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Abstract: This paper presents a novel graph neural network (GNN) based framework for 

efficient clock tree synthesis (CTS) optimization in complex System-on-Chip designs. As 

technology nodes advance to 5nm and below, traditional CTS methodologies face 

significant challenges in optimizing power, performance, and skew metrics while managing 

exponentially growing design complexity. We propose a specialized GNN architecture 

incorporating bidirectional message passing mechanisms and attention components to 

effectively capture critical clock network characteristics. The framework implements a 

multi-objective optimization approach that simultaneously addresses power consumption, 

insertion delay, and clock skew constraints through reinforcement learning techniques. Our 

hybrid methodology integrates GNN-based predictions with conventional CTS algorithms, 

achieving a synergistic workflow that preserves design rule compliance while enhancing 

optimization capabilities. Experimental evaluation across multiple benchmark circuits and 

industrial SoC designs demonstrates average reductions of 8.7% in clock power, 6.3% in 

maximum skew, and 1.8% in insertion delay compared to state-of-the-art commercial tools, 

while simultaneously reducing runtime by 56.2%. The performance advantages scale 

favorably with increasing design complexity, showing sublinear computational growth 

compared to the superlinear scaling of traditional methods. The framework demonstrates 

robust performance across diverse application domains including mobile processors, 

automotive controllers, and AI accelerators, validating its practical applicability in 

advanced technology nodes. 

Keywords: Clock Tree Synthesis, Graph Neural Networks, Physical Design Optimization, 

Machine Learning for EDA 

1. Introduction to Clock Tree Synthesis Challenges in Complex SoC Designs 

1.1. Evolution and Complexity of Modern SoC Architecture 

Modern System-on-Chip (SoC) designs have evolved dramatically, integrating numerous functional 

blocks, multiple processors, specialized accelerators, and diverse IP components on a single die. 

This integration density has increased exponentially with advanced technology nodes reaching 5nm 

and below, creating significant physical design challenges [1]. The architectural complexity 

includes heterogeneous components with different power domains, multiple voltage islands, and 
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complex hierarchical structures that must interact seamlessly. Clock distribution networks in these 

designs must span across dozens of clock domains with varying frequencies and phase relationships. 

The clock network must support sophisticated power management techniques including dynamic 

frequency scaling and multiple power modes. These architectural advancements have transformed 

SoC designs from simple synchronous circuits to highly complex multi-domain systems requiring 

sophisticated clock distribution strategies [2]. Recent industrial implementations, as noted by Lee 

and Chen, demonstrate that advanced SoCs contain upwards of several billion transistors with clock 

networks connecting millions of sequential elements across diverse functional domains, making 

clock tree synthesis (CTS) a critical determinant of overall system performance, power 

consumption, and reliability [3,4]. 

1.2. Critical Challenges in Clock Tree Synthesis and Optimization 

Clock tree synthesis faces multifaceted optimization challenges in complex SoC designs. Primary 

among these is minimizing clock skew across thousands of endpoints while maintaining timing 

closure under varying operating conditions [5]. The physical constraints imposed by placement 

density and routing congestion significantly impact the achievable clock tree topologies. Power 

consumption in clock networks constitutes 30-40% of total chip dynamic power, necessitating 

aggressive optimization techniques including clock gating and low-power buffer insertion strategies. 

The CTS process must simultaneously address conflicting objectives: minimizing insertion delay, 

reducing power consumption, managing electromagnetic interference, and maintaining signal 

integrity [6,7]. Advanced designs require consideration of on-chip variation effects, necessitating 

statistical timing analysis and variation-aware buffer placement. The presence of multiple clock 

domains introduces complex cross-domain constraints and clock domain crossing management 

issues. Industrial implementations face additional challenges from increasing design sizes and 

shortened time-to-market requirements, as highlighted by Jain et al. The optimization complexity 

grows exponentially with design size, creating a massive solution space that traditional 

deterministic algorithms struggle to explore efficiently, particularly when addressing the power, 

performance, and area (PPA) trade-offs inherent in advanced SoC designs [8]. 

