
Integrated Smart Contract Vulnerability Detection
Technology Based on AFL Fuzzing Strategy and a

Lightweight Seed Selection Strategy

Keyan Cao1,2,*, Yuxin Kang1, Xinlei Wang1, Zhongyang Wang1

1School of Computer Science and Engineering, Shenyang Jianzhu University, Shenyang, China
2Liaoning Provincial Urban Construction Big Data Management and Analysis Laboratory,

Shenyang, China

*Corresponding Author. Email: caokeyan@gmail.com

Abstract: With the continuous development of blockchain technology, thousands of smart

contracts have been deployed on the blockchain, and the number of smart contract

vulnerabilities has increased significantly. In the task of smart contract vulnerability detection,

fuzz testing methods are usually used for detection. Existing AFL-based methods are

inefficient in generating test cases that meet complex path constraints. This study addresses

the limitations of traditional fuzz testing techniques in detecting vulnerabilities related to

strictly constrained conditional branches in Ethereum smart contracts. To overcome this

challenge, we propose a hybrid framework that combines static semantic analysis with

adaptive dynamic fuzz testing and combines a lightweight heuristic seed selection mechanism

to prioritize path-sensitive mutations. Our method adopts semantic-aware operators to guide

targeted exploration of protected execution paths while dynamically optimizing energy

allocation among test cases. Experimental evaluation on benchmark contracts shows that

compared with baseline methods, the proposed framework achieves significantly improved

branch coverage and accelerated vulnerability detection, especially for critical security

vulnerabilities such as reentrancy and arithmetic exceptions, without sacrificing detection

accuracy. The results verify the effectiveness of our method in balancing exploration

efficiency and analysis rigor for blockchain-oriented security verification.

Keywords: Smart Contract, Vulnerability Detection, Fuzzing Testing, Test Case, Control

Flow Graph

1. Introduction

In recent years, with the development of blockchain technology, a large number of smart contracts

have been applied in financial, supply chain and other fields. According to the statistics of Etherscan

[1], the number of smart contracts on Ethereum has been on the rise since 2016. As of December 31,

2021, the number of smart contracts on Ethereum was 205,138, and 78,414 smart contracts were

generated in 2021, accounting for 38.2% of the total and representing an increase of 62.3% compared

to 2020. It can be seen that with the continuous development of blockchain and decentralized

technology, the scale of smart contracts is constantly expanding and gradually penetrating into

various industries centered on finance.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

63

Smart contracts are codes written in high-level languages, which may contain a large number of

security vulnerabilities. The special feature is that once deployed on the chain, they cannot be easily

modified, which means that a contract with vulnerabilities will always be vulnerable to attacks. In

recent years, there have been more and more attacks on smart contract vulnerabilities, such as the

DAO Attack in 2016 [2]and the Parity Wallet Attack in 2017 [3], when attackers stole more than

50million and more than30 million respectively, causing huge losses.

Therefore, for the security vulnerability problem of Ethereum smart contracts, we need to design

an accurate and efficient vulnerability detection method to ensure accurate code writing before the

deployment of smart contracts on the chain. Fuzz testing is a commonly used technical method for

detecting security vulnerabilities in smart contracts [4]. It can automatically or semi-automatically

generate test cases for the tested smart contract and monitor the process of running test cases to detect

possible security vulnerabilities, protecting the security of smart contracts.

2. Method

We proposes a smart contract vulnerability detection method based on fuzzing technology. The core

approach generates high-quality test cases through optimized path coverage in the contract control

flow graph (as shown in Figure 1), combining static analysis (code structure parsing), dynamic

analysis (execution monitoring), and predefined vulnerability oracles. The framework's three key

modules work synergistically to maximize code coverage while maintaining detection accuracy for

predefined vulnerability patterns [5].

Figure 1: Framework of smart contract vulnerability detection method

2.1. Smart contract static analysis module

We establishes an integrated static analysis framework for smart contracts (Fig.2), combining AST

processing, ABI decoding, and bytecode analysis to optimize vulnerability detection. The AST

module identifies constant functions through syntax tree parsing, enabling selective exclusion of non-

state-changing operations during testing. ABI decoding extracts critical function signatures and

parameter schemas from interface definitions, facilitating structured transaction construction with

valid input formats [6]. Bytecode analysis implements EVM instruction-level interpretation, detecting

jump patterns and basic blocks to systematically reconstruct the control flow graph through path

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

64

tracing. These components work synergistically - AST filtering reduces test redundancy, ABI-derived

prototypes guide targeted input generation, and bytecode-based CFG mapping ensures

comprehensive path exploration - collectively enhancing fuzzing efficiency while maintaining

execution path integrity [7].

