a novel algorithm de-
signed for Cooperative Multi-Agent Path Finding (Co-MAPF), enhancing the classical Conflict-Based
Search (CBS) with elements of cooperative planning. In the context of gaming, one example could
involve several agents that must collaboratively navigate a complex environment to complete joint
missions, such as moving large obstacles that cannot be handled by a single agent. This scenario un-
derscores the need for cooperative behavior to achieve shared objectives in environments that change
dynamically. The Co-CBS algorithm introduces a new search level on top of the classical CBS al-
gorithm, managing to handle the cooperation between agents. It then presents improved versions for
efficiency, and demonstrates its effectiveness through experiments. The paper also discusses future
directions for Co-CBS and the Co-MAPF framework.

The second paper uses a new algorithm, called DI-CBS, to solve Incremental-MAPF questions.
In the game, the environment will change, which requires the agent to refer to the changes in envi-
ronmental factors to adjust the route when searching for a path. When there are a large number of
intelligent agents, the routing algorithm still needs to ensure efficiency. DI-CBS effectively solves
these two problems. This algorithm uses ECT for high-level scheduling and SLPA* for low-level
computation. This reduces unnecessary calculations, saves memory usage, and improves efficiency.

Finally, real-time algorithms can generate the next move for all agents without the need to find
complete paths for them. BMAA* achieves this by allowing each agent to conduct a separate real-time
heuristic search and treating other agents as moving obstacles, eliminating the need for coordination
and segment sharing between agents. This approach improves completion rates and reduces search
time and cost.

2. Background

MAPF is a significant problem in the field of pathfinding. Numerous studies have been carried out
to address it. We first provide a definition of the classic Multi-Agent Path Finding (MAPF) problem.
We then discuss a classic algorithm developed to address the MAPF problem, followed by several
advancements relevant to the current study.

The Multi-Agent Path Finding (MAPF) [4] problem is a critical multi-agent planning challenge
which aim at planning paths for multiple agents to move concurrently and reach their respective goals
without collisions. The problem input includes an undirected graph G of the environment, the starting
points s for the agents, and the target points t. Agents move in discrete time steps, where each agent
can choose to stay in place or move to an adjacent vertex at each time step. A solution provides k path
plans of action sequences, one for each single agent.

The Conflict-Based Search (CBS) algorithm [1] is an optimal search method for the classical
Multi-Agent Path Finding (MAPF) problem. It has a two-level search structure: at the high level,
CBS constructs a Conflict Tree (CT) to identify and resolve agent conflicts, with each node recording
a set of constrains. at the low level, the algorithm independently searches for optimal paths for each
agent that satisfy specific constraints in a node. Each time a conflict in paths is found at the low level,
constraints will be added to avoid that conflict, generating sub-nodes with more constraints. Once
optimal paths are generated for all agents without any conflicts, these paths collectively form a valid
solution to the problem.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

42

Flow Annotated Replanning (FAR) [3] is a path planning algorithm that aims to react to envi-
ronmental changes in real-time by annotating and modeling the environment. To maintain scalability
while keeping CPU and memory requirements low, FAR begins with a preprocessing step that ab-
stracts a grid map into a flow-annotated search graph. This structure is enhanced with flow constraints
to avoid head-on collisions and reduce the search’s branching factor. Next, a full A* search is per-
formed independently for each agent, calculating a path that disregards other agents on the map. Plan
execution starts as soon as a path is computed for each agent. A strategy based on waiting and reser-
vation is employed to mitigate potential deadlocks, which occur when two or more agents cyclically
wait for each other, a situation that is not unique to FAR but can arise in any multi-agent system. Ex-
amples of deadlocks include agents facing each other in narrow corridors or at intersections without
adequate passing room. If deadlocks cannot be avoided, FAR employs a deadlock-breaking procedure
to locally adjust plans rather than undertaking a comprehensive replanning step.

3. Cooperative Multi-Agent Path Finding: Beyond Path Planning and Collision Avoidance

In [5] , the paper focuses on the Cooperative Multi-Agent Path Finding (Co-MAPF) problem, which
extends the classical MAPF problem by adding cooperation to agents’ tasks. To handle this problem,
the paper introduces the Cooperative Conflict-Based Search (Co-CBS) algorithm. This algorithm adds
a cooperative searching level on top of the classical CBS algorithm. The authors also introduce two
advanced Co-CBS algorithms that make computation faster. Experiments are designed and conducted
to demonstrate basic and improved Co-CBS’s efficiency in solving Co-MAPF instances.

