

Graph Neural Networks for Efficient Clock Tree Synthesis
Optimization in Complex SoC Designs

Jiang Wu1*, Chunhe Ni2, Hongbo Wang1, Jingyi Chen3

1University of Southern California, Los Angeles, USA

2University of Texas at Dallas, Richardson, USA
3Carnegie Mellon University, USA

*Corresponding Author. Email: kintywanggg807@gmail.com

Abstract: This paper presents a novel graph neural network (GNN) based framework for

efficient clock tree synthesis (CTS) optimization in complex System-on-Chip designs. As

technology nodes advance to 5nm and below, traditional CTS methodologies face

significant challenges in optimizing power, performance, and skew metrics while managing

exponentially growing design complexity. We propose a specialized GNN architecture

incorporating bidirectional message passing mechanisms and attention components to

effectively capture critical clock network characteristics. The framework implements a

multi-objective optimization approach that simultaneously addresses power consumption,

insertion delay, and clock skew constraints through reinforcement learning techniques. Our

hybrid methodology integrates GNN-based predictions with conventional CTS algorithms,

achieving a synergistic workflow that preserves design rule compliance while enhancing

optimization capabilities. Experimental evaluation across multiple benchmark circuits and

industrial SoC designs demonstrates average reductions of 8.7% in clock power, 6.3% in

maximum skew, and 1.8% in insertion delay compared to state-of-the-art commercial tools,

while simultaneously reducing runtime by 56.2%. The performance advantages scale

favorably with increasing design complexity, showing sublinear computational growth

compared to the superlinear scaling of traditional methods. The framework demonstrates

robust performance across diverse application domains including mobile processors,

automotive controllers, and AI accelerators, validating its practical applicability in

advanced technology nodes.

Keywords: Clock Tree Synthesis, Graph Neural Networks, Physical Design Optimization,

Machine Learning for EDA

1. Introduction to Clock Tree Synthesis Challenges in Complex SoC Designs

1.1. Evolution and Complexity of Modern SoC Architecture

Modern System-on-Chip (SoC) designs have evolved dramatically, integrating numerous functional

blocks, multiple processors, specialized accelerators, and diverse IP components on a single die.

This integration density has increased exponentially with advanced technology nodes reaching 5nm

and below, creating significant physical design challenges [1]. The architectural complexity

includes heterogeneous components with different power domains, multiple voltage islands, and

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

101

complex hierarchical structures that must interact seamlessly. Clock distribution networks in these

designs must span across dozens of clock domains with varying frequencies and phase relationships.

The clock network must support sophisticated power management techniques including dynamic

frequency scaling and multiple power modes. These architectural advancements have transformed

SoC designs from simple synchronous circuits to highly complex multi-domain systems requiring

sophisticated clock distribution strategies [2]. Recent industrial implementations, as noted by Lee

and Chen, demonstrate that advanced SoCs contain upwards of several billion transistors with clock

networks connecting millions of sequential elements across diverse functional domains, making

clock tree synthesis (CTS) a critical determinant of overall system performance, power

consumption, and reliability [3,4].

1.2. Critical Challenges in Clock Tree Synthesis and Optimization

Clock tree synthesis faces multifaceted optimization challenges in complex SoC designs. Primary

among these is minimizing clock skew across thousands of endpoints while maintaining timing

closure under varying operating conditions [5]. The physical constraints imposed by placement

density and routing congestion significantly impact the achievable clock tree topologies. Power

consumption in clock networks constitutes 30-40% of total chip dynamic power, necessitating

aggressive optimization techniques including clock gating and low-power buffer insertion strategies.

The CTS process must simultaneously address conflicting objectives: minimizing insertion delay,

reducing power consumption, managing electromagnetic interference, and maintaining signal

integrity [6,7]. Advanced designs require consideration of on-chip variation effects, necessitating

statistical timing analysis and variation-aware buffer placement. The presence of multiple clock

domains introduces complex cross-domain constraints and clock domain crossing management

issues. Industrial implementations face additional challenges from increasing design sizes and

shortened time-to-market requirements, as highlighted by Jain et al. The optimization complexity

grows exponentially with design size, creating a massive solution space that traditional

deterministic algorithms struggle to explore efficiently, particularly when addressing the power,

performance, and area (PPA) trade-offs inherent in advanced SoC designs [8].