 Figure 2: Smart contract static analysis module diagram

2.2. Smart contract dynamic analysis module

The dynamic analysis module of smart contracts mainly includes four parts: generating initial test

cases, analyzing test case execution, screening test cases, and generating new test cases. Its core

content is to use fuzzy testing technology to perform dynamic analysis on smart contracts, generate

test cases with higher quality and higher probability of triggering security vulnerabilities, collect key

operational information during the execution of test cases, and use predefined vulnerability testing

prophecies to complete vulnerability detection of contracts.

The dynamic analysis module diagram of smart contracts is shown in Figure 3.

Figure 3: Dynamic analysis module diagram of smart contract

2.2.1. Generate initial test cases

In the initial stage of the dynamic analysis module, an initial test case needs to be generated. The test

case includes a series of configuration information for the blockchain and a sequence of transactions,

which is a sequence of function calls with specific parameters. When assembling the transaction data,

we rewrite the function calls into ABI-encoded data, and then assemble the blockchain environment

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

65

information. We simulate a transaction initiated by a user on Ethereum, and then execute the

transaction through the EVM virtual machine. The format of the test case is explained in detail below

[8].

2.2.2. Analysis of test case running

The analysis of the running of test cases can be divided into four steps: the deployment and setup of

the tested contract, the setup of the blockchain account pool, the construction and execution of

transactions, and information analysis and vulnerability detection. The design diagram of this part is

shown in Figure 4.

Figure 4: Design diagram for test case running analysis

2.2.3. Selection of test cases

In the context of test case prioritization, the objective is to identify test cases with enhanced

adaptability and superior quality to serve as seeds for subsequent test case generation. To achieve this,

we integrate AFL-based fuzzing strategies with a lightweight seed selection mechanism. The AFL

framework prioritizes test cases that traverse previously uncovered program branches, deeming them

high-fitness candidates for survival. While this approach efficiently covers most branches, it exhibits

limited effectiveness in addressing branches guarded by stringent conditional constraints, as

randomly generated inputs rarely satisfy such conditions. To mitigate this limitation, we introduce a

novel quantitative evaluation strategy to systematically assess test case quality.

Specifically, we propose a lightweight seed selection strategy that computes the *distance*

between a test case (𝑡) and an uncovered branch (𝑏𝑟), determined by its execution trace. This

distance metric quantifies the proximity of (𝑡) to covering (𝑏𝑟), with smaller values indicating

higher adaptability and suitability as a seed. The distance calculation, formalized in Equation (1),

accounts for seven conditional scenarios governing branch (𝑏𝑟) : (𝑐 = false, 𝑎 = 𝑏, 𝑎 ≠ 𝑏, 𝑎 ≥
𝑏, 𝑎 > 𝑏, 𝑎 ≤ 𝑏,or 𝑎 < 𝑏), where (𝑎) and (𝑏) represent constants or variables. This methodology

enables targeted exploration of guarded branches while maintaining computational efficiency,

thereby optimizing test case generation for complex conditional structures.

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡, 𝑏𝑟) =

{

𝐾 𝑖𝑓𝑐 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
|𝑎 − 𝑏| + 𝐾 𝑖𝑓𝑐 𝑖𝑠 𝑎 == 𝑏
𝐾 𝑖𝑓𝑐 𝑖𝑠 𝑎! = 𝑏
𝑏 − 𝑎 + 𝐾 𝑖𝑓𝑐 𝑖𝑠 𝑎 >= 𝑏 𝑜𝑟 𝑎 > 𝑏
𝑎 − 𝑏 + 𝐾 𝑖𝑓𝑐 𝑖𝑠 𝑎 <= 𝑏 𝑜𝑟 𝑎 < 𝑏

 (1)

2.2.4. New test case generation

This phase employs a systematic mutation strategy to generate novel test cases with enhanced

vulnerability-triggering potential through crossover and variation operations applied to prioritized

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

66

seeds. Each test case is treated as a byte stream subject to bit-level and byte-level manipulations. The

mutation framework integrates AFL-inspired techniques with domain-specific adaptations for smart

contract analysis, comprising six core operators:

(1) Bit-Flipping Mutations: Implement deterministic bit-flipping through singleWalkingBit (1-bit),

twoWalkingBit (2-bit), and fourWalkingBit (4-bit) operations, sequentially altering individual bits

across the input space.

