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Abstract:  Intelligent control technologies and intelligent robots represent critical domains 

in contemporary technological advancement. The rapid development of artificial intelligence 

(AI) and machine learning has propelled advancements in intelligent control systems, which 

are now extensively applied in robotics. The application of intelligent robots is becoming 

increasingly prevalent across industrial, medical, service, and other sectors. Future research 

will focus on developing more efficient and intelligent control systems, with cutting-edge 

topics such as human-robot collaboration, autonomous navigation, and multi-sensor fusion 

emerging as key frontiers. This paper provides a comprehensive review of intelligent control 

technologies and their applications in intelligent robotics. It aims to enhance researchers’ 

understanding of current advancements and future directions in this field, thereby facilitating 

further progress in intelligent robotics. 
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1. Introduction 

Robots are products of the era, having evolved through multiple developmental stages and 

continuously integrated with intelligent technologies. Their applications have expanded across 

industrial, medical, educational, domestic, and autonomous driving fields, bringing convenience and 

efficiency to human life. To address challenges such as high nonlinearity and model inaccuracies that 

are difficult to resolve with traditional control methods, intelligent control has been widely applied in 

industrial process control and intelligent robot control [1]. Intelligent control systems enable 

autonomous decision-making, adaptation to environmental changes, and optimization of control 

objectives. Leveraging artificial intelligence technologies, they achieve autonomous control of 

complex systems, characterized by their ability to make independent decisions, adapt to dynamic 

environments, and optimize control performance. 

Intelligent control technologies have extensive applications in the field of electrical engineering. 

As an advanced practice in computer networks, these technologies replace manual management with 

programmed control, reducing intermediate factors in electrical engineering control systems and 

simplifying workflows by eliminating redundant steps. They enable operations under diverse 

conditions, performing rapid data computation and precise adjustments in real time. This not only 

replaces traditional manual efforts but also delivers superior outcomes. Shuai Zhao et al. [2] 

summarized the application status of artificial intelligence in power electronics systems, focusing on 

implementation methods and solutions across design, control, and maintenance phases. For instance, 
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in power electronics control, the ant colony optimization algorithm has been applied to maximum 

power point tracking (MPPT) for photovoltaic systems under partial shading conditions. This 

approach overcomes limitations of traditional methods, demonstrating advantages such as enhanced 

system autonomy and precise control. These advancements provide robust theoretical and practical 

support for intelligent control technologies in electrical engineering. 

Simultaneously, intelligent control technologies are increasingly utilized in mechanical 

manufacturing. With advancements in computer science, intelligent control in mechanical automation 

is evolving toward the integration of artificial intelligence and automation. The adoption of AI is 

becoming an inevitable trend to achieve more human-centric production control. Such technologies 

have already been deployed in production management, particularly in developing intelligent control 

software systems. Robert K. Katzschmann et al. [3] from ETH Zurich proposed a vision-controlled 

jetting (VCJ) process for ink deposition, which employs a high-speed 3D vision system to capture 

printing geometries and enable digital feedback loops for creating complex systems and robots. For 

example, their tendon-driven hand can sense contact with objects through fingertip pressure, initiate 

grasping, and halt finger motion based on pressure changes. This exemplifies how intelligent control 

facilitates interaction between mechanical systems and external environments, offering practical 

cases for AI-mechatronics integration. 

Intelligent control technologies are also widely adopted in robotic control. From a professional 

perspective, these technologies encompass diverse methodologies. Fuzzy control, for instance, 

enables robots to make rational decisions in complex and uncertain environments. By translating 

environmental data and task requirements into fuzzy linguistic variables and establishing 

corresponding rules, robots can flexibly navigate challenges, such as autonomously planning paths in 

rugged terrains. Neural network control, inspired by biological neural systems, empowers robots with 

learning and adaptive capabilities, allowing them to extract patterns from vast datasets and enhance 

control performance. Jianping Wang et al. [4] developed a vision-based adaptive fuzzy control 

technique for robotic manipulators, enabling precise operations in complex environments. Their work 

validated that intelligent control significantly improves adaptability and precision when robots 

encounter unknown dynamics or challenging environments. 

In summary, intelligent control technologies hold substantial potential across multiple domains. 

This paper aims to analyze the developmental trends of intelligent control technologies and their 

applications in robotics, evaluate their practical significance, and explore future directions. The 

insights may inspire researchers in robotics and intelligent control to pursue innovative advancements, 

fostering further progress in these fields. 

