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Abstract: With the rapid development of the social economy, significant improvement in the 

living standards of residents, changes in lifestyle, and the increasingly severe issue of 

population aging, cardiovascular diseases have become one of the most widespread diseases, 

posing a serious threat to public health. In order to explore the inherent patterns of the 

occurrence and development of these diseases, it is necessary to use quantitative methods to 

describe the correlation between risk factors and disease incidence, as well as to predict the 

epidemic trends of the disease. This will provide scientific theoretical support for medical 

professionals and public health prevention agencies, enabling the implementation of effective 

preventive and control measures. In the field of dynamic prediction of non-stationary disease 

incidence, various methods have been proposed, each with its own advantages and 

disadvantages. Artificial neural network technology, particularly the classic BP neural 

network, has shown significant advantages in handling nonlinear pattern recognition and 

prediction tasks. Therefore, this study constructs a disease incidence prediction model based 

on the BP neural network and verifies the model’s effectiveness through the analysis of 

practical cases. 

Keywords: Artificial Neural Network (BP-ANN) Cardiovascular Disease Prediction 
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1. Literature Review 

Wu et al. [1] established a BP-ANN model with 15 independent variables to predict disease status. 

The results showed that the differences between patients with and without sexually transmitted 

diseases in 10 factors were statistically significant. The optimal BP-ANN network structure was 15-

7-1, with 7 neurons in the hidden layer, achieving the best prediction results. The training accuracy, 

validation accuracy, and testing accuracy were 93.94%, 88.48%, and 89.60%, respectively. Wang et 

al. [2] applied ANN and logistic regression to establish hypertension prediction models, evaluating 

the models’ performance using ROC analysis. The results showed that the sensitivity, specificity, 

Youden index, and consistency of the ANN prediction model were superior to those of the logistic 

regression model. Fan et al. [3] designed a classification system based on a BP training algorithm 

with custom network structure and other parameters. The system was trained and classified using 

actual disease sample data, and the results indicated that the system had good classification 

performance, making it suitable for guiding the diagnosis and treatment of depression. Qian et al. [4] 

used BPNN, univariate, and multivariate unconditional logistic regression methods. The results 
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showed that the BPNN network structure was 54-1, with no hidden layer. The BPNN network, 

univariate logistic regression, and multivariate unconditional logistic regression methods selected 35, 

29, and 10 factors influencing the occurrence of DM complications, respectively. A comparison of 

the results showed that the BPNN selected factors included all those identified by multivariate logistic 

regression and correctly reflected the magnitude and direction of their effects. Ren et al. [5] proposed 

a hypertension prediction model based on artificial neural networks. This model introduced batch 

normalization layers and residual connections to improve the defects of the original ANN model. The 

dataset consisted of 12 basic variables and 1 target variable. Experiments showed that this model had 

a significantly faster convergence rate than the original model, effectively accelerating the training 

process. Gao et al. [6] used a BP network as the fitting model, with a network structure of 22-6-1, to 

analyze the mean influence values (MIV) of various potential risk factors for diabetes, ranking the 

factors by the absolute values of the MIV, and comparing the results with logistic regression model 

analysis. A logarithmic linear model was used to analyze the interactions between factors. The NN 

was capable of performing disease risk factor analysis and could fit more complex variable 

relationships than traditional models. Ma and Tian [7] established a BP neural network model for 

predicting the incidence of non-stationary cardiomyopathy. The resulting BP neural network model 

for predicting non-stationary cardiomyopathy incidence, with 4 input units, 1 output unit, and 11 

hidden units, achieved satisfactory results, with maximum relative error and average error both lower 

than traditional prediction models. Ma [8] applied artificial neural network methods, using operations 

such as missing value treatment, data transformation, and discretization, to preprocess the data. The 

optimized BP artificial neural network-based prediction model achieved an accuracy of 73.4%, 

sensitivity of 72.7%, specificity of 69.3%, and an area under the ROC curve of 0.731. The model’s 

performance was better than that of logistic regression, decision tree, and support vector machine 

models. Shen, Zhu, and Hu [9] applied an improved U-net algorithm to segment the lesion sites of 

lung cancer, then used PCA to extract features, which were categorized as morphological, intensity, 