3.1. Problem Defination of Co-MAPF

The Cooperative Multi-Agent Path Finding (Co-MAPF) problem involves finding paths for multi-
ple agents while agents should cooperate to complete tasks in a shared environment while avoiding
collisions.

To formally define the Co-MAPF problem, the paper employs a structured framework. The paper
refines the cooperative task to a specific problem where two agents work together to accomplish a
pathfinding task. Agents are paired as initiators and executors, as (αi, βi). A task is assigned to each
pair of agents, requiring the initiator to move to the task’s start location si, both agents to meet at
a calculated meeting point, and the executor to move to the task’s goal location gi. When a pair
of agents reaches their meeting point, they occupy the same location, but this is not considered a
collision. Fig. 1 is an example of four agents with two tasks. The solution to Co-MAPF includes pairs
of paths for cooperating agent pairs, one for each pair of agents, to complete the cooperative tasks
without collisions. The paper uses the Sum of Costs (SOC) as its objective function, defined as the
total number of time steps required for each agent to complete their tasks.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

43

Figure 1: An example instance with two tasks: agents α1 and β1 execute task 1 from s1 to g1, and
agents α2 and β2 execute task 2 from s2 to g2 [5].

3.2. Co-CBS Algorithm

Figure 2: An example of Co-CBS search forest [5].

The paper designed Cooperative Conflict-Based Search(Co-CBS) algorithm to address Co-MAPF
problem. Co-CBS is a three-level search algorithm, comprising the meetings level, the conflicts level,
and the paths level. At the meetings level, it searches over all situations of meeting arrangements for
the agent pairs. At the conflicts level, Co-CBS detects and resolves possible conflicts among agents.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

44

Figure 3: Success rates of Co-CBS and Co-CBS improved by PC and LE in four different maps [5].

Lastly, at the paths level, the algorithm generates specific paths for the agents, satisfying constraints
imposed by higher levels. A meeting table is used to record a set of certain meetings and their cost,
which varies with meeting times and locations.

The algorithm begins with constructing a initial meeting table with meetings of the minimal cost,
the total number time steps required to meet, for each pair of agents, and generating a root node con-
taining the initial meeting table. Subsequently, the algorithm loops to expand nodes, and conducts its
three-level search, Fig. 2 as an example of Co-CBS process. Each time step, the algorithm selects the
cost-least node to expand. When the algorithm encounters a ”root node”, it signifies a point where a
decision is made regarding the initial meeting plans for each agent pair. At this juncture, the algorithm
generates a new root node for each pair, substituting the existing meeting plan with the subsequent
most favorable meeting from the meeting table. This method allows Co-CBS to comprehensively
explore all potential optimal combinations of meeting plans across the network of agents. As the
search progresses to the two lower levels, the algorithm actively monitors for any collisions among
the agents. Upon detecting a collision, Co-CBS intervenes by dividing the affected constraint tree
node into two child nodes. This split is designed to introduce new constraints that effectively prevent
the recurrence of the same collision in future paths, while maintaining the originally planned meetings
from the root node intact. The process of expanding nodes involves examining each node’s associated
costs and constraints, adjusting the search path to navigate around identified conflicts through the
newly created child nodes. This iterative expansion and adjustment continue until Co-CBS identifies
the first valid solution that meets all constraints without any collisions, deeming it the optimal solution
for the scenario.

3.3. Advanced Co-CBS

The article introduces two improvements to the basic Co-CBS. The first is Prioritizing Conflicts(PC)
[6], a significant improvement for classical CBS. In PC, conflicts are classified into different types, and
conflicts that are more likely to lead to optimal solutions are given priority for expansion. Due to the
meeting requirements of Co-CBS, implementing PC in Co-CBS requires modifying the construction
of the Multi-Value Decision Diagram (MDD), which is done by eliminating invalid nodes through
breadth-first searches.