2. Development Trends in Intelligent Control Technology 

2.1. Integration of Deep Learning and Reinforcement Learning 

The combination of deep learning (DL) and reinforcement learning (RL) plays a pivotal role in 

intelligent control technology. Deep learning extracts features from large datasets through multi-layer 

neural networks, while reinforcement learning learns optimal policies through interaction with and 

feedback from the environment. Their integration forms Deep Reinforcement Learning (DRL), 

significantly enhancing the perception and decision-making capabilities of intelligent robots. 

DRL algorithms fully leverage the powerful data representation capabilities of deep learning and 

the sequential decision-making abilities of reinforcement learning, addressing the complex, nonlinear, 

and time-varying challenges inherent in optimal decision-making problems in automatic control. 

DRL algorithms can be categorized into model-based and model-free types. Model-based DRL 

algorithms select optimal policies based on learned environmental models, including fine-tuning 

algorithms and intelligent augmentation algorithms. Model-free DRL algorithms, on the other hand, 
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derive optimal policies directly through trial-and-error interactions between agents and task 

environments, primarily including value function-based and policy gradient-based approaches. 

As a rapidly developing branch of deep learning, DRL provides solutions for computers to 

transition from perception to decision-making, enabling intelligent control. Currently, DRL 

algorithms are gradually being applied in fields such as UAV flight control, mobile robot trajectory 

control, autonomous vehicle control, and hydraulic servo control [5]. 

In autonomous navigation, DRL algorithms like Deep Q-Networks (DQN) and Proximal Policy 

Optimization (PPO) have been applied to path planning and obstacle avoidance for drones and mobile 

robots. Additionally, researchers have proposed intelligent methods such as Ant Colony Optimization, 

Particle Swarm Optimization, Simulated Annealing, and Genetic Algorithms to solve global path 

planning problems, though these methods perform poorly in high-dimensional environments. DRL 

algorithms enable robots to autonomously plan paths based on environmental states and task changes. 

For example, even if a pathway is occupied, robots can still find alternative routes to their destinations. 

Zhou et al. proposed and validated a DQN-based global path planning method, enabling robots to 

obtain optimal paths in dense environments. The robot's input method directly ingests images, 

effectively avoiding obstacles. Sui et al. [6] designed a parallel deep DQN algorithm to solve multi-

agent constrained formation path planning problems. Wang et al. [7] proposed a mobile robot path 

planning method based on Double DQN and prioritized experience replay, which plans paths in 

unknown environments by perceiving local environmental information, with reliability verified 

through experiments. These studies demonstrate that intelligent path planning enhances the 

operational capabilities of industrial robots, making it a hot research area in artificial intelligence [8]. 

In operational tasks, DRL enables robots to perform complex object grasping and manipulation 

tasks, improving accuracy and efficiency. Multi-robot systems achieve multi-agent reinforcement 

learning through distributed DRL algorithms, eliminating the need for precise mathematical models 

of controlled objects, enhancing the ability to process raw sensor data, and reducing the impact of 

cumulative errors in traditional controller designs. Particularly in addressing multi-robot 

collaborative challenges, multi-agent reinforcement learning can construct autonomous learning 

collaborative control strategies under the guidance of joint reward functions, achieving end-to-end 

mapping from raw multi-information inputs to joint action outputs. In recent years, in dynamic and 

complex unknown environments, multi-agent reinforcement learning has provided data-driven 

universal motion control solutions for tasks such as obstacle avoidance, navigation, formation, and 

task allocation in multi-robot systems [9]. 

2.2. Internet of Things (IoT) and Edge Computing 

The development of the Internet of Things (IoT) and edge computing has provided new opportunities 

for intelligent control technology. IoT connects various sensors and devices, forming a vast data 

network that enables intelligent robots to access richer and more real-time environmental information. 

Edge computing distributes computational tasks to the network edge, reducing data transmission 

latency and enhancing the system's real-time responsiveness. Edge computing aims to push 

computational resources closer to the network edge, improving latency and ensuring task execution 

efficiency. This enables rapid responses to user requests, achieving lower latency and higher 

bandwidth. Edge computing can shift many controls from centralized clouds to the edge, enabling 

real-time analysis of massive IoT data. Additionally, edge computing can be applied to smart homes, 

transmission line monitoring, and smart substations, improving system efficiency and real-time 

performance. Current research on edge computing focuses on mobile edge networks, fog computing, 

and edge-cloud integration, with mobile edge computing becoming a key research area [10]. 