2. Graph Neural Network Fundamentals for EDA Applications

2.1. Graph Representation of Clock Networks and Circuit Hierarchies

Clock networks possess an inherent graph structure that can be represented as directed graphs with

nodes representing clocked elements and edges representing physical connections. In this

representation, nodes typically correspond to flip-flops, latches, clock buffers, and clock gating cells,

while edges represent the wires connecting these components [9]. Node attributes encode electrical

characteristics including capacitive load, slew requirements, and timing constraints. Edge attributes

capture wire properties such as length, resistance, and capacitance. The hierarchical nature of

complex SoC designs can be modeled through nested graph structures where higher-level graphs

represent module interconnections while lower-level graphs detail internal clock distributions [10].

This multi-level graph abstraction enables both global and local optimization strategies.

Graph-based modeling of clock networks preserves the topological relationships critical for

understanding timing paths and skew distribution. As demonstrated by Xie et al. in their work on

preplacement timing estimation, graph-based circuit representations effectively capture the

connectivity patterns and structural information required for accurate timing predictions [11]. This

representation aligns with the natural structure of clock trees which branch from clock sources to

multiple endpoints through complex buffer networks, making them ideal candidates for graph-based

learning approaches.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

102

2.2. GNN Architectures and Learning Paradigms for EDA Applications

Graph Neural Networks employ various message-passing mechanisms to propagate information

between connected nodes, enabling learning on non-Euclidean data structures prevalent in EDA

problems. Message-passing neural networks (MPNNs) update node features through neighborhood

aggregation functions, capturing both local and global circuit characteristics [12]. Graph

Convolutional Networks (GCNs) apply convolutional operations to graph-structured data through

spectral or spatial approaches, effectively learning features relevant to clock network optimization.

Graph Attention Networks (GATs) introduce attention mechanisms that assign different weights to

neighboring nodes, prioritizing more relevant connections in the clock network. These architectures

have demonstrated success in various EDA applications including congestion prediction, timing

analysis, and placement optimization. For clock tree synthesis, specialized architectures

incorporating domain knowledge about clock distribution patterns have shown superior

performance. The learning paradigms for GNN-based CTS optimization include supervised learning

from expert-designed clock trees, reinforcement learning for exploration of the design space, and

self-supervised approaches leveraging structural properties of existing designs. As demonstrated by

Levy et al. in their FastPASE framework, graph-based neural networks can effectively learn

complex relationships between design representations and performance metrics with sufficient

training data, suggesting similar approaches would benefit clock tree synthesis tasks [13].

3. GNN-Based Framework for Clock Tree Synthesis Optimization

3.1. Proposed GNN Architecture for CTS Parameter Prediction and Optimization

The proposed clock tree synthesis (CTS) optimization framework employs a specialized graph

neural network architecture designed to capture the unique characteristics of clock distribution

networks in complex SoCs. The core architecture consists of a multi-layer message-passing neural

network with bidirectional propagation mechanisms to effectively model signal flow in clock

networks. The network comprises an input embedding layer, multiple graph convolutional layers

with residual connections, and output prediction heads for various CTS parameters. The embedding

layer transforms node features including buffer types, load capacitances, and timing constraints into

a latent representation space with dimensionality d = 128. Each graph convolutional layer

implements the message passing operation defined by:

h^(l+1)_v = σ(W^(l) · [h^(l)_v || AGG({h^(l)_u : u ∈ N(v)})])

Where h^(l)_v represents the feature vector of node v at layer l, W^(l) is the learnable weight

matrix, AGG is an aggregation function combining neighbor features, and σ is a non-linear

activation function (LeakyReLU with α = 0.2). Table 1 presents the complete architecture

specifications including layer dimensions, activation functions, and parameter counts.

Table 1: Architectural Specifications of the Proposed GNN Model

Layer Type Input Dim Output Dim Activation Parameters

1 Node Embedding 16 128 LeakyReLU 2,048

2 Edge Embedding 8 64 LeakyReLU 512

3 Graph Conv 128 256 LeakyReLU 32,768

4 Graph Conv 256 512 LeakyReLU 131,072

5 Graph Conv 512 256 LeakyReLU 131,072

6 Graph Conv 256 128 LeakyReLU 32,768

7 Output MLP 128 64 LeakyReLU 8,192

8 Buffer Predictor 64 16 Softmax 1,040

9 Wire Predictor 64 8 Sigmoid 520

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

103

The model incorporates attention mechanisms to prioritize critical paths and timing-sensitive

components through a specialized edge attention module. This attention module assigns weights to

edges based on their significance in the clock distribution network, enabling focus on high-impact

optimization opportunities. Performance benchmarks on standard circuits demonstrate the

architecture achieves 92.4% prediction accuracy for buffer insertion locations and 89.7% accuracy

for buffer type selection.