Additionally, this paper introduces a unique improvement for Co-CBS called Lazy Expansion
(LE), which utilizes the special characteristics of root nodes. Applying LE, the cost of root nodes is
precomputed and recorded. Co-CBS then creates root nodes without immediately calculating their
low-level searches, only recording the cost for expansion. Low-level paths are only computed when
nodes are chosen as the current least-cost node to be expanded. Since most generated nodes are not
expanded, LE may save significant runtime while maintaining optimality.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

45

3.4. Experiment

To evaluate the performance of the Co-CBS algorithm in addressing the Co-MAPF problem, the
authors conducted a series of experiments. These experiments were performed on four different 2D
grid maps, including dense game maps, random maps, and two warehouses of different sizes. Each
map was assessed with varying numbers of tasks from 6 to 22, within a two-minute timeout constraint.

The experimental results, illustrated in Fig. 3, show that the basic Co-CBS algorithm achieves a
high success rate in scenarios with a smaller number of tasks. However, as tasks increase on denser
maps, the success rate of basic Co-CBS decreases significantly due to its limitations in handling com-
plex conflicts and meeting arrangements. In contrast, the enhanced algorithms, Prioritizing Conflicts
(PC) and PC combined with Lazy Expansion (PC+LE), demonstrate improved performance, espe-
cially in environments with a large number of tasks. These improvements suggest that PC and PC+LE
better manage the additional complexity introduced by increased task numbers. Results from Fig. 4
highlight that in sparser warehouse environments, Co-CBS quickly finds feasible solutions using the
initial meeting plans. However, in smaller and denser settings, a more exhaustive search is necessary
to discover the optimal solution, increasing computational demands. This exhaustive search indicates
the trade-off between solution quality and computational cost. While PC and PC+LE improve suc-
cess rates, they also introduce higher computational loads. Specifically, PC and PC+LE require more
processing to prioritize conflicts and manage expanded search trees effectively, which can lead to in-
creased memory usage and processing time. These factors are critical considerations, as the improved
outcomes come at the cost of higher resource utilization and potentially slower performance under
high-demand conditions.

Figure 4: (a) Number of generated sets of meetings. (b) Ratio η between the number of instances
solved using the first set of meetings, and the total number of instances [5].

3.5. Conclusion

The paper introduces the Cooperative Conflict-Based Search (Co-CBS) algorithm, addressing the
Cooperative Multi-Agent Path Finding (Co-MAPF) problem by which extends classical CBS with

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

46

a cooperative layer to handle agents’ cooperative actions. Two advanced improvements, Prioritizing
Conflicts (PC) and Lazy Expansion (LE), enhances the algorithm’s scalability and performance. Ex-
perimental results demonstrate that the basic CBS successfully completed the Co-MAPF tasks, while
the improved algorithms performed better in complex environments and under higher task loads.

The paper also explores future developments for Co-CBS and the Co-MAPF framework. Reusing
information between constraint trees (CTs) can reduce computation time, and using efficient meeting-
level algorithms, like CF-MM*, offers further improvements. Advanced CBS techniques, such as
heuristic search, conflict splitting, and symmetry breaking, may also enhance Co-CBS. Adapting the
meeting-level search to support adjacent-location meetings improves real-world applicability. Ex-
panding the framework to handle more agents, introduce temporal constraints, and incorporate life-
long planning could further extend its practicality for complex, real-world scenarios.

4. Incremental Conflict-Based Search for Multi-agent Path Finding in Dynamic Environment

This article introduces an algorithm based on incremental CBS to solve the I-MAPF problem. The
article uses a binary environment conflict tree for high-level scheduling and SLPA* for low-level
scheduling, which improves efficiency by inheriting the global scheme and only changing the routes
around obstacles. The article compares the method proposed in the article with CBS planner through
experimental design, demonstrating that their approach can maintain high efficiency in scenarios with
frequent environmental changes.

4.1. I-MAPF Problem Definition

Incremental Multi-Agent Pathfinding (I-MAPF) is the full name for this approach, which involves
agents continuously adjusting their paths in response to changes in their environment to avoid colli-
sions and other issues. This flexible approach is necessary because static pathfinding methods often
fail in dynamic scenarios where the environment can unpredictably change. Among the various so-
lutions addressing this problem, conflict search-based solutions are particularly notable. This method
stands out because it can dynamically adapt to changes without the need for restarting the path search,
which makes it more efficient in environments where changes occur frequently. Several algorithms
have been developed to enhance the capabilities of Conflict-Based Search (CBS). For example, the
CBS-planner and CBS-D*-lite schemes, which are designed to manage dynamic environments by
reconstructing conflict trees[7], allow for more granular control over the pathfinding process, thereby
improving the resolution of conflicts and the efficiency of pathfinding.