In intelligent robots, IoT technology enables robots to communicate efficiently with other devices 

in the environment, facilitating collaborative work. For example, industrial robots can interconnect 
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with other devices on production lines through IoT, optimizing production processes. Edge 

computing is particularly important for autonomous navigation and real-time monitoring, as it allows 

complex computational tasks to be offloaded to edge nodes, enabling robots to make decisions within 

milliseconds and improving system responsiveness and stability. Due to the large number of nodes 

involved in IoT data processing at the edge, ensuring high security is challenging. Blockchain 

strategies can be employed to establish a trusted edge platform, retaining the advantages of edge 

computing while enabling secure data management through blockchain[11]. 

2.3. Multi-Sensor Fusion Technology 

Multi-sensor fusion technology enhances the environmental perception and decision-making 

accuracy of intelligent robots by integrating data from multiple sensors. Different sensors have unique 

strengths and weaknesses, and a single sensor often cannot provide comprehensive and accurate 

information. Multi-sensor fusion technology integrates data from various sensors using data fusion 

algorithms, yielding more reliable and comprehensive environmental information. With the 

continuous advancement of information processing technologies, multi-sensor fusion has been widely 

applied in fault diagnosis, pattern recognition, remote sensing, and other fields. Weighted fusion 

methods, which require no prior information and offer high fusion accuracy, have garnered significant 

attention. 

In obstacle avoidance, robots need to detect obstacles from perceptual information, with the key 

challenge being the determination of spatial location and morphology. The focus of the detection 

process lies in how to acquire and process obstacle information [12]. For example, multi-sensor fusion 

technology is applied in wall-climbing robots. By combining multiple sensors, the flexibility of wall-

climbing robots can be improved, accurately locating obstacles such as reinforcing ribs and spray 

pipes on the surfaces of petrochemical storage tanks, preparing the robot for obstacle traversal, 

enhancing work efficiency, and addressing mobility issues [13]. 

In complex environments, multi-sensor fusion technology enables precise autonomous navigation 

and localization for robots. Simultaneous Localization and Mapping (SLAM) is a typical application. 

In unmanned ship docking, frequent operations, dynamic obstacles, and harsh weather pose 

significant challenges. SLAM technology can largely address these issues. In port environments, 

multi-sensor fusion compensates for the interference caused by open spaces, limited available 

information, and wind and wave disturbances on SLAM algorithms. SLAM algorithms estimate ship 

position, velocity, and direction using multi-sensor data, constructing maps and enabling real-time 

localization in port environments. The high-precision point cloud maps generated provide 

environmental information for autonomous ship navigation and serve as references for subsequent 

path planning algorithms [14]. Furthermore, multi-sensor fusion technology shows broad application 

prospects in industrial robots, medical robots, and service robots [15]. 

2.4. Human-Robot Collaborative Intelligence 

Human-robot collaborative intelligence is a key direction in the development of intelligent control 

technology. It emphasizes collaboration and integration between robots and humans, aiming to 

enhance the naturalness and intelligence of human-robot interaction. This enables robots to better 

understand and respond to human needs. Through affective computing and cognitive computing 

technologies, robots can perceive and understand human emotions and intentions, providing more 

personalized and intelligent services. 

In the industrial sector, human-robot collaborative intelligence enables robots to work alongside 

human workers, improving production efficiency and safety. Wearable robotic limbs, distinct from 

prosthetics and exoskeletons, offer large workspaces and flexible movements, enabling load-bearing 
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and precise tasks. When wearers perform tasks in hazardous environments or maintain uncomfortable 

postures, these robotic limbs can support the human body by bracing against walls, grabbing railings, 

or anchoring to the ground, ensuring safe, comfortable, and stable task completion [16]. In the medical 

field, assistive rehabilitation robots and surgical robots leverage human-robot collaborative 

intelligence to provide personalized patient care and precise surgical operations. Assistive robots are 

designed to help individuals with mobility impairments perform daily activities such as eating, 

washing, and using the toilet. In neurosurgery, robots are primarily used for precise spatial 

localization of brain lesions and assisting doctors in holding and stabilizing surgical instruments. 

These robots are guided by pre-operative medical imaging for navigation and positioning [17]. 

3. Applications of Intelligent Control Technology in Intelligent Robots 

3.1. Autonomous Navigation 

Autonomous navigation is one of the most fundamental and critical functions of intelligent robots, 

involving path planning, environmental perception, localization and mapping, obstacle detection, and 

avoidance.   