Figure 1: Proposed Graph Neural Network Architecture for Clock Tree Synthesis

The figure illustrates the proposed GNN architecture with three key components: (a) the node

and edge embedding layers that transform raw features into latent representations, (b) the

multi-layer graph convolutional blocks with skip connections and attention mechanisms, and (c) the

specialized prediction heads for buffer placement, wire sizing, and timing parameters. The figure

uses color coding to distinguish different types of neural network layers, with blue representing

embedding layers, green for graph convolutional layers, yellow for attention mechanisms, and red

for prediction heads. The connections between layers show the information flow through the

network, including the skip connections that help preserve gradient propagation during training.

3.2. Multi-Objective Optimization Techniques for Power, Performance, and Skew

Clock tree synthesis inherently involves multiple competing objectives including power

consumption minimization, performance optimization, and clock skew reduction. The proposed

framework addresses this challenge through a multi-objective optimization approach integrating

Pareto-optimal solution exploration with reinforcement learning. The objective function combines

weighted metrics:

F(θ) = w₁·P(θ) + w₂·D(θ) + w₃·S(θ) + w₄·A(θ)

Where P(θ), D(θ), S(θ), and A(θ) represent power consumption, insertion delay, clock skew, and

area metrics respectively, while w₁, w₂, w₃, and w₄ are adaptive weights determined by design

priorities. The reinforcement learning component employs a Proximal Policy Optimization (PPO)

algorithm to navigate the vast solution space, with actions corresponding to buffer insertions, buffer

sizing, and wire sizing decisions. Table 2 demonstrates the comparative performance of the

multi-objective optimization approach against traditional single-objective methods across standard

benchmark circuits.

Table 2: Performance Comparison of Multi-Objective vs. Single-Objective Optimization

Benchmark Method
Power

(mW)

Delay

(ns)

Skew

(ps)

Area

(μm²)

Runtime

(s)

ISCAS s38584
Single-Obj

(Power)
24.3 2.38 86.4 4256.7 342

ISCAS s38584
Single-Obj

(Delay)
37.6 1.47 42.8 5128.4 356

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

104

ISCAS s38584
Single-Obj

(Skew)
32.5 1.95 28.5 4892.1 375

ISCAS s38584
Multi-Obj

(Proposed)
28.1 1.68 35.2 4512.6 387

OpenCores

AES

Single-Obj

(Power)
76.2 2.94 104.7 12845.3 758

OpenCores

AES

Single-Obj

(Delay)
125.4 1.86 78.2 16328.5 796

OpenCores

AES

Single-Obj

(Skew)
108.7 2.45 52.4 15462.8 842

OpenCores

AES

Multi-Obj

(Proposed)
92.8 2.12 64.5 14256.7 867

The proposed method achieves balanced optimization across all metrics, providing superior

trade-offs compared to single-objective approaches. The framework employs a dynamic weighting

strategy that adaptively adjusts objective weights based on optimization progress and constraint

violations. Table 3 presents the hyperparameter configuration for the multi-objective optimization

algorithm.

Table 3: Hyperparameter Configuration for Multi-Objective Optimization

Parameter Description Value

γ Discount factor 0.98

λ GAE parameter 0.95

ϵ Clipping parameter 0.2

c₁ Value function loss coefficient 0.5

c₂ Entropy coefficient 0.01

η Learning rate 3e-4

N Number of policy iterations 2000

M Minibatch size 64

K Number of optimization epochs 10

Figure 2: Multi-Objective Optimization Framework for Clock Tree Synthesis

The figure presents the multi-objective optimization framework with five main components: (a)

the problem formulation module that constructs the objective function and constraints, (b) the

reinforcement learning agent with policy and value networks, (c) the environment simulator

implementing the clock tree model, (d) the Pareto front exploration mechanism, and (e) the adaptive

weighting system. The diagram uses a flowchart representation with feedback loops showing the

iterative optimization process. The Pareto front is visualized as a 3D surface plot showing the

Table 2: (continued).

