
 

 

AI and Machine Learning Approaches to Adaptive Signal 
Processing in Future Wireless Networks 

Zihan Wang 

McMaster University, Hamilton, Canada 

zhwang904@gmail.com 

Abstract: The rapid expansion of wireless communication networks, driven by the increasing 

demand for high-speed connectivity and the exponential growth of IoT devices, presents 

significant challenges to traditional signal processing methods. As Beyond 5G (B5G) and 6G 

technologies continue to evolve, wireless networks must address issues related to spectrum 

congestion, dynamic channel conditions, and interference management while maintaining 

low latency and high energy efficiency. Traditional signal processing approaches struggle to 

adapt to these dynamic environments, necessitating AI-driven adaptive signal processing 

frameworks. This study investigates the integration of artificial intelligence (AI) and machine 

learning (ML) in adaptive signal processing, focusing on Blind Spot Awareness Sensing 

(BSS), Edge Learning (EL), and Radio Frequency (RF) signal reflection. By using 

unsupervised learning for blind spectrum sensing, federated learning for distributed 

optimization, and AI-driven RF reflection techniques for wireless sensing, it is demonstrated 

that AI models enhance detection precision, optimize spectrum utilization, and improve 

anti-interference performance. 

Keywords: Machine learning, Beyond 5G (B5G) and 6G networks, AI-driven signal 

processing, Edge learning, Federated learning 

1. Introduction 

The rapid growth of Internet of Things (IoT) devices and increasing data traffic demand advanced 

signal processing techniques. By 2030, approximately 500 billion devices are expected to be 

connected to the Internet, necessitating intelligent, adaptive solutions for efficient network 

management. However, traditional signal processing methods, such as Fourier-based analysis and 

Kalman filtering, struggle to adapt to dynamic, large-scale wireless environments, particularly in 

urban IoT and vehicular networks. Beyond 5G (B5G) and 6G networks must overcome challenges 

related to speed, quality of service (QoS), energy efficiency, privacy protection, and security [1]. 

Artificial intelligence (AI) has emerged as a promising solution to address these limitations by 

enabling adaptive spectrum allocation, interference mitigation, and real-time optimization. AI-driven 

techniques, including deep learning and reinforcement learning, improve wireless channel estimation 

and spectrum efficiency. However, challenges such as computational complexity and real-time 

adaptability persist, necessitating a unified, AI-driven framework. 

This study introduces an AI-integrated adaptive signal processing framework leveraging Blind 

Spot Awareness Sensing (BSS), Edge Learning (EL), and Radio Frequency (RF) signal reflection. 

These methodologies enhance detection accuracy, minimize interference, and optimize 
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communication efficiency, contributing to the development of resilient and intelligent 6G networks. 

By integrating these techniques, this framework lays the foundation for next-generation autonomous 

and high-performance wireless systems. 

2. Theoretical Foundations  

Machine learning has emerged as a transformative approach for addressing the growing challenges in 

wireless communication systems [2]. Traditional signal processing techniques, such as Fourier 

analysis and Kalman filtering, rely on explicit mathematical models and often struggle in dynamic 

network environments. In contrast, machine learning enables adaptive signal processing, optimizing 

resource allocation and real-time decision-making as network complexity increases. 

Artificial neural networks primarily employ supervised, unsupervised, and reinforcement learning 

to enhance signal classification, spectrum management, and adaptive decision-making [3]. 

Supervised learning, using labeled datasets, is widely applied in channel estimation, modulation 

recognition, and signal classification, with Convolutional Neural Networks (CNNs) excelling in 

wireless spectrum sensing and interference detection. Unsupervised learning, which identifies latent 

structures in raw data, is particularly useful for blind spectrum sensing and anomaly detection, 

employing techniques like autoencoders and k-means clustering. Reinforcement learning (RL) 

optimizes power control, dynamic frequency allocation, and network load balancing through 

trial-and-error interactions, with advanced methods such as Q-learning and policy gradient 

techniques improving autonomous spectrum management and resource allocation [4]. 

A key advantage of machine learning in signal processing is its ability to learn directly from raw 

data, eliminating the need for predefined feature extraction and enabling greater flexibility and 

adaptability in managing complex networks [2]. As 6G networks emerge, machine learning will play 

a crucial role in enhancing efficiency, reducing latency, and enabling self-optimizing communication 

systems. Future research will focus on reducing computational complexity, improving real-time 

adaptation, and addressing privacy concerns, ensuring effective large-scale deployment of AI-driven 

signal processing [3]. 