(1) Path Planning: Intelligent control technology utilizes various algorithms, such as Dijkstra's 

algorithm and Rapidly-exploring Random Trees (RRT), to achieve path planning. In recent years, 

Deep Reinforcement Learning (DRL) has been increasingly applied in path planning, enabling robots 

to handle more complex and dynamic environments. For example, path planning algorithms based on 

Deep Q-Networks (DQN) can learn optimal policies to achieve efficient navigation for robots in 

unknown environments.   

(2) Environmental Perception and Mapping (SLAM Technology) **: Simultaneous Localization 

and Mapping (SLAM) is a crucial tool for autonomous navigation. SLAM technology integrates data 

from multiple sensors, such as LiDAR, cameras, and Inertial Measurement Units (IMUs), to achieve 

real-time mapping and precise localization. For instance, lunar rovers operate over long durations and 

large areas, making localization essential for their tasks. Applying SLAM technology to lunar rovers 

can significantly enhance their operational efficiency [18]. Intelligent control technology in SLAM 

enables robots to self-localize and navigate in dynamic environments, as seen in advanced algorithms 

like ORB-SLAM and Cartographer. For example, in the semi-open and complex environment of a 

cattle farm, robots use Dijkstra's algorithm for navigation and the Adaptive Monte Carlo Localization 

(AMCL) algorithm to fuse LiDAR and IMU data for localization. This approach addresses errors 

caused by wheel slippage during hay-pushing tasks, enabling precise navigation and successful 

completion of tasks in complex farm environments [19].   

(3) Obstacle Detection and Avoidance: Intelligent control technology leverages sensor data for 

obstacle detection and avoidance, using LiDAR, ultrasonic sensors, and cameras to perceive the 

surrounding environment in real time. LiDAR, which emits laser beams to detect target positions and 

velocities, can create high-precision 3D environmental maps. It is a critical sensor in autonomous 

driving systems, capable of distinguishing between posters and moving pedestrians, modeling 3D 

spaces, detecting static objects, and accurately measuring target motion speeds [20]. Brain-controlled 

wheelchairs, a new type of intelligent wheelchair controlled by user EEG signals, utilize sensors to 

perceive the external environment and alert users to the direction and distance of obstacles, enhancing 

safety and reliability [21]. Traditional Artificial Potential Field (APF) algorithms abstract robots as 

points influenced by a potential field composed of an attractive field centered on the target and a 

repulsive field centered on obstacles [22]. Applying APF to drones improves their autonomous 

obstacle avoidance capabilities, enhancing their mobility and flexibility [23].   
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3.2. Human-Robot Interaction 

Human-robot interaction is a vital means for intelligent robots to communicate and collaborate with 

human users, involving speech recognition, gesture recognition, and affective computing.   

(1) Speech Recognition and Processing: Speech recognition technology, powered by intelligent 

control algorithms, enables robots to accurately recognize and respond to human voice commands. 

Natural Language Processing (NLP) combined with deep learning algorithms allows robots to 

understand and execute complex voice commands, improving the efficiency and naturalness of 

human-robot interaction. For example, speech recognition systems based on Recurrent Neural 

Networks (RNNs) and Transformers are widely used in service robots and home assistants.   

(2) Gesture Recognition and Motion Understanding: Gesture recognition, enabled by computer 

vision and deep learning algorithms, allows robots to interpret and respond to human gestures and 

actions. Convolutional Neural Networks (CNNs) have been applied to gesture recognition, enabling 

robots to accurately identify and interpret various gesture commands, enhancing the intuitiveness and 

convenience of human-robot interaction. For instance [24], a study used electronic skin to collect 

pressure data from different subjects under various conditions and developed a Factorized Spatio-

Temporal Convolutional Neural Network ((2+1)D CNN) model for tactile gesture classification. This 

model effectively extracts spatio-temporal features of tactile gestures, achieving high recognition 

accuracy and strong generalization capabilities. It also establishes a connection between tactile 

gestures and emotions, laying a data foundation for tactile recognition in human-robot interaction. 

(3) Emotion Recognition and Affective Computing: Affective computing enables robots to 

recognize user emotions through multimodal information such as voice, facial expressions, and 

behavior, and respond accordingly. Intelligent control algorithms based on affective computing help 

social and companion robots provide more personalized and humanized services, improving user 

experience and satisfaction. For example, a study [25] proposed an interactive robot system for 

assisting autism rehabilitation, enabling the robot to exhibit emotional cognition, emotional transfer, 

and feedback during interactions. This system, grounded in affective computing, integrates human-

robot interaction into autism rehabilitation training, reducing costs while significantly improving 

rehabilitation outcomes.   