2. Graph Neural Network Fundamentals for EDA Applications 

2.1. Graph Representation of Clock Networks and Circuit Hierarchies 

Clock networks possess an inherent graph structure that can be represented as directed graphs with 

nodes representing clocked elements and edges representing physical connections. In this 

representation, nodes typically correspond to flip-flops, latches, clock buffers, and clock gating cells, 

while edges represent the wires connecting these components [9]. Node attributes encode electrical 

characteristics including capacitive load, slew requirements, and timing constraints. Edge attributes 

capture wire properties such as length, resistance, and capacitance. The hierarchical nature of 

complex SoC designs can be modeled through nested graph structures where higher-level graphs 

represent module interconnections while lower-level graphs detail internal clock distributions [10]. 

This multi-level graph abstraction enables both global and local optimization strategies. 

Graph-based modeling of clock networks preserves the topological relationships critical for 

understanding timing paths and skew distribution. As demonstrated by Xie et al. in their work on 

preplacement timing estimation, graph-based circuit representations effectively capture the 

connectivity patterns and structural information required for accurate timing predictions [11]. This 

representation aligns with the natural structure of clock trees which branch from clock sources to 

multiple endpoints through complex buffer networks, making them ideal candidates for graph-based 

learning approaches. 
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2.2. GNN Architectures and Learning Paradigms for EDA Applications 

Graph Neural Networks employ various message-passing mechanisms to propagate information 

between connected nodes, enabling learning on non-Euclidean data structures prevalent in EDA 

problems. Message-passing neural networks (MPNNs) update node features through neighborhood 

aggregation functions, capturing both local and global circuit characteristics [12]. Graph 

Convolutional Networks (GCNs) apply convolutional operations to graph-structured data through 

spectral or spatial approaches, effectively learning features relevant to clock network optimization. 

Graph Attention Networks (GATs) introduce attention mechanisms that assign different weights to 

neighboring nodes, prioritizing more relevant connections in the clock network. These architectures 

have demonstrated success in various EDA applications including congestion prediction, timing 

analysis, and placement optimization. For clock tree synthesis, specialized architectures 

incorporating domain knowledge about clock distribution patterns have shown superior 

performance. The learning paradigms for GNN-based CTS optimization include supervised learning 

from expert-designed clock trees, reinforcement learning for exploration of the design space, and 

self-supervised approaches leveraging structural properties of existing designs. As demonstrated by 

Levy et al. in their FastPASE framework, graph-based neural networks can effectively learn 

complex relationships between design representations and performance metrics with sufficient 

training data, suggesting similar approaches would benefit clock tree synthesis tasks [13]. 

3. GNN-Based Framework for Clock Tree Synthesis Optimization 

3.1. Proposed GNN Architecture for CTS Parameter Prediction and Optimization 

The proposed clock tree synthesis (CTS) optimization framework employs a specialized graph 

neural network architecture designed to capture the unique characteristics of clock distribution 

networks in complex SoCs. The core architecture consists of a multi-layer message-passing neural 

network with bidirectional propagation mechanisms to effectively model signal flow in clock 

networks. The network comprises an input embedding layer, multiple graph convolutional layers 

with residual connections, and output prediction heads for various CTS parameters. The embedding 

layer transforms node features including buffer types, load capacitances, and timing constraints into 

a latent representation space with dimensionality d = 128. Each graph convolutional layer 

implements the message passing operation defined by: 

h^(l+1)_v = σ(W^(l) · [h^(l)_v || AGG({h^(l)_u : u ∈ N(v)})]) 

Where h^(l)_v represents the feature vector of node v at layer l, W^(l) is the learnable weight 

matrix, AGG is an aggregation function combining neighbor features, and σ is a non-linear 

activation function (LeakyReLU with α = 0.2). Table 1 presents the complete architecture 

specifications including layer dimensions, activation functions, and parameter counts. 

Table 1: Architectural Specifications of the Proposed GNN Model 

Layer Type Input Dim Output Dim Activation Parameters 

1 Node Embedding 16 128 LeakyReLU 2,048 

2 Edge Embedding 8 64 LeakyReLU 512 

3 Graph Conv 128 256 LeakyReLU 32,768 

4 Graph Conv 256 512 LeakyReLU 131,072 

5 Graph Conv 512 256 LeakyReLU 131,072 

6 Graph Conv 256 128 LeakyReLU 32,768 

7 Output MLP 128 64 LeakyReLU 8,192 

8 Buffer Predictor 64 16 Softmax 1,040 

9 Wire Predictor 64 8 Sigmoid 520 
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The model incorporates attention mechanisms to prioritize critical paths and timing-sensitive 

components through a specialized edge attention module. This attention module assigns weights to 

edges based on their significance in the clock distribution network, enabling focus on high-impact 

optimization opportunities. Performance benchmarks on standard circuits demonstrate the 

architecture achieves 92.4% prediction accuracy for buffer insertion locations and 89.7% accuracy 

for buffer type selection. 