grayscale, and texture features. BP neural networks were used for classification, achieving an overall 

accuracy of 91.13%. Sun et al. [10] used a BP algorithm-based multilayer feedforward network model 

and the function approximation capabilities of artificial neural networks to establish a function 

mapping relationship from input to output. The results showed that the model effectively reflected 

the system’s dynamics and the time-series correlation of the data. The application of the model to 

lung cancer diagnosis data showed a correct detection rate of 96.2% for lung cancer patients, with a 

misdiagnosis rate of 3.8%, and a correct detection rate of 88% for non-lung cancer patients, with a 

misdiagnosis rate of 12%. Zhen, Xie, and Zeng [11] applied BP artificial neural network principles, 

using 8 sensitive indicators for rheumatoid arthritis as input data for the BP artificial neural network, 

to train and predict the samples. The results showed that the correct rate for the training set was 97.4%, 

and for the prediction set, it was 91.9%. Finally, Fan et al. [12] identified key osteoarthritis genes 

from differential genes using Lasso regression models, support vector machine models, and random 

forest tree models. After screening the results from the three machine learning methods and taking 

their intersection, they identified 5 key genes for diagnosing osteoarthritis. The artificial neural 

network model built with these 5 key genes in the Train group showed an accuracy of 96.36% and an 

AUC of 0.997. Five-fold cross-validation of the neural network model indicated an average AUC 

greater than 0.9, demonstrating robustness. In the Test group, two independent datasets yielded AUC 

values of 0.814 and 0.788, respectively. 

2. Research Results and Analysis 

The dataset used in this study comes from the cardiovascular disease dataset provided by the Kaggle 

platform. This dataset consists of 11 basic variables and 1 target variable. The dataset contains two 

types of data: categorical data and ratio data, as shown in Table 1. 
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Table 1: Feature Description 

Feature Name Feature Description Feature Type 

Age Unit: days Ratio Data 

Height Unit: cm Ratio Data 

Weight Unit: kg Ratio Data 

Gender 1 = Male, 2 = Female Categorical Data 

Systolic Pressure Integer Ratio Data 

Diastolic Pressure Integer Ratio Data 

Cholesterol 
1 = Normal, 2 = High, 3 = Very 

High 
Categorical Data 

Glucose 
1 = Normal, 2 = High, 3 = Very 

High 
Categorical Data 

Smoking Binary Ratio Data 

Alcohol Intake Binary Ratio Data 

Physical Activity Binary Ratio Data 

Presence of Cardiovascular 

Disease 
Binary Ratio Data 

 

The preprocessed dataset is divided into training and testing sets at a ratio of 9:1, and training is 

conducted for 1000 epochs, with the MAE and MSE values recorded for each epoch. 

After training the model for 1000 epochs, the results are shown in Table 2. 

Table 2: Statistical Indicators of Control Groups 

 
Basic Control Group (Sample Size, Mean, and Standard Deviation of Height and Weight) 

Gender1 Control Group Gender2 Control Group 

Age 29-40 40-50 50-60 60-70 30-40 40-50 50-60 60-70 

Sample Size 1110 12182 23826 8362 676 7428 11687 4665 

Height 

(Mean,Standa

rd Deviation) 

162(7.5) 162(6.8) 161(7.0) 160(7.4) 171(8.0) 171(7.1) 170(7.2) 169(7.1) 

Weight 

(Mean,Standa

rd Deviation) 

70.0(14.

6) 

71.2(14.

3) 

73.0(14.

1) 

73.7(14.

2) 

76.2(14.

8) 

80.0(14.

6) 

77.6(14.

0) 

77.0(13.