The article provides an image to better illustrate the I-MAPF problem. As shown in Fig. 5, the
map consists of undirected and unweighted squares. Solid circles represent the initial positions of
agents, while hollow circles represent their goals. The dashed line illustrates the path of an intelligent
agent under global planning. Blue squares indicate newly emerging obstacles, and red squares mark
the locations where collisions have occurred, affecting the agents’ paths.

4.2. Method Description

In high-level scheduling, the article adopts a binary environment conflict tree to solve the problem.
Each node on this tree stores constraints, solutions, and costs. The expansion scheme of the node is
shown in the Fig. 5. When a new obstacle appears or a collision point is estimated, the node will
record the position of the obstacle and let the agent avoid this position. At the same time, perform
low-level scheduling and record the resulting solutions and their costs. This process will continue
until the lowest cost solution is found.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

47

Figure 5: Node Expansion Process Diagram [8]

At the lower level of scheduling, the author used a new algorithm based on LPA* improvement -
SLPA*. This algorithm uses a three-dimensional data (ai, vi, t) to represent the arrival of ai at vertex
vi at time t. If the agent moves to an adjacent vertex in the next time step, its state becomes (ai, vj ,
t+ 1); if it waits at the current vertex, its state becomes (ai, vi, t+ 1). Whenever a node is expanded,
SLPA* will simulate the actions of the agent: up, down, left, right, and stationary, and check for
collisions between the agent and the environment and other agents. If a collision occurs, the point will
be expanded as a child node, and the starting point of SLPA* simulation will backtrack n steps. (n is
an adjustable parameter, usually proportional to the distance between the current position of the agent
and the collision point.) If the new collision point is located after the new starting point, inherit the
path cost of the new starting point, and then perform incremental retrieval.

The article also compared their methods with CBS planner. The main differences between DI-CBS
and CBS planner are as follows:

1. DI-CBS inherits the global scheme and starts calculating based on it. The CBS planner directly
initializes the conflict tree.

2. DI-CBS ensures the continuity of paths and vertices during Environmental Conflict Tree (ECT)
construction by outputting a complete path containing all agents before resolving all current conflicts
and any new environmental changes occur, combining the new solution with the traversed path.

3. Upon the occurrence of environmental changes, DI-CBS updates the ECT by modifying the
timestamp of each node, represented as ECi, where i denotes the index of the node. ECi is then re-
initialized as the node for the next set of constraints to be expanded. The conflict Ci, where i refers
to the specific instance of conflict, is addressed by adding new constraints to the Node during the
lower-level search. This node is continually updated throughout the ECT expansion. ECi remains
unchanged unless new environmental changes are introduced.

4.3. Experimental Explanation

The evaluation utilized the MAPF benchmark, which includes 32 grid maps with varying attributes
such as city maps, random obstacle grids, mazes, and warehouse maps. Each grid can support sim-

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

48

Figure 6: Part of the experimental map [8]

ulations with up to 7000 agents, referring to the entities that navigate the maps, such as robots or
virtual characters, as well as various starting vertices and targets. Some examples of datasets used
in this study are illustrated in Fig. 6. In this field, algorithms commonly employ CBS-H2 for global
path search to determine the initial path of each instance. CBS-H2, or Conflict-Based Search with
Heuristics, is an enhancement of the original CBS algorithm that incorporates heuristic strategies
to optimize pathfinding efficiency by reducing the search space and expediting conflict resolution.
When calculating path cost, both movement and waiting will incur cost 1 unless the agent reaches the
destination. The maximum running time limit for each test is 300 seconds. Firstly, the author used
DI-CBS, CBS-planner, and CBS-D*-lite as pathfinding algorithms and controlled the frequency of
environmental changes in each map, ranging from 4 to 24 changes per unit time. Partial results are
shown in Fig. 7 and Fig. 8, where the x-axis represents the number of environmental changes and
the y-axis represents the calculation time. The number of agents is always 10. The experiment was
conducted on a 32x32 small map and a 100x100 large map. For a 100x100 large map, the experiment
generated 2000 examples of random starting vertices and targets. By comparing these two images,
the author found that the efficiency of CBS planner slightly exceeded DI-CBS (less than 10%) when
there were fewer environmental changes. However, as the number of changes increases to 8 times per
unit time or more, the running time of DI-CBS is of that of CBS planner. Especially when the envi-
ronmental changes exceed 16 times, the running time of CBS-planner and CBS-D* - lite increases
exponentially, reaching near 105ms (which is equal to 100 seconds), while this algorithm keeps about
103ms. Thus, there is a significant time efficiency in DI-CBS.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

49

Figure 7: Experimental results of DI-CBS and CBS-Replanner in map den-520d [8].