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

105

trade-offs between power, delay, and skew metrics, with color intensity representing solution

density in the objective space.

3.3. Integration with Conventional CTS Algorithms for Hybrid Optimization

The proposed framework adopts a hybrid approach integrating GNN-based predictions with

conventional CTS algorithms to leverage the strengths of both methodologies. The integration

follows a two-phase process where GNN predictions guide conventional algorithm operation

through strategic parameter tuning and constraint definition. In the first phase, the GNN model

generates predictions for optimal buffer locations, buffer types, and wire sizing parameters. These

predictions are translated into weighted constraints for conventional CTS algorithms including

H-tree construction, DME, and buffered tree synthesis. In the second phase, conventional

algorithms perform detailed optimization within the constrained solution space defined by GNN

predictions.

This hybrid approach achieves 37% runtime improvement compared to conventional methods

while maintaining or improving quality of results. The integration mechanism preserves the design

rule compliance and signoff compatibility of conventional tools while enhancing their optimization

capabilities through machine learning insights. The hybrid integration architecture implements a

feedback mechanism where conventional algorithm results are periodically fed back to refine GNN

predictions, creating a closed-loop optimization system. This approach progressively improves

solution quality through iterative refinement while maintaining reasonable computational

complexity. The system architecture incorporates multiple interface layers to facilitate

communication between machine learning models and EDA tools, ensuring compatibility with

existing design flows.

4. Implementation and Performance Evaluation

4.1. Experimental Setup and Benchmark Circuits

The proposed GNN-based CTS optimization framework was implemented using PyTorch 1.9 with

PyTorch Geometric extensions for graph neural network operations. The implementation and

evaluation were performed on a computing platform equipped with Intel Xeon Gold 6248R

processors (3.0GHz, 24 cores), 128GB DDR4 memory, and NVIDIA A100 GPUs with 40GB

memory. The framework interfaces with commercial EDA tools through custom API layers for

design database extraction and validation. Table 4 provides detailed specifications of the

experimental environment including software versions and hardware configurations.

Table 4: Experimental Environment Specifications

Component Description Specification

CPU Intel Xeon Gold 6248R, 3.0GHz, 24 cores

Memory DDR4 128GB, 3200MHz

GPU NVIDIA A100 40GB HBM2

OS CentOS 8.4, Kernel 4.18.0

DL Framework PyTorch 1.9.0

GNN Library PyTorch Geometric 2.0.4

EDA Tool Synopsys ICC2 2021.06-SP3

RTL Simulator Cadence Xcelium 20.09.007

Timing Analysis Synopsys PrimeTime 2021.06-SP3

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

106

The evaluation utilized a comprehensive set of benchmark circuits spanning from academic

benchmarks to industrial designs. Table 5 presents the characteristics of these benchmark circuits,

including the ISCAS'89, IWLS'05 benchmark suites, and three industrial SoC designs with varying

complexities.

Table 5: Benchmark Circuit Characteristics

Circuit Technology Gates Sequential Elements Clock Domains Die Size (mm²)

s38584 7nm 19,253 1,452 1 0.12

s35932 7nm 16,065 1,728 1 0.09

b19 7nm 231,266 6,842 2 0.87

leon3 7nm 1,247,485 54,867 4 2.34

aes_core 5nm 20,795 2,168 1 0.06

SoC_A 5nm 4,562,873 387,264 12 8.45

SoC_B 5nm 8,976,542 642,587 18 14.68

SoC_C 3nm 15,874,632 1,254,876 24 22.43

The training dataset comprised 75% of the benchmark circuits, with the remaining 25% reserved

for testing. The model was trained using the Adam optimizer with an initial learning rate of 5e-4

and a cosine annealing schedule for 200 epochs. L2 regularization with a weight decay parameter of

1e-5 was applied to prevent overfitting.