3.3. Task Execution and Coordination 

Intelligent robots demonstrate strong capabilities in task execution and coordination, particularly in 

multi-robot systems, where collaborative work enhances overall efficiency and task completion 

quality. 

(1) Collaborative Control in Multi-Robot Systems: Multi-robot systems use intelligent control 

algorithms to achieve collaborative work and resource sharing among multiple agents. For example, 

distributed reinforcement learning algorithms and game theory methods enable multiple robots to 

efficiently collaborate in complex task environments, such as search and rescue or environmental 

monitoring. A study [26] proposed a frontier-based multi-robot collaborative exploration method, 

which identifies boundaries between known and unknown areas and assigns robots to explore these 

boundaries. This method is highly effective for multi-robot exploration of new areas while avoiding 

redundant exploration. 

(2) Task Allocation and Scheduling Algorithms: Task allocation and scheduling are critical issues 

in multi-robot systems. Intelligent control technology employs optimization algorithms, such as Ant 

Colony Optimization (ACO), Genetic Algorithms (GA), and Particle Swarm Optimization (PSO), to 

dynamically allocate tasks and ensure efficient coordination among robots. ACO, for instance, is used 

to find optimal paths in graphs and solve combinatorial optimization problems. A study [27] designed 

an adaptive task scheduling algorithm for cloud computing based on ACO, incorporating a 
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pheromone adaptive update mechanism to improve convergence speed and generate task distribution 

plans with shorter execution times, lower costs, and balanced load rates. This algorithm performs 

better in solving large-scale task scheduling problems.   

(3) Real-Time Control and Response: Intelligent control technology enables robots to quickly 

adapt to environmental changes and make real-time decisions and actions. Real-time control systems, 

combined with fuzzy control, adaptive control, and predictive control, ensure efficient operation and 

task execution in dynamic environments. To meet the high-precision requirements of industrial robots, 

a study [28] investigated real-time trajectory error compensation methods using laser trackers to 

measure end-effector positions. This method, based on Continuous Dynamic Time Warping (CDTW), 

calculates position errors at each moment of the robot's trajectory. Additionally, a PID parameter 

tuning technique based on gray relational analysis and response surface methodology was developed 

to achieve real-time compensation. 

4. Conclusion 

Intelligent control technology and intelligent robots are pivotal areas in the development of modern 

science and technology, driving innovation and efficiency improvements across multiple industries. 

Based on the analysis of the current research status of intelligent control technology and its 

applications in intelligent robots, the following conclusions can be drawn: 

1. Diverse Applications of Intelligent Control Technology 

The application of intelligent control technology in intelligent robots demonstrates its diversity, 

including methods such as adaptive control, fuzzy control, and neural network control. These 

technologies effectively address the limitations of traditional control methods in complex 

environments, enhancing the adaptability of robots in dynamic and uncertain settings. 

2. Integration of Deep Learning and Reinforcement Learning 

The combination of deep learning and reinforcement learning has significantly improved the 

perception and decision-making capabilities of intelligent robots. Through this integration, robots can 

autonomously navigate and perform tasks in dynamic and complex environments, demonstrating 

higher efficiency and accuracy, thereby expanding their application scenarios. 

3. Synergistic Role of IoT and Edge Computing 

The integration of the Internet of Things (IoT) and edge computing provides intelligent control 

technology with real-time data processing and response capabilities. This synergy enhances the 

environmental perception and collaborative capabilities of intelligent robots, driving advancements 

in smart manufacturing, smart homes, and other fields, while laying the foundation for the real-time 

performance and reliability of future intelligent systems. 

4. Development of Human-Robot Collaborative Intelligence 

The advancement of human-robot collaborative intelligence enables robots to better understand 

and respond to human needs, improving the naturalness and intelligence of human-robot interaction. 

In the future, this technology will play a greater role in industrial, medical, and service fields, further 

deepening and broadening human-robot collaboration. 

The research presented in this paper not only provides valuable references for academic studies 

but also offers theoretical support and practical guidance for technological upgrades and product 

innovation in the industrial sector. With the continuous progress of intelligent control technology and 

intelligent robotics, breakthroughs are expected in more fields in the future. 
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