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Abstract: 1In this study, we evaluate the forecasting effectiveness of the classical ARIMA
model and the deep learning-based LSTM model in the financial domain. An investment port-
folio comprising equal shares of gold, the S&P 500, and 2-year U.S, is constructed to predict
future trends, thereby accounting for market factors and risk-free interest rates. Various his-
torical data are used to train the model and forecast the value of protfolio respectively. For the
ARIMA model, predictions are made by segmenting the model into three groups based on the
time span of the training data. The LSTM model utilizes 80% of the data as the training set
and 20% as the test set. Furthermore, by employing diverse initial states for parallel training
and averaging, errors are reasonably reduced. Key indicators, such as the portfolio’s expected
annual returns, daily logarithmic returns, volatility, and value at risk (VaR), are calculated.
The findings suggest that both the forecasting models and the constructed portfolio are ef-
fective. Future research could focus on using prediction models to optimize and dynamically
adjust portfolios, thereby enhancing returns.
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1. Introduction

In finance, prediction is a key research area, covering stock market trends and derivative pricing. The
complexity of financial data characterized by nonlinear relationships, various factors and irrational
behaviors, makes accurate forecasting challenging. Despite these difficulties, economists continue to
develop methods to improve predictive accuracy and efficiency due to significant investment potential.

Traditional time series forecast models such as ARIMA are commonly used. These models pro-
vide good fit and reference value in time series processing, with applications even in fields like tourism
forecasting[1]. However, their predictive accuracy declines sharply during significant events, and cu-
mulative errors may increase over time.

In machine learning, numerous models like linear regression, decision trees, and ensemble meth-
ods like random forests have been applied effectively, for example in studies on oil options volatility[2].
These models are more effective at solving multicollinearity issues and complex functional relation-
ships. The swift advancement of deep learning has propelled neural networks to the forefront, leading
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to the creation of convolutional neural networks (CNN) and recurrent neural networks (RNN), which
are used for complex nonlinear predictive tasks, such as options pricing[3]. Moreover, neural networks
have a broader range of applications, such as deep neural networks related to the Kyle single-period
model[4]. However, due to the overly intricate relationships between variables, these models only un-
cover correlations within the data, though some scholars are working on methods to interpret them[5].

RNN performs well in fitting data with temporal dependencies because their feedback loops con-
sider both current and past information. However, RNN faces training challenges like the ”vanishing
gradient problem”. To address long-term dependencies and improve training, LSTM networks are
introduced. The key innovation in LSTM is incorporating nonlinear, data-related control into RNN
units[6]. This is achieved through a gating mechanism, which includes input, output, and forget gates,
enabling the network to learn how to retain, transmit, or forget the information[7]. They have been
widely applied in NLP[8], image identification and classification[9], etc. In finance, LSTM models are
increasingly used, such as in studies on the SSE 500 index[10] and stock market jump detection[11].

In this paper, we study the prediction effect of ARIMI model and LSTM by constructing portfolio.
After that, we use the predicted value to calculate the relevant indicators of the portfolio to verify the
effect of the portfolio.

2. Methodology
2.1. Data

A portfolio is created with the S&P 500 index, gold, and 2-year U.S. Treasury bonds. The inclusion
of gold and Treasury bonds is intended to mitigate prediction errors and hedge against stock market
volatility by accounting for various market factors. Data from Yahoo Finance cover daily prices from
2000 to 2023 for these assets. The 2-year Treasury data is converted to daily prices using an initial
amount of $1,000 and daily yields, while gold and S&P 500 data are daily closing prices. These
datasets are then weighted and aggregated to compute the portfolio’s daily prices.

During data processing, the first step is to remove missing and outlier values. For the ARIMA
model, it is crucial to apply differencing to achieve stationarity in the series. For the LSTM model,
the steps of standardizing the data, subtracting the mean and dividing by the standard deviation are
taken.

2.2. ARIMA model

The ARIMA (AutoRegressive Integrated Moving Average) model is a fundamental tool in time series
analysis, designed to address the limitations of traditional regression methods, which often fail to ac-
curately model the dynamic nature of time series data, resulting in significant prediction errors. These
errors typically arise from the inability of direct regression to capture complex data structures and
error correlations inherent in time series. As that data might not always be stationary, a differencing
process is added, culminating in the ARIMA model[12].

The ARIMA model is composed of three primary elements: Autoregression (AR), Differencing
(1), and Moving Average (MA). The autoregressive term describes how current values are related to
its past values. Differencing is used to make a unsteady time sequence stationary. The moving average
component captures the relationship between series values and past forecast errors.

Thus, an ARIMA model is typically denoted as ARIMA(p,d,q) and can be written as:

p q
AdXt =c+ Z ¢iAdXt_i + Z Gjet_j + €& (1)

i=1 j=1
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Where A4X, represents the differenced time series after d operations.

We stabilize the data through differencing first, and then select the optimal ARIMA parameters
(p,d, q) using the AIC criterion. The ARIMA is the model trained on the first five years of data to
forecast the next five days. Using a rolling window approach, we re-fit the ARIMA model for each
prediction, generating forecasts for one year, as illustrated in figure 1.

5 daily predictions
5 day rolling from test data
window

Training

Forecasting

Figure 1: Blocks of forecast and training sets

2.3. LSTM
2.3.1. Introduction of LSTM

LSTM networks enhance traditional RNNs by using a memory cell to effectively learn long-term
dependencies and address gradient issues. The figure 2 is the process of LSTM,

Figure 2: LSTM

LSTM networks use input, forget, and output gates to manage information flow within the memory
cell, effectively balance the intake of new data, retention of past information, and output to enhance
modeling of long-term dependencies.

fe=0W;y - [x¢, he1] + by) 2)

i = o(W; - (@, hia] + b;) 3)
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where f; is the output of forget gate, i, represents the input gate value, and o; denotes the output gate
activation. And o is the sigmoid activation function that make values range between 0 and 1.