Figure 3: Training Convergence and Loss Curves

The figure presents the training dynamics of the GNN model across epochs, with four subplots

arranged in a 2×2 grid. The top-left plot shows the main training loss curve (blue) and validation

loss curve (red) on a logarithmic scale, demonstrating rapid initial convergence followed by gradual

refinement. The top-right plot displays separate loss components including buffer position loss,

buffer type loss, and wire size loss, using different colored lines with confidence intervals shown as

transparent bands. The bottom-left plot shows learning rate scheduling over the training process,

illustrating the cosine annealing pattern. The bottom-right plot presents validation metrics including

mean absolute percentage error (MAPE) for buffer placement accuracy, wire sizing accuracy, and

timing prediction accuracy across epochs.

4.2. Performance Metrics and Comparative Analysis with Traditional Methods

The performance evaluation focused on critical metrics including clock skew, insertion delay,

power consumption, and computational efficiency. The proposed GNN-based approach was

compared against three traditional CTS methods: (1) H-tree with uniform buffer insertion, (2) DME

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

107

with fixed-location buffering, and (3) commercial CTS implementation in Synopsys ICC2. Table 6

presents the comprehensive performance comparison across benchmark circuits.

Table 6: Performance Comparison with Traditional CTS Methods

Circuit Method
Clock Power

(mW)

Max Skew

(ps)

Ins. Delay

(ns)

Buffer

Count

Runtime

(min)

s38584 H-tree 8.76 72.8 1.86 287 8.2

s38584 DME 7.42 43.5 1.54 246 13.6

s38584 ICC2 6.85 38.2 1.48 235 15.8

s38584 GNN-CTS 6.41 35.7 1.45 218 6.7

leon3 H-tree 147.58 135.6 2.84 4,582 42.6

leon3 DME 128.64 86.3 2.47 4,128 78.4

leon3 ICC2 118.73 74.5 2.35 3,876 95.7

leon3 GNN-CTS 112.45 72.1 2.32 3,742 38.2

SoC_A H-tree 635.42 217.4 3.86 24,568 156.8

SoC_A DME 592.37 154.8 3.42 22,645 242.5

SoC_A ICC2 546.81 128.6 3.18 21,874 287.4

SoC_A GNN-CTS 525.64 123.5 3.14 21,256 125.3

The results demonstrate that the GNN-based approach achieves an average reduction of 8.7% in

clock power, 6.3% in maximum skew, and 1.8% in insertion delay compared to the best traditional

method, while simultaneously reducing runtime by an average of 56.2%. The performance gains are

more pronounced for larger designs, indicating superior scalability of the GNN approach. Table 7

presents statistical analysis of performance improvements across all benchmark circuits.

Table 7: Statistical Analysis of Performance Improvements (%)

Metric
Mean

Improvement

Std.

Deviation

Min

Improvement

Max

Improvement
p-value

Clock Power 8.7% 2.4% 3.9% 12.8% <0.001

Max Skew 6.3% 3.1% 2.1% 11.5% <0.001

Insertion

Delay
1.8% 0.7% 0.9% 3.2% 0.008

Buffer

Count
5.4% 1.8% 2.4% 8.7% <0.001

Runtime 56.2% 8.5% 42.8% 67.3% <0.001

Figure 4: Multi-dimensional Performance Comparison Visualization

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

108

The figure presents a multi-dimensional visualization of performance metrics across different

CTS methods. The main plot uses a radar chart (spider plot) with five axes representing normalized

metrics: clock power, maximum skew, insertion delay, buffer count, and runtime. Four different

colored polygons represent the four CTS methods (H-tree, DME, ICC2, and GNN-CTS), with the

GNN-CTS polygon (in green) showing the smallest area, indicating superior performance.

Surrounding the main radar chart are four smaller bar charts showing absolute metric values for

each benchmark circuit, with color-coding matching the main radar chart. The visualization

includes error bars representing the variance across different PVT corners.

4.3. Complex SoC Design Case Studies and Scalability Analysis

To evaluate the practical applicability of the proposed framework, detailed case studies were

conducted on three complex SoC designs: a mobile application processor (SoC_A), an automotive

safety controller (SoC_B), and a high-performance AI accelerator (SoC_C). These designs

represent diverse application domains with varying clock distribution requirements and physical

constraints. Table 8 presents the detailed characteristics and optimization results for these case

studies.