3. Methods and Implementation of AI-Driven Signal Processing 

3.1. Blind Spot Awareness Sensing (BSS) Technology 

Blind spectrum sensing (BSS) plays a critical role in wireless communication networks, enabling 

detection of unknown signals in dynamic and noisy environments without requiring prior knowledge 

of signal characteristics. Traditional spectrum sensing methods, such as energy detection and 

matched filtering, rely on predefined signal models, which limits their adaptability to complex, 

real-world scenarios [5]. Recent advances in machine learning (ML)-based BSS have significantly 

enhanced the performance of spectrum sensing by enabling real-time signal classification and 

anomaly detection. 

First, clustering and unsupervised learning techniques, like K-means clustering and Gaussian 

Mixture Models (GMMs), are widely applied in spectrum anomaly detection and the classification of 

unknown signals. These methods analyze patterns in cumulative distribution functions (CDFs) from 

received signals, allowing for differentiation between active transmissions and background noise 

without requiring predefined templates [5]. This approach is particularly effective in heterogeneous 

wireless environments, where unknown signals and interference need to be detected dynamically.  

Deep learning models have also been explored for feature extraction and classification in 

wideband spectrum sensing. CNNs effective capture spectral characteristics from time-frequency 

representations, while Recurrent Neural Networks (RNNs) excel in detecting temporal dependencies, 

thereby improving detection accuracy under non-stationary conditions. These models facilitate 
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automatic feature learning, making them valuable in dynamic and interference-prone wireless 

environments.  

Hybrid approaches that combine supervised and unsupervised learning address data scarcity issues 

in BSS. Semi-supervised learning frameworks leverage limited labeled datasets alongside large 

amounts of unlabeled spectrum data to refine classification models, reducing the dependency on 

extensive training datasets. These methods improve generalization and adaptability, making them 

well-suited for applications in cognitive radio networks and next-generation spectrum-sharing 

systems.  

To further enhance the efficiency and accuracy of BSS implementations, various optimization 

strategies have been developed. A key strategy is Short-Time Fast Fourier Transform (ST-FFT) 

decomposition, improving computational efficiency and detection accuracy. Instead of applying a 

single large-scale FFT, ST-FFT divides the input signal into multiple shorter time frames, allowing 

FFT computations on smaller segments. This decomposition reduces computational inertia, enhances 

spectral granularity, and improves real-time detection in rapidly changing environments [5].  

Additionally, adaptive thresholding for real-time detection dynamically adjusts parameters based 

on noise estimation and signal conditions, optimizing detection under low-SNR environments. 

Machine learning-based threshold calibration refines detection boundaries, reducing false alarm rates, 

while Bayesian and entropy-based methods analyze signal probability distributions for more precise 

and adaptive spectrum sensing. The integration of ST-FFT and adaptive thresholding significantly 

enhances real-time spectrum detection, enabling more efficient and robust wireless communication 

systems. 

Adaptive thresholding is particularly useful in cognitive radio networks, where spectrum 

availability is unpredictable, and IoT systems, where energy efficiency is critical for low-poer sensing 

devices. By integrating ST-FFT decomposition and adaptive thresholding, modern BSS 

implementations can achieve higher detection accuracy, reduced computational overhead, and 

enhanced adaptability to dynamic wireless environments.  

3.2. Edge Learning and Distributed Signal Processing 

Edge learning (EL) represents a paradigm shift in distributed machine learning for next-generation 

wireless networks. Unlike traditional cloud-based AI models, which require large-scale data 

aggregation and centralized training, EL distributes learning tasks across geographically dispersed 

edge devices. This reduces latency, preserves user privacy, and minimizes network congestion [6].  