At time step t, the cell state C; is adjusted by merging the previous cell state C';_; with the new
candidate cell state C, as regulated by the forget gate f; and the input gate ¢,. The forget gate deter-
mines how much of C;_; is retained, while the input gate controls the amount of C, to be added. The
update rule for the cell state is given by,

Ct:ftQCt—l—l—it@ét (5)

where 3
Ct = tanh(WC . [ht—la xt] + bC’)

Finally, the output A, is influenced by both the output gate o; and the tanh function applied to the cell
state C,.
ht = O¢ * tanh(C't) (6)

2.3.2. Training and Ensemble

The LSTM model are employed for time series forecasting, using 80% of the data for training and
20% for testing. The model is trained with a 12-day window size and a batch size of 64, and utilize
96 hidden units to balance complexity and long-term dependency capture.

Instead of using a single LSTM network, an ensemble of independently initialized LSTM net-
works are used. This approach improves prediction, enhances generalization and performance while
reducing overfitting. In time series analysis, ensemble LSTM models capture diverse patterns and
dependencies, leading to more reliable and accurate predictions.

Seven distinct weight initialization strategies are employed to enhance the performance and gen-
eralization capability of our LSTM networks. These initialization methods include:

Table 1: Different initializations for each LSTM

Initialization Details Parameters
Random Normal Normal Distribution ©=0.0,0=0.05
Random Uniform Uniform Distribution min = -0.05, max = 0.05
Truncated Normal Normal Distribution where o > 2 are redrawn 1 =0.0,0=0.05

Xavier Normal Normal Distribution 1n=0.0,0 = ,/m
Xavier Uniform Uniform Distribution with [-lemit,limit] limait = m
Identity Identity matrix
Orthogonal Orthogonal matrix
3. Result

3.1. Result of ARIMA

Figure 3 shows the relative error of ARIMA model predictions for portfolio prices with training
periods of one year and 2 years. The average relative error is approximately 0.0063 for the 1-year
model, and 0.0061 for the 2-year model. There are similar trends about notable errors in March and
October 2023 likely due to random or seasonal factors.
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Figure 3: Relative error between actual and forecast values of ARIMA

Further observation of the price trends, shown in figures 4 with the same sequence as the relative

error plots, reveals that the predicted price trends lag behind the actual data. The predicted volatility
is also slightly lower, but the overall trend remains consistent.
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Figure 4: Predictions of ARIMA

3.2. Result of LSTM

By using seven different LSTM networks, the prediction figures of some of these distinct initial weight
LSTM networks are as followed.
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Figure 5: Predictions of LSTM

Figure 5 illustrates the predictive performance of the LSTM model by comparing the actual ob-
served data (depicted in blue) with the model’s predictions (depicted in red) over time. The close
alignment between the model’s predictions and the actual values demonstrates the model’s effective-
ness in capturing overall trends and significant fluctuations. This indicates the successful learning of
temporal dependencies inherent in the time series data.

Prediction errors are associated with major global disruptions. In early 2022, U.S. inflation prompted
aggressive monetary tightening, which heightened market volatility and posed challenges to the LSTM
model’s predictive accuracy. Additionally, the Russia-Ukraine conflict and the ongoing effects of
COVID-19, including supply chain disruptions, further complicated market conditions and predic-
tions. These factors collectively contribute to the observed inaccuracies in the model’s forecasts.

In the final prediction, the mean value of forecasting outcome of seven LSTM networks are taken
with distinct initial weight configuration, and sketch the figure of relative errors as following.
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Figure 6: Average relative error of LSTM over time

Figure 6 shows the average relative error over time, with a mean of 0.45414%. The spikes in
early 2020 and early 2022 are attributed to the COVID-19 pandemic and the Russia-Ukraine conflict,
resulting in sudden market changes and challenged prediction accuracy. Overall, the model performs
well but struggles during major market disruptions.
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3.3. Return, Volatility, and Value at Risk (VaR)

Using the LSTM model’s predictions, we calculate these indicators.
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Figure 7: Log Returns, Volatility

Daily Log Returns and VaR (95% Confidence Level, Variance-Covariance)
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Figure 8: Daily Log Returns, VaR

Figure 7 and 8 show that log returns oscillate within a 0.02 range, with notable fluctuations in early
2020 due to the pandemic. Volatility exhibits cyclic patterns characterized by rapid increases followed
by periods of stabilization, mirroring market cycles but with varying amplitudes. Post-2020, there is
a slight increase in volatility, likely attributed to heightened uncertainty following the pandemic. The
VaR value of about -0.01 suggests that with 95% confidence, daily returns will exceed this level. It
is convinced that data below this threshold is affected by extreme events. The method of variance-
covariance is adopted to calculate the value at risk at this point.

4. Conclusion

In conclusion, the use of LSTM networks and ARIMA models to forecast stock prices offers valuable
insights for financial time series prediction. The LSTM model excels in its ability to analyze nonlinear
relationships and large amounts of historical data which makes them particularly effective for stock
price calculations. The strength of the ARIMA model lies in that it can analyze linear relationships
with ease which makes them very suitable when analyzing simple markets.
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In future research, a promising direction is to use the prediction model to optimize and dynami-
cally adjust the portfolio to make our returns higher. In addition, no direct integration of models has
not been completed, and integrating multiple models will also be a good research direction.
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