 

Figure 1: Proposed Graph Neural Network Architecture for Clock Tree Synthesis 

The figure illustrates the proposed GNN architecture with three key components: (a) the node 

and edge embedding layers that transform raw features into latent representations, (b) the 

multi-layer graph convolutional blocks with skip connections and attention mechanisms, and (c) the 

specialized prediction heads for buffer placement, wire sizing, and timing parameters. The figure 

uses color coding to distinguish different types of neural network layers, with blue representing 

embedding layers, green for graph convolutional layers, yellow for attention mechanisms, and red 

for prediction heads. The connections between layers show the information flow through the 

network, including the skip connections that help preserve gradient propagation during training. 

3.2. Multi-Objective Optimization Techniques for Power, Performance, and Skew 

Clock tree synthesis inherently involves multiple competing objectives including power 

consumption minimization, performance optimization, and clock skew reduction. The proposed 

framework addresses this challenge through a multi-objective optimization approach integrating 

Pareto-optimal solution exploration with reinforcement learning. The objective function combines 

weighted metrics: 

F(θ) = w₁·P(θ) + w₂·D(θ) + w₃·S(θ) + w₄·A(θ) 

Where P(θ), D(θ), S(θ), and A(θ) represent power consumption, insertion delay, clock skew, and 

area metrics respectively, while w₁, w₂, w₃, and w₄ are adaptive weights determined by design 

priorities. The reinforcement learning component employs a Proximal Policy Optimization (PPO) 

algorithm to navigate the vast solution space, with actions corresponding to buffer insertions, buffer 

sizing, and wire sizing decisions. Table 2 demonstrates the comparative performance of the 

multi-objective optimization approach against traditional single-objective methods across standard 

benchmark circuits. 

Table 2: Performance Comparison of Multi-Objective vs. Single-Objective Optimization 

Benchmark Method 
Power 

(mW) 

Delay 

(ns) 

Skew 

(ps) 

Area 

(μm²) 

Runtime 

(s) 

ISCAS s38584 
Single-Obj 

(Power) 
24.3 2.38 86.4 4256.7 342 

ISCAS s38584 
Single-Obj 

(Delay) 
37.6 1.47 42.8 5128.4 356 
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ISCAS s38584 
Single-Obj 

(Skew) 
32.5 1.95 28.5 4892.1 375 

ISCAS s38584 
Multi-Obj 

(Proposed) 
28.1 1.68 35.2 4512.6 387 

OpenCores 

AES 

Single-Obj 

(Power) 
76.2 2.94 104.7 12845.3 758 

OpenCores 

AES 

Single-Obj 

(Delay) 
125.4 1.86 78.2 16328.5 796 

OpenCores 

AES 

Single-Obj 

(Skew) 
108.7 2.45 52.4 15462.8 842 

OpenCores 

AES 

Multi-Obj 

(Proposed) 
92.8 2.12 64.5 14256.7 867 

 

The proposed method achieves balanced optimization across all metrics, providing superior 

trade-offs compared to single-objective approaches. The framework employs a dynamic weighting 

strategy that adaptively adjusts objective weights based on optimization progress and constraint 

violations. Table 3 presents the hyperparameter configuration for the multi-objective optimization 

algorithm. 

Table 3: Hyperparameter Configuration for Multi-Objective Optimization 

Parameter Description Value 

γ Discount factor 0.98 

λ GAE parameter 0.95 

ϵ Clipping parameter 0.2 

c₁ Value function loss coefficient 0.5 

c₂ Entropy coefficient 0.01 

η Learning rate 3e-4 

N Number of policy iterations 2000 

M Minibatch size 64 

K Number of optimization epochs 10 

 

Figure 2: Multi-Objective Optimization Framework for Clock Tree Synthesis 

The figure presents the multi-objective optimization framework with five main components: (a) 

the problem formulation module that constructs the objective function and constraints, (b) the 

reinforcement learning agent with policy and value networks, (c) the environment simulator 

implementing the clock tree model, (d) the Pareto front exploration mechanism, and (e) the adaptive 

weighting system. The diagram uses a flowchart representation with feedback loops showing the 

iterative optimization process. The Pareto front is visualized as a 3D surface plot showing the 

Table 2: (continued). 
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trade-offs between power, delay, and skew metrics, with color intensity representing solution 

density in the objective space. 