Figure 8: Experimental results of DI-CBS and CBS-Replanner in map brc-202d [8].

In addition, the author conducted experiments using DI-CBS and DI-CBS without SLPA* to com-
pare the effectiveness of ECT and SLPA* in accelerating efficiency. The results are shown in Fig. 9
and Fig. 10. The author found that DI-CBS using SLPA* can still maintain high efficiency even in
rapidly changing environments, while DI-CBS without SLPA* has a runtime variation that is basi-
cally consistent with CBS planner. It is obvious that expanding the environment conflict tree nodes can
accelerate retrieval efficiency, and SLPA* has a significant effect in frequently changing scenarios.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

50

Figure 9: Experimental results of DI-CBS and DI-CBS without SLPA* in map den-520d [8].

Figure 10: Experimental results of DI-CBS and DI-CBS without SLPA* in map brc-202d [8].

5. Multi-Agent Pathfinding With Real-Time Heuristic Search

Non-real-time algorithms first determine complete paths for all agents before they begin to move.
However, their searches are often too costly, and when the environment changes (such as obstacles
moving or being added), path replanning may be necessary. Moreover, congestion may occur as mul-
tiple agents share the same segment. The paper [9] is dedicated to the development of real-time algo-
rithms that generate the next actions for all agents, eliminating the necessity to find complete paths for
them, thereby enabling real-time movement of the agents. The authors introduce a real-time heuristic
search algorithm for multi-agent pathfinding, named Bounded Multi-Agent A* (BMAA*) [9]. This
algorithm performs an independent real-time heuristic search for each agent, where heuristic values
are dynamically updated based on the distance or cost from the agent’s current location to its goal.
These heuristic values help guide each agent towards its destination while accounting for changes in
the environment and the positions of other agents. The functions also by considering other agents as
dynamic obstacles, all without mutual coordination or path sharing. Furthermore, the authors conduct

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

51

an experimental comparison of four versions of BMAA* against FAR and A*-Replan across multiple
maps to assess the overall completion rate.

5.1. The Improved Methods

5.1.1. BMAA*

The BMAA* algorithm, a multi-agent pathfinding (MAPF) method, improves upon previous ap-
proaches by allowing each agent to execute its own Real-Time Adaptive A* (RTAA*) search inde-
pendently. Unlike Windowed Hierarchical Cooperative A* (WHCA*), which requires a reservation
table to share paths and adds a time dimension to the search space, or FAR, which relies on flow
annotations but can still result in agents getting stuck, BMAA* operates in real-time without needing
to compute complete paths beforehand.

BMAA* reduces search costs by treating other agents as moving obstacles and does not require
explicit coordination or preprocessing. It is particularly effective in dynamic environments, where the
map can change or players might indirectly affect the movement of NPCs (non-player characters),
minimizing the impact of such changes on the overall search process. This flexibility and adaptability
make BMAA* more suitable for real-time applications than WHCA* and FAR.

5.1.2. RTTA*

The main idea behind the well-known algorithm Real-Time Adaptive A* (RTAA*) is that the A*
algorithm operates by maintaining a priority queue, known as the ”open list,” initially containing only
the start state, scurr. A* selects a state, s, with the smallest f-value(he sum of the g-value) from the
priority queue. If state s is a goal state, the algorithm stops. Otherwise, it expands the state, updating
the g-value(the cost from the start state to s) of each successor state(each state reachable directly from
s) and adding those successors whose g-value has decreased to the open list. This process is repeated
until termination.Upon completion of each A* search iteration, the g-values of all expanded states are
recorded to inform subsequent searches. RTAA* then updates the heuristic function using these values
to expedite future searches, effectively making the algorithm ”adaptive” by improving the heuristic
accuracy based on prior explorations After each A* search, we can make the heuristic function more
informed by computing acceptable estimates of the goal distance of a state, to expedite future A*
searches. Let s be a state expanded during the A* search. Authors obtain an acceptable estimate of its
goal distance gd[s] as follows: the distance from any goal state to state s is equal to the distance from
the start state scurr to s plus the goal distance gd[s]. Therefore, the goal distance gd[s] of state s is not
less than the goal distance gd[scurr] of the start state scurr minus the distance from scurr to s.

