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Abstract: With the continuous development of blockchain technology, thousands of smart 

contracts have been deployed on the blockchain, and the number of smart contract 

vulnerabilities has increased significantly. In the task of smart contract vulnerability detection, 

fuzz testing methods are usually used for detection. Existing AFL-based methods are 

inefficient in generating test cases that meet complex path constraints. This study addresses 

the limitations of traditional fuzz testing techniques in detecting vulnerabilities related to 

strictly constrained conditional branches in Ethereum smart contracts. To overcome this 

challenge, we propose a hybrid framework that combines static semantic analysis with 

adaptive dynamic fuzz testing and combines a lightweight heuristic seed selection mechanism 

to prioritize path-sensitive mutations. Our method adopts semantic-aware operators to guide 

targeted exploration of protected execution paths while dynamically optimizing energy 

allocation among test cases. Experimental evaluation on benchmark contracts shows that 

compared with baseline methods, the proposed framework achieves significantly improved 

branch coverage and accelerated vulnerability detection, especially for critical security 

vulnerabilities such as reentrancy and arithmetic exceptions, without sacrificing detection 

accuracy. The results verify the effectiveness of our method in balancing exploration 

efficiency and analysis rigor for blockchain-oriented security verification. 

Keywords: Smart Contract, Vulnerability Detection, Fuzzing Testing, Test Case, Control 
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1. Introduction 

In recent years, with the development of blockchain technology, a large number of smart contracts 

have been applied in financial, supply chain and other fields. According to the statistics of Etherscan 

[1], the number of smart contracts on Ethereum has been on the rise since 2016. As of December 31, 

2021, the number of smart contracts on Ethereum was 205,138, and 78,414 smart contracts were 

generated in 2021, accounting for 38.2% of the total and representing an increase of 62.3% compared 

to 2020. It can be seen that with the continuous development of blockchain and decentralized 

technology, the scale of smart contracts is constantly expanding and gradually penetrating into 

various industries centered on finance. 
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Smart contracts are codes written in high-level languages, which may contain a large number of 

security vulnerabilities. The special feature is that once deployed on the chain, they cannot be easily 

modified, which means that a contract with vulnerabilities will always be vulnerable to attacks. In 

recent years, there have been more and more attacks on smart contract vulnerabilities, such as the 

DAO Attack in 2016 [2]and the Parity Wallet Attack in 2017 [3], when attackers stole more than 

50million and more than30 million respectively, causing huge losses. 

Therefore, for the security vulnerability problem of Ethereum smart contracts, we need to design 

an accurate and efficient vulnerability detection method to ensure accurate code writing before the 

deployment of smart contracts on the chain. Fuzz testing is a commonly used technical method for 

detecting security vulnerabilities in smart contracts [4]. It can automatically or semi-automatically 

generate test cases for the tested smart contract and monitor the process of running test cases to detect 

possible security vulnerabilities, protecting the security of smart contracts. 

2. Method 

We proposes a smart contract vulnerability detection method based on fuzzing technology. The core 

approach generates high-quality test cases through optimized path coverage in the contract control 

flow graph (as shown in Figure 1), combining static analysis (code structure parsing), dynamic 

analysis (execution monitoring), and predefined vulnerability oracles. The framework's three key 

modules work synergistically to maximize code coverage while maintaining detection accuracy for 

predefined vulnerability patterns [5]. 

 

Figure 1: Framework of smart contract vulnerability detection method 

2.1. Smart contract static analysis module 

We establishes an integrated static analysis framework for smart contracts (Fig.2), combining AST 

processing, ABI decoding, and bytecode analysis to optimize vulnerability detection. The AST 

module identifies constant functions through syntax tree parsing, enabling selective exclusion of non-

state-changing operations during testing. ABI decoding extracts critical function signatures and 

parameter schemas from interface definitions, facilitating structured transaction construction with 

valid input formats [6]. Bytecode analysis implements EVM instruction-level interpretation, detecting 

jump patterns and basic blocks to systematically reconstruct the control flow graph through path 
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tracing. These components work synergistically - AST filtering reduces test redundancy, ABI-derived 

prototypes guide targeted input generation, and bytecode-based CFG mapping ensures 

comprehensive path exploration - collectively enhancing fuzzing efficiency while maintaining 

execution path integrity [7]. 