The architectural framework of EL is built on three key methodologies that enable scalable and 

intelligent network optimizations. Federated Learning (FL) allows multiple edge nodes to 

collaboratively train a global model without sharing raw data. Instead of transmitting data to a central 

server, only model updates (such as gradient changes) are exchanged, significantly reducing 

communication overhead while maintaining data security. FL is particularly useful in healthcare, 

autonomous driving, and industrial IoT, where data privacy is paramount. In the Split Learning (SL), 

deep learning models are divided into separate processing components that operate at different levels, 

such as client-side and server-side layers. This reduces the computational burden on 

resource-constrained edge devices while still leveraging cloud-based computing power for complex 

model training. SL is effective in mobile edge computing scenarios, where lightweight models are 

deployed on IoT devices, drones, and smart sensors. Multi-Agent Reinforcement Learning (MARL) 

allows multiple edge devices to act as independent agents, learning from real-time environmental 

feedback to optimize communication and resource allocation autonomously [6]. This technique is 

beneficial for dynamic wireless environments, such as 6G-enabled autonomous vehicle networks and 

Unmanned Aerial Vehicle (UAV) swarms. 
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In distributed learning environments, efficient communication resource allocation is a major 

challenge. EL must optimize bandwidth usage, computing power distribution, and latency trade-offs 

to ensure that learning can be conducted without overwhelming wireless networks. Balancing model 

accuracy with communication efficiency is crucial, as frequent model updates can lead to network 

congestion and increased computational overhead. For instance, in 6G-enabled autonomous vehicle 

networks, EL coordinates real-time learning across multiple vehicles to optimize routing, traffic 

management, exchanging processed insights instead of raw sensor data to reduce bandwidth 

consumption and latency [6]. To further enhance communication efficiency, techniques like adaptive 

compression, model pruning and selective gradient updates are employed, reducing the size of 

transmitted updates while maintaining model accuracy.  

By leveraging FL and reinforcement learning (RL), EL enables distributed knowledge sharing 

across multiple devices, enhancing edge device intelligence in dynamic and resource-constrained 

environments. A key application is intelligent spectrum allocation for 6G networks, where FL allows 

multiple base stations to collaboratively train a spectrum management model, while RL enables 

autonomously optimization of frequency allocation based on real-time conditions. This hybrid 

approach ensures efficient spectrum utilization, minimizes congestion, and improves reliability.  

By integrating FL and RL, EL enables intelligent, decentralized learning, allowing edge-based AI 

systems to continuously improve, adapt, and collaborate efficiently. As EL matures, the fusion of 

these techniques will be instrumental in building AI-native, privacy-preserving, and self-optimizing 

wireless networks, ensuring seamless and efficient learning across edge devices in 6G and beyond 

[6]. 

3.3. Radio Frequency Signal Reflection and Innovative Applications 

RF (Radio Frequency) signal reflection technologies exploit the fundamental properties of 

electromagnetic wave propagation, enabling advanced wireless sensing and communication 

capabilities beyond conventional methods. When RF waves encounter objects, they undergo 

scattering, diffraction, and reflection, creating unique signal signatures that can be analyzed to infer 

environmental conditions, motion, and object characteristics [7]. Compared to traditional radar and 

ultrasound-based sensing, RF reflection techniques provide superior penetration capabilities and 

higher resolution, making them suitable for through-wall sensing, health monitoring, and gesture 

recognition [7]. 

RF signal reflection technology is being rapidly adopted across various industries due to its ability 

to extract detailed, real-time environmental information without requiring direct contact. One key 

application is contactless human activity recognition, where RF reflections are used to track motion, 

detect posture changes, and monitor gestures. This technology plays a crucial role in smart home 

automation and elderly care, where continuous, non-intrusive monitoring can improve safety and 

quality of life for individuals with limited mobility or cognitive impairments. By analyzing subtle 

variations in signal reflections caused by human movement, AI-powered RF sensing systems can 

detect falls, abnormal postures, and activity patterns, providing real-time alerts to caregivers. Within 

industrial IoT and smart cities, RF reflection technology is used to monitor factory environments, 

detect structural defects in buildings, and optimize urban traffic management. In industrial settings, 

RF-based sensors can identify machinery wear and tear, predict equipment failures, and ensure 

workplace safety by detecting hazardous conditions such as gas leaks or overheating components. In 

smart cities, RF reflection technology enhances traffic monitoring by analyzing vehicle movements 

and pedestrian flow, enabling dynamic traffic signal adjustments and congestion mitigation 

strategies. 

Implementing RF signal reflection technologies requires advanced signal processing and machine 

learning techniques to accurately extract and interpret meaningful data from complex reflected wave 
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patterns. Deep learning models, particularly Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have been successfully applied to RF-based human activity recognition 

and health monitoring. CNNs are effective in analyzing spectrogram representations of reflected 

signals, allowing AI models to recognize movement patterns and classify different activities. 