(2) Byte-Level Mutations: Perform byte-oriented perturbations via singleWalkingByte (1-byte),

twoWalkingByte (2-byte), and fourWalkingByte (4-byte) operations, modifying contiguous byte

sequences through cyclic bit inversion.

(3) Boundary Value Substitution: Execute semantic-aware replacements using singleInterest (8-

bit), twoInterest (16-bit), and fourInterest (32-bit) operators, substituting target regions with

predefined boundary values known to trigger edge-case vulnerabilities.

(4) Adversarial Address Injection: Deploy overwriteWithAddressDictionary to inject predefined

malicious actor profiles (NormalAttacker/ReentrancyAttack contracts). The former terminates

interactions via exception throwing, while the latter initiates recursive callbacks to test reentrancy

guards before controlled failure.

(5) Combinatorial Havoc: Apply multi-stage stochastic mutation through havoc, combining

stacked mutations (arithmetic increments, block deletions, token swaps) across multiple execution

rounds.

(6) Evolutionary Crossover: Conduct splice operations by interleaving byte segments between

candidate inputs at randomized split points, followed by syntactic validation protocols to eliminate

malformed test cases.

This hybrid approach probabilistically maximizes input space exploration while preserving

semantic validity constraints inherent to Ethereum transaction structures, effectively balancing

fuzzing diversity with blockchain-specific behavioral relevance.

3. Experiment and Results

To further demonstrate the effectiveness of the system, we compared it with existing smart contract

vulnerability detection tools ContractFuzzer [10] and Oyente [11].The former is a smart contract

blackbox fuzzing tool, while the latter is a symbolic execution tool. All experiments were run on

Ubuntu 18.04 LTS, and the experimental process and results are shown below.

3.1. Experimental analysis of operational efficiency

The system efficiency comparison graph obtained after the experiment is shown in Figure 5.

Overall, this method generates and executes an average of 217 test cases per second, while

ContractFuzzer and Oyente generate and execute an average of only 0.1 and 16 test cases per second.

It can be seen that the efficiency of this system is much higher than the other two tools, which is due

to the following reasons: 1) ContractFuzzer simulates the entire blockchain network and manages it,

while this system only simulates the network or blockchain details related to smart contract

vulnerabilities; 2) Oyente is a symbolic execution tool that requires a lot of time for constraint solving

and computation, and its running speed is naturally lower than that of fuzzy testing tools.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

67

Figure 5: Comparison of system operating efficiency

3.2. Analysis of vulnerability detection experiments

Secondly, we hope to observe the effectiveness of the system in detecting vulnerabilities and its

ability to detect real vulnerabilities. Therefore, we used this system and two other tools to detect

vulnerabilities in the 453 real contracts collected, counted the number of vulnerabilities detected in

each vulnerability category, and finally drew a vulnerability detection statistics table as shown in

Table 1.

Table 1: Statistics of Vulnerability Detection

Vulnerability type

This system ContractFuzzer Oyente

number

True

positive

rate

number

True

positive

rate

number

True

positive

rate

Gasless Send 152 100% 8 100% 0 N.A.

Exception Disorder 16 100% 4 100% 0 N.A.

Reentrancy 6 100% 2 100% 12 58%

Timestamp Dependency 54 80% 12 75% 25 100%

Block Number Dependency 9 78% 3 67% 0 N.A.

Dangerous DelegateCall 1 100% 0 100% 0 N.A.

Integer Overflow 2 100% 0 N.A. 98 60%

Integer Underflow 31 85% 0 N.A. 87 60%

Freezing Ether 56 65% 0 N.A. 0 N.A.

However, it should be noted that not all detected vulnerabilities are real. The detected contract

vulnerabilities may have false positives. In order to evaluate the system's ability to detect real

vulnerabilities, it is necessary to manually inspect the contracts with vulnerabilities in the report to

determine whether they are true positives or false positives. Here, 20 contracts are randomly selected

from each vulnerability category for manual inspection (if less than 20, all contracts are inspected).

The results are shown in Figure 6.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

68

Figure 6: Statistical chart of true positive rate of vulnerability detection

Through the figure 6, it can be clearly seen that in addition to the timestamp dependency

vulnerability, the true positive rate of this system for all vulnerability detection is significantly higher

than that of ContractFuzzer and Oyente, proving that the system has a lower false positive rate and

better ability to detect vulnerabilities.