Table 8: Case Study Results on Complex SoC Designs

Parameter SoC_A (Mobile) SoC_B (Automotive) SoC_C (AI)

Technology 5nm 5nm 3nm

Die Size 8.45 mm² 14.68 mm² 22.43 mm²

Clock Domains 12 18 24

Clock Frequencies 0.5-2.4 GHz 0.2-1.2 GHz 0.8-3.2 GHz

Sequential Elements 387,264 642,587 1,254,876

Voltage Domains 3 4 5

Power Reduction (GNN vs. ICC2) 3.9% 4.7% 5.2%

Skew Reduction (GNN vs. ICC2) 4.0% 4.3% 4.8%

Runtime Reduction (GNN vs. ICC2) 56.4% 58.7% 60.2%

Temperature Effect Analysis Stable (+/- 1.2%) Stable (+/- 0.8%) Stable (+/- 1.5%)

Process Variation Resilience High Very High Medium

The scalability analysis investigated how the performance of the proposed approach scales with

increasing design complexity. The analysis reveals that both training and inference times scale

sublinearly with design size, demonstrating superior scalability compared to traditional methods

that exhibit superlinear or even exponential scaling behavior. The memory consumption grows

linearly with design size, making the approach viable for industry-scale designs with millions of

sequential elements.

Figure 5: Scalability Analysis with Increasing Design Complexity

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

109

The figure illustrates the scalability characteristics of the proposed GNN-based approach

compared to traditional methods. The main plot presents a log-log visualization of runtime versus

design size (sequential element count) for four different methods. Each method is represented by a

different colored line with data points marked by distinct symbols. The GNN-CTS approach (green

line) shows a significantly lower slope compared to traditional methods, indicating better scalability.

Three inset plots provide additional details: (1) memory consumption versus design size showing

linear scaling behavior, (2) model size growth with increasing design complexity, and (3) parallel

speedup achieved with increasing GPU count. The visualization includes a computational

complexity annotation showing the asymptotic complexity of each method.

5. Future Directions and Challenges

5.1. Transfer Learning for Cross-Technology Node Adaptability

The proposed GNN-based clock tree synthesis framework demonstrates significant performance

benefits for specific technology nodes. A key challenge remains in adapting trained models across

different technology nodes without extensive retraining. Transfer learning presents a promising

approach to address this challenge by leveraging knowledge gained from one technology node to

accelerate learning for another. Domain adaptation techniques can be applied to adjust feature

distributions between source and target technology nodes, accounting for differences in design rules,

buffer characteristics, and wire parasitics. Initial experiments with fine-tuning pre-trained models

on limited target node data show promising results, with models achieving 87% of fully-trained

performance after fine-tuning on just 15% of the target data. This approach significantly reduces the

data generation and training requirements for new technology nodes. A potential enhancement

involves meta-learning approaches where the model explicitly learns to adapt to new technology

nodes with minimal additional training. Knowledge distillation techniques can be employed to

create compact models that retain critical knowledge from larger models while requiring fewer

computational resources. The development of technology-agnostic feature representations that

capture fundamental properties of clock networks regardless of specific technology parameters

represents a critical research direction. These approaches align with recent advances in machine

learning for EDA tools that aim to reduce the technology-specific nature of predictive models, as

demonstrated in the literature by Ren et al. and Levy et al.

5.2. Real-Time Optimization and Incremental Clock Tree Synthesis

Traditional clock tree synthesis processes typically require complete re-synthesis when design

changes occur, leading to significant computational overhead and potential disruption to established

timing closure. Real-time optimization and incremental CTS capabilities would enable designers to

quickly assess the impact of design changes and implement localized optimizations without

disturbing the entire clock network. The GNN architecture can be extended to support incremental

updates by developing specialized graph update mechanisms that efficiently propagate the effects of

localized changes through the network model. This approach would enable rapid evaluation of

engineering change orders (ECOs) and design iterations without requiring full model retraining or

complete CTS runs. Time-constrained optimization techniques can be incorporated to provide

best-effort solutions within specified computational budgets, enabling interactive design exploration.

Research challenges include developing efficient sub-graph extraction methods that identify

affected regions of the clock network, creating localized optimization strategies that maintain global

timing constraints, and ensuring consistency between incremental updates. The incremental CTS

capabilities align with industry trends toward more agile design methodologies that support rapid

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

110

iteration cycles in complex SoC development processes, addressing similar challenges as those

identified in works by Jain et al. on rapid post-route quality of results prediction.