gd[s] ≥ f [s]− g[s] (1)

Thus, f [s] − g[s] provides an acceptable estimate of the goal distance gd[s] and can be computed
rapidly. By calculating this difference and assigning it to each state expanded during the A* search, a
more informed heuristic function can be obtained, called Real-Time Adaptive A* (RTAA*).

5.2. Three Extended Modules of BMAA*

In addition, three modules about BMAA* were mentioned in this paper: Procedure NPC-Controller,
Procedure Search-Phase and Procedure Search.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

52

5.2.1. Procedure NPC-Controller

Firstly, in Procedure NPC-Controller, for each agent in the system, the following operations are per-
formed: Firstly, the Search-Phase() method of the agent is called to execute the search phase. Sub-
sequently, if the next movement node for the agent has been determined, it attempts to move. If it
is possible to push other agents (push = true)and the node is blocked by another agent, it pushes the
obstructing agent away.If space is available for the obstructing agent to move into, it is displaced; oth-
erwise, the push operation is halted, and the moving agent waits or recalculates its path. Finally, if the
node n is not blocked by other agents, the agent moves to the node. The time step is then incremented
by 1.

5.2.2. Procedure Search-Phase

Next, In the search phase of BMAA*, the conditions for path search are initially evaluated. In the
event that the path from the current node to the target node is undefined or if the current time exceeds
the specified time limit, the search is executed. In the event that the open list of the search is not
empty, the first node in the open list is selected and its composite cost f is calculated. Then, the
Update-Heuristic-Values procedure is employed to update the heuristic values of the nodes in the
closed list throughout the search process, with the new time limit set to the current time plus the
number of moves.

5.2.3. Procedure Search

At last, in procedure search, the path P and the closed set is first initialized to be empty, the number
of expanded nodes exp is set to 0 and the open set contains the current node, with the cost g from the
current node to the start node set to 0. Then, if the open set is not empty, a loop is executed. If the first
node in the open list is the goal node, or the number of expanded nodes reaches the expansion limit,
the path P is computed and the loop is terminated. Otherwise, the first node is removed from the open
list and added to the closed set. Next, for each neighbor node of the current node, the neighbor node
is determined based on the flow annotations. If the neighboring node is blocked by another agent and
the distance is less than the field of view, then the neighboring node is skipped. If the neighboring
node is not in the closed set, its cost is updated and it is added to the open set. Finally, the number of
expanded nodes exp is updated.

5.3. Experiment

The author conduct an experimental comparison of four versions of BMAA* which are BMAA*,
BMAA*-c, BMAA*-f and BMAA*-f-c against FAR and A*-Replan. BMAA* cannot push other
agents away from the goal locations temporarily and no flow annotations were used, BMAA*-c push
other agents away from the goal locations temporarily, BMAA*-f uses flow annotations, and BMAA*-
f-c combines both features. The experiment assess the overall completion rate across 10 maps from
3 games(Dragon Age: Origins, WarCraft III and Baldur’s Gate II) and ten MAPF instances for each
map with the number of agents ranging from 25 to 400 in increments of 25 and from 400 to 2000 in
increments of 200.

Fig. 11 illustrates the completion rates of various MAPF algorithms across all instances and maps.
As the number of agents increases, completion rates decrease due to heightened congestion and search
efforts. It turns out that BMAA* versions exhibit notably higher completion rates compared to FAR
and A*-Replan for over 200 agents. This is attributed to BMAA* versions’ ability to temporarily dis-

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

53

Figure 11: The average completion rates of FAR, A*-Replan and 4 versions of BMAA* algorithm
over all MAPF instances [9].

place other agents from their goal locations, reducing congestion at choke points and involve larger
travel distances. However, FAR and A*-Replan pre-determine complete paths, leading to shared seg-
ments and resulting in congestion.