Meanwhile, RNNs and Long Short-Term Memory (LSTM) networks are well-suited for tracking 

temporal changes in RF reflections, making them ideal for detecting subtle variations in breathing or 

heartbeat signals. 

Reinforcement learning (RL) is also being explored for dynamic RF spectrum adaptation in smart 

city and IoT applications. RL models can autonomously optimize RF sensor configurations to 

improve energy efficiency and sensing accuracy in real-time. For example, in autonomous traffic 

monitoring systems, RL-based models can adjust sensor parameters dynamically to ensure optimal 

vehicle detection and classification, reducing false alarms and improving traffic flow analysis. 

4. Challenges and Prospects of AI-Driven Signal Processing in Wireless Communication 

Despite the significant advancements brought by AI-driven signal processing, several key challenges 

must be addressed before these technologies can be fully integrated into next-generation wireless 

communication systems. 

First, AI models require extensive real-world datasets for training, but data collection in wireless 

networks is constrained by privacy concerns, security risks, and high-dimensionality issues. 

Although techniques such as Federated Learning (FL) and differential privacy have been proposed to 

mitigate privacy risks, they introduce communication overhead and may lead to model degradation in 

non-Independent and Identically Distributed (non-IID) data scenarios. Additionally, adversarial 

attacks and model poisoning remain critical threats, necessitating more resilient AI security 

frameworks for wireless applications. Furthermore, the deployment of AI in wireless networks 

increases energy consumption, particularly in massive IoT and 6G networks. Optimizing AI 

inference on low-power devices, implementing energy-efficient neural network architectures, and 

exploring AI-driven power control strategies are essential for minimizing energy costs while 

maintaining high communication performance. Green AI techniques, including hardware-efficient AI 

accelerators and low-power deep learning models, will be key to enabling sustainable AI-driven 

wireless communication systems.  

Despite these challenges, AI-driven signal processing holds enormous potential to revolutionize 

wireless communication by enhancing efficiency, adaptability, and intelligence. Several promising 

directions will shape the future development of AI-integrated wireless systems. Specifically, future 

wireless systems, particularly 6G, are expected to be AI-native, meaning AI will be deeply embedded 

in network design, optimization, and management. Unlike traditional wireless networks that apply AI 

as an add-on, AI-native architectures will feature self-learning, self-optimizing, and self-healing 

capabilities, enabling fully autonomous wireless communication networks. 

Moreover, AI-driven cognitive radio networks and autonomous spectrum management will enable 

wireless systems to dynamically adjust frequencies, bandwidths, and transmission parameters in 

real-time. This will allow more efficient spectrum utilization, reducing congestion and enhancing 

network capacity. Furthermore, AI-based edge intelligence will empower autonomous vehicles, 

UAVs, and smart city infrastructures with real-time decision-making capabilities. 

5. Conclusion 

This study explored the integration of AI and machine learning in adaptive signal processing for 

future wireless networks, particularly in Beyond 5G and 6G systems. Through an in-depth analysis of 

Blind Spot Awareness Sensing, Edge Learning, and Radio Frequency signal reflection, it is 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/150/2025.22279 

99 



 

 

demonstrated that AI-driven techniques can significantly improve detection accuracy, 

anti-interference capabilities, and real-time adaptability in complex wireless environments. The 

discussion on challenges and future prospects highlighted key obstacles such as computational 

complexity, data privacy, and energy efficiency, while also emphasizing the transformative potential 

of AI-native wireless networks, semantic communication, and sustainable AI models. 

Despite its contributions, this study has certain limitations. For instance, while theoretical 

frameworks and recent advancements were reviewed, no experimental validation or simulation 

results were provided, making it difficult to assess the real-world performance of the proposed 

methodologies.  

Looking ahead, AI-driven adaptive signal processing is expected to play a pivotal role in 6G 

networks, enabling self-optimizing, highly efficient, and autonomous communication systems. The 

convergence of AI with quantum computing, reconfigurable intelligent surfaces (RIS), and 

multi-agent learning will further expand the capabilities of wireless communication, paving the way 

for next-generation smart infrastructures, autonomous networking, and intelligent spectrum 

management. By addressing the current challenges and integrating more robust AI architectures, 

future research will continue to shape the evolution of intelligent and sustainable wireless networks. 
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