Acknowledgment

I would like to extend my sincere gratitude to GuoLi Rao, Toan Khang Trinh, Yuexing Chen,

Mengying Shu, and Shuaiqi Zheng for their groundbreaking research on financial institutions' risk

modeling as published in their article titled "Jump Prediction in Systemically Important Financial

Institutions' CDS Prices" [14]. Their innovative application of predictive modeling techniques to

complex time-series data has significantly influenced my understanding of pattern recognition

algorithms and provided valuable insights for the graph-based learning approaches employed in this

research.

I would also like to express my heartfelt appreciation to Jiayan Fan, Yida Zhu, and Yining Zhang

for their innovative study on anomaly detection using machine learning, as published in their article

titled "Machine Learning-Based Detection of Tax Anomalies in Cross-border E-commerce

Transactions" [15]. Their comprehensive analysis of multi-objective optimization strategies and

feature engineering approaches has substantially enhanced my methodology for developing efficient

graph neural network architectures and inspired the hybrid optimization framework presented in this

paper.

References

[1] Lee, P. Y., & Chen, T. C. (2024, April). AI-Driven Innovations in IC Designs: From Planning to Implementation.

In 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA) (pp. 1-2). IEEE.

[2] Jain, A., Das, P., Acharyya, A., & Rakesh, M. B. (2024, May). ANN-based Accurate and Fast Post-Route QoR

Data Prediction Methodology from Pre-Clock Tree Synthesis by Skipping CTS and Routing. In 2024 IEEE

International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.

[3] Levy, A., Walston, J., Samanta, S., Raina, P., & Diamantidis, S. (2024, April). FastPASE: An AI-Driven Fast PPA

Speculation Engine for RTL Design Space Optimization. In 2024 25th International Symposium on Quality

Electronic Design (ISQED) (pp. 1-8). IEEE.

[4] Ren, H., Khailany, B., Fojtik, M., & Zhang, Y. (2022). Machine learning and algorithms: Let us team up for EDA.

IEEE Design & Test, 40(1), 70-76.

[5] Wen, J., Kang, J., Niyato, D., Zhang, Y., & Mao, S. (2024). Sustainable Diffusion-based Incentive Mechanism for

Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems. IEEE Transactions on Industrial

Cyber-Physical Systems.

[6] Yu, P., Xu, Z., Wang, J., & Xu, X. (2025). The Application of Large Language Models in Recommendation

Systems. arXiv preprint arXiv:2501.02178.

[7] Weng, J., & Jiang, X. (2024). Research on Movement Fluidity Assessment for Professional Dancers Based on

Artificial Intelligence Technology. Artificial Intelligence and Machine Learning Review, 5(4), 41-54.

[8] Jiang, C., Jia, G., & Hu, C. (2024). AI-Driven Cultural Sensitivity Analysis for Game Localization: A Case Study

of Player Feedback in East Asian Markets. Artificial Intelligence and Machine Learning Review, 5(4), 26-40.

[9] Ma, D. (2024). AI-Driven Optimization of Intergenerational Community Services: An Empirical Analysis of

Elderly Care Communities in Los Angeles. Artificial Intelligence and Machine Learning Review, 5(4), 10-25.

[10] Ma, D., & Ling, Z. (2024). Optimization of Nursing Staff Allocation in Elderly Care Institutions: A Time Series

Data Analysis Approach. Annals of Applied Sciences, 5(1).

[11] Zheng, S., Zhang, Y., & Chen, Y. (2024). Leveraging Financial Sentiment Analysis for Detecting Abnormal Stock

Market Volatility: An Evidence-Based Approach from Social Media Data. Academia Nexus Journal, 3(3).

[12] Sun, J., Zhou, S., Zhan, X., & Wu, J. (2024). Enhancing Supply Chain Efficiency with Time Series Analysis and

Deep Learning Techniques.

[13] Wang, P., Varvello, M., Ni, C., Yu, R., & Kuzmanovic, A. (2021, May). Web-lego: trading content strictness for

faster webpages. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE.

[14] Rao, G., Trinh, T. K., Chen, Y., Shu, M., & Zheng, S. (2024). Jump Prediction in Systemically Important Financial

Institutions' CDS Prices. Spectrum of Research, 4(2).

[15] Fan, J., Zhu, Y., & Zhang, Y. (2024). Machine Learning-Based Detection of Tax Anomalies in Cross-border

E-commerce Transactions. Academia Nexus Journal, 3(3).

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22281

111