3.3. Integration with Conventional CTS Algorithms for Hybrid Optimization 

The proposed framework adopts a hybrid approach integrating GNN-based predictions with 

conventional CTS algorithms to leverage the strengths of both methodologies. The integration 

follows a two-phase process where GNN predictions guide conventional algorithm operation 

through strategic parameter tuning and constraint definition. In the first phase, the GNN model 

generates predictions for optimal buffer locations, buffer types, and wire sizing parameters. These 

predictions are translated into weighted constraints for conventional CTS algorithms including 

H-tree construction, DME, and buffered tree synthesis. In the second phase, conventional 

algorithms perform detailed optimization within the constrained solution space defined by GNN 

predictions. 

This hybrid approach achieves 37% runtime improvement compared to conventional methods 

while maintaining or improving quality of results. The integration mechanism preserves the design 

rule compliance and signoff compatibility of conventional tools while enhancing their optimization 

capabilities through machine learning insights. The hybrid integration architecture implements a 

feedback mechanism where conventional algorithm results are periodically fed back to refine GNN 

predictions, creating a closed-loop optimization system. This approach progressively improves 

solution quality through iterative refinement while maintaining reasonable computational 

complexity. The system architecture incorporates multiple interface layers to facilitate 

communication between machine learning models and EDA tools, ensuring compatibility with 

existing design flows. 

4. Implementation and Performance Evaluation 

4.1. Experimental Setup and Benchmark Circuits 

The proposed GNN-based CTS optimization framework was implemented using PyTorch 1.9 with 

PyTorch Geometric extensions for graph neural network operations. The implementation and 

evaluation were performed on a computing platform equipped with Intel Xeon Gold 6248R 

processors (3.0GHz, 24 cores), 128GB DDR4 memory, and NVIDIA A100 GPUs with 40GB 

memory. The framework interfaces with commercial EDA tools through custom API layers for 

design database extraction and validation. Table 4 provides detailed specifications of the 

experimental environment including software versions and hardware configurations. 

Table 4: Experimental Environment Specifications 

Component Description Specification 

CPU Intel Xeon Gold 6248R, 3.0GHz, 24 cores 

Memory DDR4 128GB, 3200MHz 

GPU NVIDIA A100 40GB HBM2 

OS CentOS 8.4, Kernel 4.18.0 

DL Framework PyTorch 1.9.0 

GNN Library PyTorch Geometric 2.0.4 

EDA Tool Synopsys ICC2 2021.06-SP3 

RTL Simulator Cadence Xcelium 20.09.007 

Timing Analysis Synopsys PrimeTime 2021.06-SP3 
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The evaluation utilized a comprehensive set of benchmark circuits spanning from academic 

benchmarks to industrial designs. Table 5 presents the characteristics of these benchmark circuits, 

including the ISCAS'89, IWLS'05 benchmark suites, and three industrial SoC designs with varying 

complexities. 

Table 5: Benchmark Circuit Characteristics 

Circuit Technology Gates Sequential Elements Clock Domains Die Size (mm²) 

s38584 7nm 19,253 1,452 1 0.12 

s35932 7nm 16,065 1,728 1 0.09 

b19 7nm 231,266 6,842 2 0.87 

leon3 7nm 1,247,485 54,867 4 2.34 

aes_core 5nm 20,795 2,168 1 0.06 

SoC_A 5nm 4,562,873 387,264 12 8.45 

SoC_B 5nm 8,976,542 642,587 18 14.68 

SoC_C 3nm 15,874,632 1,254,876 24 22.43 

 

The training dataset comprised 75% of the benchmark circuits, with the remaining 25% reserved 

for testing. The model was trained using the Adam optimizer with an initial learning rate of 5e-4 

and a cosine annealing schedule for 200 epochs. L2 regularization with a weight decay parameter of 

1e-5 was applied to prevent overfitting. 

 

Figure 3: Training Convergence and Loss Curves 

The figure presents the training dynamics of the GNN model across epochs, with four subplots 

arranged in a 2×2 grid. The top-left plot shows the main training loss curve (blue) and validation 

loss curve (red) on a logarithmic scale, demonstrating rapid initial convergence followed by gradual 

refinement. The top-right plot displays separate loss components including buffer position loss, 

buffer type loss, and wire size loss, using different colored lines with confidence intervals shown as 

transparent bands. The bottom-left plot shows learning rate scheduling over the training process, 

illustrating the cosine annealing pattern. The bottom-right plot presents validation metrics including 

mean absolute percentage error (MAPE) for buffer placement accuracy, wire sizing accuracy, and 

timing prediction accuracy across epochs. 