Furthermore, to investigate the causes of false positives in this technology when detecting

vulnerabilities, a further analysis of the contracts with false positives is necessary. This analysis

should be conducted in conjunction with the design of the system's vulnerability detection framework

to pinpoint the issues. Table 2 presents the true/false positive statistics from the sampled detections:

Table 2: System Sampling Detection Statistics

Vulnerability Type
True

Positives

False

Positives
Total Number

True

Positive

Rate

Gasless Send 20 0 20 100%

Exception Disorder 16 0 16 100%

Reentrancy 6 0 6 100%

Timestamp Dependency 16 4 20 80%

Block Number Dependency 7 2 9 78%

Dangerous DelegateCall 1 0 1 100%

Integer Overflow 2 0 2 100%

Integer Underflow 17 3 20 85%

Freezing Ether 13 7 20 65%

For the timestamp-dependency vulnerability, there were five false positives because while the

block timestamp was used in a condition, it was not related to the sending of Ether, i.e., there was no

control dependency related to the transfer. Instead, these values were stored in local variables to

record the time when a specific event was created, which the system falsely identified as a

vulnerability.

For the block number-dependency vulnerability, the two false positives here were similar to the

above. The block number was stored in local variables and was not related to the sending of Ether.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

69

Regarding integer underflow vulnerabilities, the presence of three false positives was due to the

system's inability to identify the correct type of a variable solely based on the bytecode (e.g.,

determining whether it is a uint128 or uint256). Therefore, it conservatively assumed that all

arithmetic operations returning negative values potentially indicate a vulnerability.

For the Ether freezing vulnerability, the seven false positives occurred because, although there

were program paths in the contract that allowed for the sending of Ether, they were not covered. If

the system's runtime were increased, this false positive rate would likely decrease.

4. Conclusion

An intelligent contract vulnerability detection technology based on AFL-based fuzzy testing strategy

and a lightweight seed selection strategy is proposed. Firstly, through static analysis technology, the

AST syntax tree and bytecode of the smart contract are analyzed, and the key information of the

contract is extracted to construct the control flow graph of the contract. Secondly, the smart contract

is subjected to fuzzy testing through dynamic fuzzy testing technology, and higher-quality test cases

are selected according to adaptive strategies. The test cases are cross-mutated using AFL-based

mutation methods to generate test cases with higher probability of triggering vulnerabilities. Finally,

during the fuzzy testing process, the key execution information is matched with predefined

vulnerability testing prophecies to detect vulnerabilities in the contract. Through experimental

comparison, the vulnerability detection method proposed in this paper has good performance, with

the advantages of high running efficiency and low false positive rate.

References

[1] SCHAR F. Decentralized finance: On blockchain- and smart contract-based financial markets[J]. Social Science

Electronic Publishing. 2021,103(2):153-174.

[2] Ethereum Daily Verified Contracts Chart[CP]. https://etherscan.io/charts,2020.

[3] BUTERIN V. Criticalupdatere: Dao vulnerability[OL]. https://blog.ethereum.org/ 2016/06/17/critical-update-re-

dao-vulnerability/, 2017.

[4] The Multi-sig Hack: A Postmortem. Blockchain Infrastructure for the DecentralisedWeb [OL]. https://www.parity.

io/blog/the-multi-sig-hack-a-postmor tem,2017.

[5] K. Delmolino, M. Arnett, A Kosba, et al. Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights

from a Cryptocurrency Lab[J]. In Proceedings of the 16th Financial Cryptography and Data Security, pp: 79-94,

Berlin, 2016.

[6] Tu Liangqiong, Sun Xiaobing, Zhang Jiale, et al. Research Review on Smart Contract Vulnerability Detection Tools

[J]. Computer Science, 2021, 48(11): 10..

[7] Zhu Yukai, Li Ying, Zhang Zhiqiang, et al. Smart Contract Vulnerability Detection Method Based on Dynamic Fuzzy

Testing and Machine Learning [J]. Police Technology, 2021(6):5.

[8] Jiang B, Liu Y, Chan W K. Contractfuzzer: Fuzzing smart contracts for vulnerability detection[C]. 2018 33rd

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,2018:259-269.

[9] Nguyen T D, Pham L H, Sun J, et al. sfuzz: An efficient adaptive fuzzer for solidity smart contracts[C]. Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering. 2020:778-788.

[10] Grieco G, Song W, Cygan A, et al. Echidna: effective, usable, and fast fuzzing for smart contracts[C]. Proceedings

of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2020:557-560.

[11] Wang Xin, Shi Qinfeng, et al. Deep Understanding of Ethereum [M]. Beijing: China Machine Press, 2019:112.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22282

70