 

 Figure 2: Smart contract static analysis module diagram 

2.2. Smart contract dynamic analysis module 

The dynamic analysis module of smart contracts mainly includes four parts: generating initial test 

cases, analyzing test case execution, screening test cases, and generating new test cases. Its core 

content is to use fuzzy testing technology to perform dynamic analysis on smart contracts, generate 

test cases with higher quality and higher probability of triggering security vulnerabilities, collect key 

operational information during the execution of test cases, and use predefined vulnerability testing 

prophecies to complete vulnerability detection of contracts. 

The dynamic analysis module diagram of smart contracts is shown in Figure 3.  

 

Figure 3: Dynamic analysis module diagram of smart contract 

2.2.1.  Generate initial test cases 

In the initial stage of the dynamic analysis module, an initial test case needs to be generated. The test 

case includes a series of configuration information for the blockchain and a sequence of transactions, 

which is a sequence of function calls with specific parameters. When assembling the transaction data, 

we rewrite the function calls into ABI-encoded data, and then assemble the blockchain environment 
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information. We simulate a transaction initiated by a user on Ethereum, and then execute the 

transaction through the EVM virtual machine. The format of the test case is explained in detail below 

[8]. 

2.2.2.  Analysis of test case running 

The analysis of the running of test cases can be divided into four steps: the deployment and setup of 

the tested contract, the setup of the blockchain account pool, the construction and execution of 

transactions, and information analysis and vulnerability detection. The design diagram of this part is 

shown in Figure 4. 

 

Figure 4: Design diagram for test case running analysis 

2.2.3.  Selection of test cases 

In the context of test case prioritization, the objective is to identify test cases with enhanced 

adaptability and superior quality to serve as seeds for subsequent test case generation. To achieve this, 

we integrate AFL-based fuzzing strategies with a lightweight seed selection mechanism. The AFL 

framework prioritizes test cases that traverse previously uncovered program branches, deeming them 

high-fitness candidates for survival. While this approach efficiently covers most branches, it exhibits 

limited effectiveness in addressing branches guarded by stringent conditional constraints, as 

randomly generated inputs rarely satisfy such conditions. To mitigate this limitation, we introduce a 

novel quantitative evaluation strategy to systematically assess test case quality.   

Specifically, we propose a lightweight seed selection strategy that computes the *distance* 

between a test case ( 𝑡 ) and an uncovered branch ( 𝑏𝑟 ), determined by its execution trace. This 

distance metric quantifies the proximity of ( 𝑡 ) to covering ( 𝑏𝑟 ), with smaller values indicating 

higher adaptability and suitability as a seed. The distance calculation, formalized in Equation (1), 

accounts for seven conditional scenarios governing branch  ( 𝑏𝑟 ) : (𝑐 = false, 𝑎 = 𝑏, 𝑎 ≠ 𝑏, 𝑎 ≥
𝑏, 𝑎 > 𝑏, 𝑎 ≤ 𝑏,or 𝑎 < 𝑏), where ( 𝑎 ) and ( 𝑏 ) represent constants or variables. This methodology 

enables targeted exploration of guarded branches while maintaining computational efficiency, 

thereby optimizing test case generation for complex conditional structures. 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡, 𝑏𝑟) =

{
 
 

 
 
𝐾                          𝑖𝑓𝑐 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
|𝑎 − 𝑏| + 𝐾       𝑖𝑓𝑐 𝑖𝑠 𝑎 == 𝑏
𝐾                          𝑖𝑓𝑐 𝑖𝑠 𝑎! = 𝑏
𝑏 − 𝑎 + 𝐾          𝑖𝑓𝑐 𝑖𝑠 𝑎 >= 𝑏 𝑜𝑟 𝑎 > 𝑏
𝑎 − 𝑏 + 𝐾          𝑖𝑓𝑐 𝑖𝑠 𝑎 <= 𝑏 𝑜𝑟 𝑎 < 𝑏