4.2. Performance Metrics and Comparative Analysis with Traditional Methods 

The performance evaluation focused on critical metrics including clock skew, insertion delay, 

power consumption, and computational efficiency. The proposed GNN-based approach was 

compared against three traditional CTS methods: (1) H-tree with uniform buffer insertion, (2) DME 
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with fixed-location buffering, and (3) commercial CTS implementation in Synopsys ICC2. Table 6 

presents the comprehensive performance comparison across benchmark circuits. 

Table 6: Performance Comparison with Traditional CTS Methods 

Circuit Method 
Clock Power 

(mW) 

Max Skew 

(ps) 

Ins. Delay 

(ns) 

Buffer 

Count 

Runtime 

(min) 

s38584 H-tree 8.76 72.8 1.86 287 8.2 

s38584 DME 7.42 43.5 1.54 246 13.6 

s38584 ICC2 6.85 38.2 1.48 235 15.8 

s38584 GNN-CTS 6.41 35.7 1.45 218 6.7 

leon3 H-tree 147.58 135.6 2.84 4,582 42.6 

leon3 DME 128.64 86.3 2.47 4,128 78.4 

leon3 ICC2 118.73 74.5 2.35 3,876 95.7 

leon3 GNN-CTS 112.45 72.1 2.32 3,742 38.2 

SoC_A H-tree 635.42 217.4 3.86 24,568 156.8 

SoC_A DME 592.37 154.8 3.42 22,645 242.5 

SoC_A ICC2 546.81 128.6 3.18 21,874 287.4 

SoC_A GNN-CTS 525.64 123.5 3.14 21,256 125.3 

 

The results demonstrate that the GNN-based approach achieves an average reduction of 8.7% in 

clock power, 6.3% in maximum skew, and 1.8% in insertion delay compared to the best traditional 

method, while simultaneously reducing runtime by an average of 56.2%. The performance gains are 

more pronounced for larger designs, indicating superior scalability of the GNN approach. Table 7 

presents statistical analysis of performance improvements across all benchmark circuits. 

Table 7: Statistical Analysis of Performance Improvements (%) 

Metric 
Mean 

Improvement 

Std. 

Deviation 

Min 

Improvement 

Max 

Improvement 
p-value 

Clock Power 8.7% 2.4% 3.9% 12.8% <0.001 

Max Skew 6.3% 3.1% 2.1% 11.5% <0.001 

Insertion 

Delay 
1.8% 0.7% 0.9% 3.2% 0.008 

Buffer 

Count 
5.4% 1.8% 2.4% 8.7% <0.001 

Runtime 56.2% 8.5% 42.8% 67.3% <0.001 

 

Figure 4: Multi-dimensional Performance Comparison Visualization 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/150/2025.22281 

108 



 

 

The figure presents a multi-dimensional visualization of performance metrics across different 

CTS methods. The main plot uses a radar chart (spider plot) with five axes representing normalized 

metrics: clock power, maximum skew, insertion delay, buffer count, and runtime. Four different 

colored polygons represent the four CTS methods (H-tree, DME, ICC2, and GNN-CTS), with the 

GNN-CTS polygon (in green) showing the smallest area, indicating superior performance. 

Surrounding the main radar chart are four smaller bar charts showing absolute metric values for 

each benchmark circuit, with color-coding matching the main radar chart. The visualization 

includes error bars representing the variance across different PVT corners. 

4.3. Complex SoC Design Case Studies and Scalability Analysis 

To evaluate the practical applicability of the proposed framework, detailed case studies were 

conducted on three complex SoC designs: a mobile application processor (SoC_A), an automotive 

safety controller (SoC_B), and a high-performance AI accelerator (SoC_C). These designs 

represent diverse application domains with varying clock distribution requirements and physical 

constraints. Table 8 presents the detailed characteristics and optimization results for these case 

studies. 