5.4. Conclusion

The paper focuses on the significant role of Multi-Agent Pathfinding (MAPF) in many video games
and introduces a new real-time MAPF algorithm, BMAA*. This algorithm employs a modular design
and can be enhanced through the latest flow annotation techniques. Overall, BMAA* demonstrates
the potential of real-time heuristic search for MAPF. However, it has some notable drawbacks: longer
path lengths, susceptibility to congestion, and the possibility of deadlock situations.

If the initial heuristic values are poorly set, leading to depressions in the heuristic surface, agents
may be guided into dead ends. Although recent RTHS techniques have made improvements to shorten
travel distances, in certain cases, agents exploring new areas imperfectly can still be considered rea-
sonable. When other agents cannot leave their goal locations, even the BMAA* versions that can
temporarily push other agents away may still fail to allow all agents to reach their goal positions. This
limitation becomes more pronounced in crowded or complex environments.

In the future, the limitations of the BMAA* algorithm regarding path lengths and congestion is-
sues can be further optimized through techniques such as search space reduction, precomputation, and
heuristic value initialization. These approaches can help reduce path lengths and lower the probability
of congestion, thereby enhancing its applicability in multi-agent pathfinding scenarios.

6. Conclusion

This paper reviews several studies addressing the Multi-Agent Pathfinding (MAPF) problem, high-
lighting their applications in online gaming and a variety of real-world scenarios, including automated
warehouse logistics and customer parking systems. In the literature presented, research on the appli-
cation of cooperative mechanisms in multi-agent pathfinding has been proposed. The paper presents

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

54

an improved solution based on CBS, Co-CBS, which achieves agent cooperation in solving pathfind-
ing problems by operating a meeting level search. Moreover, the paper proposes two improvement
schemes based on Co-CBS to meet the efficiency requirements. Another paper studied the pathfinding
problem of intelligent agents in dynamic environments. This paper adopts ECT to enable intelligent
agents to ”perceive” changes in the environment and avoid newly emerging obstacles. At the same
time, the paper also introduces SLPA*, which meets the efficiency of intelligent agent pathfinding
when the environment frequently changes. The last paper made a certain contribution to real-time
intelligent agent path planning. The paper focuses on studying the pathfinding mechanisms of intel-
ligent agents in many well-known online games and proposes an implementation planning algorithm
called BMAA*. This algorithm includes three programs to improve the path planning of NPCs in the
game and enhance game performance. In summary, this review paper investigates the practical utility
of different algorithms in MAPF, and through a series of experiments, the total research results will
be beneficial for improving the success rate and efficiency of multi-agent pathfinding.

Acknowledgment

Thanks to Professor Bill Nace and two teaching assistants, Fang Chen and Ellen Xv, for their guid-
ance.

References

[1] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial intelligence, 219:40–66, 2015.

[2] David Silver. Cooperative pathfinding. In Proceedings of the aaai conference on artificial intel-
ligence and interactive digital entertainment, volume 1, pages 117–122, 2005.

[3] Ko-Hsin Cindy Wang, Adi Botea, et al. Fast and memory-efficient multi-agent pathfinding. In
ICAPS, volume 8, pages 380–387, 2008.

[4] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the International Symposium on Combinatorial Search, vol-
ume 10, pages 151–158, 2019.

[5] Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin. Cooperative multi-agent path
finding: Beyond path planning and collision avoidance. In 2021 International symposium on
multi-robot and multi-agent systems (MRS), pages 20–28. IEEE, 2021.

[6] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel, David Tolpin, and Eyal
Shimony. Icbs: The improved conflict-based search algorithm for multi-agent pathfinding. In
Proceedings of the International Symposium on Combinatorial Search, volume 6, pages 223–
225, 2015.

[7] Fatih Semiz and Faruk Polat. Incremental multi-agent path finding. In Future Generation Com-
puter Systems, pages 220–233, 2021.

[8] Yu Wang, Yuhong Shi, Jianyi Liu, and Xinhu Zheng. Incremental conflict-based search for multi-
agent path finding in dynamic environment. In Artificial Intelligence Applications and Innova-
tions, 2024.

[9] Devon Sigurdson, Vadim Bulitko, William Yeoh, Carlos Hernández, and Sven Koenig. Multi-
agent pathfinding with real-time heuristic search. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8, 2018.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/134/2025.22268

55