 (1) 

2.2.4.  New test case generation 

This phase employs a systematic mutation strategy to generate novel test cases with enhanced 

vulnerability-triggering potential through crossover and variation operations applied to prioritized 
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seeds. Each test case is treated as a byte stream subject to bit-level and byte-level manipulations. The 

mutation framework integrates AFL-inspired techniques with domain-specific adaptations for smart 

contract analysis, comprising six core operators: 

(1) Bit-Flipping Mutations: Implement deterministic bit-flipping through singleWalkingBit (1-bit), 

twoWalkingBit (2-bit), and fourWalkingBit (4-bit) operations, sequentially altering individual bits 

across the input space. 

(2) Byte-Level Mutations: Perform byte-oriented perturbations via singleWalkingByte (1-byte), 

twoWalkingByte (2-byte), and fourWalkingByte (4-byte) operations, modifying contiguous byte 

sequences through cyclic bit inversion. 

(3) Boundary Value Substitution: Execute semantic-aware replacements using singleInterest (8-

bit), twoInterest (16-bit), and fourInterest (32-bit) operators, substituting target regions with 

predefined boundary values known to trigger edge-case vulnerabilities. 

(4) Adversarial Address Injection: Deploy overwriteWithAddressDictionary to inject predefined 

malicious actor profiles (NormalAttacker/ReentrancyAttack contracts). The former terminates 

interactions via exception throwing, while the latter initiates recursive callbacks to test reentrancy 

guards before controlled failure. 

(5) Combinatorial Havoc: Apply multi-stage stochastic mutation through havoc, combining 

stacked mutations (arithmetic increments, block deletions, token swaps) across multiple execution 

rounds. 

(6) Evolutionary Crossover: Conduct splice operations by interleaving byte segments between 

candidate inputs at randomized split points, followed by syntactic validation protocols to eliminate 

malformed test cases. 

This hybrid approach probabilistically maximizes input space exploration while preserving 

semantic validity constraints inherent to Ethereum transaction structures, effectively balancing 

fuzzing diversity with blockchain-specific behavioral relevance. 

3. Experiment and Results 

To further demonstrate the effectiveness of the system, we compared it with existing smart contract 

vulnerability detection tools ContractFuzzer [10] and Oyente [11].The former is a smart contract 

blackbox fuzzing tool, while the latter is a symbolic execution tool. All experiments were run on 

Ubuntu 18.04 LTS, and the experimental process and results are shown below. 

3.1. Experimental analysis of operational efficiency 

The system efficiency comparison graph obtained after the experiment is shown in Figure 5. 

Overall, this method generates and executes an average of 217 test cases per second, while 

ContractFuzzer and Oyente generate and execute an average of only 0.1 and 16 test cases per second. 

It can be seen that the efficiency of this system is much higher than the other two tools, which is due 

to the following reasons: 1) ContractFuzzer simulates the entire blockchain network and manages it, 

while this system only simulates the network or blockchain details related to smart contract 

vulnerabilities; 2) Oyente is a symbolic execution tool that requires a lot of time for constraint solving 

and computation, and its running speed is naturally lower than that of fuzzy testing tools. 
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Figure 5: Comparison of system operating efficiency 

3.2. Analysis of vulnerability detection experiments 

Secondly, we hope to observe the effectiveness of the system in detecting vulnerabilities and its 

ability to detect real vulnerabilities. Therefore, we used this system and two other tools to detect 

vulnerabilities in the 453 real contracts collected, counted the number of vulnerabilities detected in 

each vulnerability category, and finally drew a vulnerability detection statistics table as shown in 

Table 1. 

Table 1: Statistics of Vulnerability Detection 

Vulnerability type 

This system ContractFuzzer Oyente 

number 

True 

positive 

rate 

number 

True 

positive 

rate 

number 

True 

positive 

rate 

Gasless Send 152 100% 8 100% 0 N.A. 

Exception Disorder 16 100% 4 100% 0 N.A. 