7) 

 
Figure 1: Basic Control Group Numeric Results 
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Figure 2: Basic Control Group Numeric Results: (a) Basic Control Group 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: Gender1 Age Control Group Numeric Results: (a) 29-40, (b) 40-50, (c) 50-60, (d) 60-70 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4: Gender2 Age Control Group Numeric Results: (a) 29-40, (b) 40-50, (c) 50-60, (d) 60-70 

Table 3: Control Group Numeric Results 

 Basic Control Group 

MAE 0.4364 

MSE 0.2339 

 Gender1 Control Group Gender2 Control Group 

MAE 0.4041 0.4055 

MSE 0.2435 0.2000 

Age 29-40 40-50 50-60 60-70 29-40 40-50 50-60 60-70 

MAE 0.3229 0.4259 0.4653 0.4043 0.3018 0.4269 0.4780 0.4473 

MSE 0.1730 0.2124 0.2361 0.2017 0.1369 0.2112 0.2361 0.2285 

3. Discussion 

The cardiovascular disease dataset provided by Kaggle was analyzed in this study to assess the impact 

of different features on the prediction model for cardiovascular diseases. The model’s prediction 

performance was evaluated by comparing the training and testing results across different gender 

groups and age ranges. 

First, as shown in the MAE and MSE values in Table 3, there are some differences in the model’s 

performance, especially under different gender and age group classifications. For the gender control 

groups (Gender1 and Gender2), the model’s MAE values are 0.4041 and 0.4055, respectively, while 

the MSE values are 0.2435 and 0.2000, indicating slight differences in prediction errors across gender 

groups, though the overall discrepancy is small. This could be related to the differences in the 

incidence rates of cardiovascular diseases between genders, but the model’s predictive ability does 

not seem to be significantly influenced by gender. 

For the 29-40 age group, the model’s MAE value is the smallest, at 0.3229 (for the Gender1 group) 

and 0.3018 (for the Gender2 group). This age group generally consists of younger individuals with 

better health, leading to a lower incidence of cardiovascular diseases and less difficulty in prediction, 

allowing the model to capture their characteristics more effectively. As age increases, the MAE values 

gradually increase. For the 40-50 and 50-60 age groups, the MAE values are 0.4259 and 0.4653 (for 

the Gender1 group) and 0.4269 and 0.4780 (for the Gender2 group), respectively. This change 

suggests that as age increases, the risk of cardiovascular diseases rises, possibly accompanied by more 

health issues (e.g., hypertension, diabetes), making prediction more difficult and increasing errors. 

For the 60-70 age group, the MAE values are the highest, at 0.4043 (for the Gender1 group) and 

0.4473 (for the Gender2 group). The cardiovascular health of the elderly tends to be more complex, 

potentially involving multiple complications, which makes predicting the diseases more challenging. 

This is likely the main reason for the higher MAE values in this group. 
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Regarding the analysis of MSE values, the results are similar to those of the MAE. As age increases, 

the MSE values gradually increase, with a particularly significant rise in the 60-70 age group. For the 

29-40 age group, the MSE values are relatively low (0.1730 for the Gender1 group and 0.1369 for 

the Gender2 group), while for the 60-70 age group, the MSE values are 0.2017 (for the Gender1 

group) and 0.2285 (for the Gender2 group). The increase in MSE values indicates that as age increases, 

the model’s error in handling extreme or outlier cases (such as sudden cardiovascular events) 

increases. 

4. Conclusion 

4.1. Preliminary Findings 

Although this study has analyzed the cardiovascular disease dataset from Kaggle and has yielded 

preliminary results, there are still several limitations: 

4.1.1. Limited Data Source  

The data source in this study is relatively narrow, relying solely on the cardiovascular disease dataset 

from Kaggle. It does not cover a broader range of regions or populations. This limitation may restrict 

the applicability and generalizability of the study’s findings to different populations. 

4.1.2. Insufficient Randomness in Data Sampling  

The data sampling process was not fully randomized, which could lead to bias in the sample 

distribution. For example, the sample size for specific age groups is significantly higher than for 

others, which may reduce the model’s predictive performance for groups with fewer samples, thereby 

affecting the overall generalizability of the model. 

4.1.3. Lack of Detailed Age and Weight Groupings  

In the data analysis and model evaluation, age and weight groupings were not further refined. For 

instance, classifying age into broad ranges such as 29-40 years and 60-70 years may obscure key 

characteristics within specific age groups. Additionally, insufficient sample sizes in certain subgroups 

could lead to statistical instability, which negatively impacts the reliability of the model’s prediction 

capability. 

Future research should aim to introduce more diverse datasets, optimize sampling strategies to 

ensure a balanced data distribution, and refine the grouping of variables to further enhance the 

model’s applicability and prediction accuracy. 
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