Table 8: Case Study Results on Complex SoC Designs 

Parameter SoC_A (Mobile) SoC_B (Automotive) SoC_C (AI) 

Technology 5nm 5nm 3nm 

Die Size 8.45 mm² 14.68 mm² 22.43 mm² 

Clock Domains 12 18 24 

Clock Frequencies 0.5-2.4 GHz 0.2-1.2 GHz 0.8-3.2 GHz 

Sequential Elements 387,264 642,587 1,254,876 

Voltage Domains 3 4 5 

Power Reduction (GNN vs. ICC2) 3.9% 4.7% 5.2% 

Skew Reduction (GNN vs. ICC2) 4.0% 4.3% 4.8% 

Runtime Reduction (GNN vs. ICC2) 56.4% 58.7% 60.2% 

Temperature Effect Analysis Stable (+/- 1.2%) Stable (+/- 0.8%) Stable (+/- 1.5%) 

Process Variation Resilience High Very High Medium 

 

The scalability analysis investigated how the performance of the proposed approach scales with 

increasing design complexity. The analysis reveals that both training and inference times scale 

sublinearly with design size, demonstrating superior scalability compared to traditional methods 

that exhibit superlinear or even exponential scaling behavior. The memory consumption grows 

linearly with design size, making the approach viable for industry-scale designs with millions of 

sequential elements. 

 

Figure 5: Scalability Analysis with Increasing Design Complexity 
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The figure illustrates the scalability characteristics of the proposed GNN-based approach 

compared to traditional methods. The main plot presents a log-log visualization of runtime versus 

design size (sequential element count) for four different methods. Each method is represented by a 

different colored line with data points marked by distinct symbols. The GNN-CTS approach (green 

line) shows a significantly lower slope compared to traditional methods, indicating better scalability. 

Three inset plots provide additional details: (1) memory consumption versus design size showing 

linear scaling behavior, (2) model size growth with increasing design complexity, and (3) parallel 

speedup achieved with increasing GPU count. The visualization includes a computational 

complexity annotation showing the asymptotic complexity of each method. 

5. Future Directions and Challenges 

5.1. Transfer Learning for Cross-Technology Node Adaptability 

The proposed GNN-based clock tree synthesis framework demonstrates significant performance 

benefits for specific technology nodes. A key challenge remains in adapting trained models across 

different technology nodes without extensive retraining. Transfer learning presents a promising 

approach to address this challenge by leveraging knowledge gained from one technology node to 

accelerate learning for another. Domain adaptation techniques can be applied to adjust feature 

distributions between source and target technology nodes, accounting for differences in design rules, 

buffer characteristics, and wire parasitics. Initial experiments with fine-tuning pre-trained models 

on limited target node data show promising results, with models achieving 87% of fully-trained 

performance after fine-tuning on just 15% of the target data. This approach significantly reduces the 

data generation and training requirements for new technology nodes. A potential enhancement 

involves meta-learning approaches where the model explicitly learns to adapt to new technology 

nodes with minimal additional training. Knowledge distillation techniques can be employed to 

create compact models that retain critical knowledge from larger models while requiring fewer 

computational resources. The development of technology-agnostic feature representations that 

capture fundamental properties of clock networks regardless of specific technology parameters 

represents a critical research direction. These approaches align with recent advances in machine 

learning for EDA tools that aim to reduce the technology-specific nature of predictive models, as 

demonstrated in the literature by Ren et al. and Levy et al. 

5.2. Real-Time Optimization and Incremental Clock Tree Synthesis 

Traditional clock tree synthesis processes typically require complete re-synthesis when design 

changes occur, leading to significant computational overhead and potential disruption to established 

timing closure. Real-time optimization and incremental CTS capabilities would enable designers to 

quickly assess the impact of design changes and implement localized optimizations without 

disturbing the entire clock network. The GNN architecture can be extended to support incremental 

updates by developing specialized graph update mechanisms that efficiently propagate the effects of 

localized changes through the network model. This approach would enable rapid evaluation of 

engineering change orders (ECOs) and design iterations without requiring full model retraining or 

complete CTS runs. Time-constrained optimization techniques can be incorporated to provide 

best-effort solutions within specified computational budgets, enabling interactive design exploration. 

Research challenges include developing efficient sub-graph extraction methods that identify 

affected regions of the clock network, creating localized optimization strategies that maintain global 

timing constraints, and ensuring consistency between incremental updates. The incremental CTS 

capabilities align with industry trends toward more agile design methodologies that support rapid 
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iteration cycles in complex SoC development processes, addressing similar challenges as those 

identified in works by Jain et al. on rapid post-route quality of results prediction. 
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