Reentrancy 6 100% 2 100% 12 58% 

Timestamp Dependency 54 80% 12 75% 25 100% 

Block Number Dependency 9 78% 3 67% 0 N.A. 

Dangerous DelegateCall 1 100% 0 100% 0 N.A. 

Integer Overflow 2 100% 0 N.A. 98 60% 

Integer Underflow 31 85% 0 N.A. 87 60% 

Freezing Ether 56 65% 0 N.A. 0 N.A. 

 

However, it should be noted that not all detected vulnerabilities are real. The detected contract 

vulnerabilities may have false positives. In order to evaluate the system's ability to detect real 

vulnerabilities, it is necessary to manually inspect the contracts with vulnerabilities in the report to 

determine whether they are true positives or false positives. Here, 20 contracts are randomly selected 

from each vulnerability category for manual inspection (if less than 20, all contracts are inspected). 

The results are shown in Figure 6. 
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Figure 6: Statistical chart of true positive rate of vulnerability detection 

Through the figure 6, it can be clearly seen that in addition to the timestamp dependency 

vulnerability, the true positive rate of this system for all vulnerability detection is significantly higher 

than that of ContractFuzzer and Oyente, proving that the system has a lower false positive rate and 

better ability to detect vulnerabilities. 

Furthermore, to investigate the causes of false positives in this technology when detecting 

vulnerabilities, a further analysis of the contracts with false positives is necessary. This analysis 

should be conducted in conjunction with the design of the system's vulnerability detection framework 

to pinpoint the issues. Table 2 presents the true/false positive statistics from the sampled detections: 

Table 2: System Sampling Detection Statistics 

Vulnerability Type 
True 

Positives 

False 

Positives 
Total Number 

True 

Positive 

Rate 

Gasless Send 20 0 20 100% 

Exception Disorder 16 0 16 100% 

Reentrancy 6 0 6 100% 

Timestamp Dependency 16 4 20 80% 

Block Number Dependency 7 2 9 78% 

Dangerous DelegateCall 1 0 1 100% 

Integer Overflow 2 0 2 100% 

Integer Underflow 17 3 20 85% 

Freezing Ether 13 7 20 65% 

 

For the timestamp-dependency vulnerability, there were five false positives because while the 

block timestamp was used in a condition, it was not related to the sending of Ether, i.e., there was no 

control dependency related to the transfer. Instead, these values were stored in local variables to 

record the time when a specific event was created, which the system falsely identified as a 

vulnerability. 

For the block number-dependency vulnerability, the two false positives here were similar to the 

above. The block number was stored in local variables and was not related to the sending of Ether. 
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Regarding integer underflow vulnerabilities, the presence of three false positives was due to the 

system's inability to identify the correct type of a variable solely based on the bytecode (e.g., 

determining whether it is a uint128 or uint256). Therefore, it conservatively assumed that all 

arithmetic operations returning negative values potentially indicate a vulnerability. 

For the Ether freezing vulnerability, the seven false positives occurred because, although there 

were program paths in the contract that allowed for the sending of Ether, they were not covered. If 

the system's runtime were increased, this false positive rate would likely decrease. 

4. Conclusion 

An intelligent contract vulnerability detection technology based on AFL-based fuzzy testing strategy 

and a lightweight seed selection strategy is proposed. Firstly, through static analysis technology, the 

AST syntax tree and bytecode of the smart contract are analyzed, and the key information of the 

contract is extracted to construct the control flow graph of the contract. Secondly, the smart contract 

is subjected to fuzzy testing through dynamic fuzzy testing technology, and higher-quality test cases 

are selected according to adaptive strategies. The test cases are cross-mutated using AFL-based 

mutation methods to generate test cases with higher probability of triggering vulnerabilities. Finally, 

during the fuzzy testing process, the key execution information is matched with predefined 

vulnerability testing prophecies to detect vulnerabilities in the contract. Through experimental 

comparison, the vulnerability detection method proposed in this paper has good performance, with 

the advantages of high running efficiency and low false positive rate. 
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