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Abstract: Path-finding plays an important role in the computer game industry. Generally, the 

A* algorithm and its various extensions are used in traditional path-finding methods, but they 

can only find a path for a single agent once a time. Recently, some potential field path 

planning methods have been proposed. These methods can be accomplished by multiple 

agents simultaneously with little additional computation. This paper reviews three different 

Potential Field path-planning methods for games. The main method is based on Potential 

fields, and we also introduce two Hybrid Potential Fields of Navigation in games and a 

method of implementing the algorithm with a hyper-target that people set. The first paper 

shows the performance of a potential field algorithm and tries to solve some problems in the 

algorithm. A hybrid navigation algorithm is introduced in the second paper, utilizing A* and 

potential fields, to handle the problems in RTS games better. The Third paper presents a real-

time Voronoi-like path planning method using a combination of flow field and A* algorithm 

to navigate dynamic environments with obstacles, addressing issues of local minima and 

providing a flexible, efficient solution for collision-free navigation. 

Keywords: Hybrid Potential Field, Navigation, Computer Game 

1. Introduction 

This paper concludes with some hybrid methods to solve this problem and provides different ways to 

generate the potential field. We also give some different perceptions of how to analyze the Potential 

Field. 

In Hagelba¨ck’s method [1], we will give more details about calculating the potential field and 

show how to use it in some simple RTS games. We will solve the dead ends and narrow passage 

problem. Then, we will show how to build a potential field, set an ultimate target, and use it for 

navigation and making decisions. However, the original Potential Field is influenced by the local 

optima. The author let the units randomly walk in this paper to solve the local optima problem. In [2], 

a hybrid navigation algorithm is introduced, utilizing A* when there are no enemy units or buildings 

in sight and switching to potential fields during combat. This method addresses the issue of local 

optima that can occur with potential fields—where units might become trapped in intricate terrain—

by employing A* while also leveraging the advantages of potential fields for unit positioning in battle 

scenarios. 
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In [3], while potential field methods are adaptable, they often encounter local minima issues. This 

paper proposes a hybrid approach combining flow fields with the A* algorithm, improving path 

planning efficiency and overcoming common pitfalls in complex environments. 

We think it would be interesting to find methods to improve this algorithm. We found three papers 

that discuss the Artificial Potential Field. In fact, there are also many problems in the Artificial 

Potential Field, so we can hardly use one way to find the path. Instead, the papers develop a hybrid 

method to solve the problems in the Artificial Potential Field. They use a Potential Field with A* to 

solve problems like local optima or some pre-calculated information to reduce the algorithm’s time 

to use it. Another problem is that we need to check if there are some dead ends and narrow passages 

to improve the algorithm. 

We think it’s an interesting algorithm for solving problems in robotics and games, especially real-

time strategy games. As it’s a very efficient algorithm used in multi-agent systems, we want to 

introduce modern usage to research. 

2. Background 

Finding a path is important for many things, so many algorithms have come up to solve this problem. 

For many years, game developers have used algorithms like A* to solve path-finding. However, only 

a few papers focus on the Potential Field algorithm. A universal idea of an algorithm like A* is to 

speed up a single unit to find the path. However, the Potential Field uses the terrain information, other 

units’ status, and the high-level target to find the path. The algorithm can speed up all the units to find 

paths together by handling all this information. Compared with other algorithms that handle the needs 

individually, the Potential Field can handle all the needs simultaneously. However, since 1985, 

Ossama Khatib introduced the Potential Field in [4], the algorithm has hardly been used in game 

development. 

Potential Field path planning computes the potential at each node within an environment, enabling 

multiple agents to navigate the space without the need to calculate individual paths for each agent. 

This method allows agents to move efficiently while avoiding obstacles and other agents by following 

the gradient of the potential field. The algorithm builds the Potential Field by calculating the potential 

of each tile. The potential Field algorithm can get the map’s potential and then the field’s speed vector. 

The speed vector is the direction and the speed at which the agent should go on specific tiles. Then, 

the algorithm assigns the speed vector to the agents. The units go to the tiles that have the highest 

potential around them. 

Real-time strategy (RTS) games present significant challenges for AI bot developers. Players 

typically begin with a central base and a group of workers. These workers are responsible for 

collecting various types of resources, which are then used to build structures. These structures play 

crucial roles in expanding the base, defending it, and producing combat units. Additionally, RTS 

games often feature technology trees, allowing players to invest resources into upgrading units and 

buildings. Players must make numerous strategic decisions about resource allocation, as resources 

are finite and require accumulating time. For instance, resources can be allocated to produce 

inexpensive units for an early offensive (commonly known as a rush tactic), to construct strong 

defenses with immobile turrets and bunkers, or to advance technology for powerful units, which may 

leave the player exposed in the early stages of the game. 

3. Artificial Potential Field in RTS Game to Making Decisions 

In Hagelba¨ck’s Algorithm [1], an experimental framework based on the Artificial Potential Field 

was employed to make RTS games, including finding paths and making decisions. The experiment 
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is conducted on Open Real-time Strategy (ORTS), a real-time strategy game designed as a platform 

for users to test artificial intelligence (AI), particularly for game AI applications. 

This method has six phases. 

The first phase is classifying objects. The algorithm needs to understand the different kinds of 

obstacles in the game, such as static terrain and moving units, and what objects remain in attention 

throughout the scenario’s lifetime. 

The second phase is classifying the driving forces of different targets, where the algorithm 

identifies the game’s driving forces relatively abstractly, such as avoiding obstacles and attacking 

opponent units. Calculating different driving forces fields requires the algorithm to save multiple 

fields to isolate certain aspects of the potential computation. Additionally, the algorithm can give 

them a dynamic weight separately. The third phase is assigning charges to the objects. The 

algorithm needs to calculate all the potential fields and then add them up. However, some fields, like 

static terrain fields of navigation, can be pre-calculated to save CPU time. 

The fourth phase is deciding the granularity of time and space. The algorithm needs to handle 

time and space. If an agent needs to move around the environment, both measure the impact on the 

future. So, the algorithm needs to calculate how far the unit can go, and the time determines how far 

the unit may move in one frame. 

The fifth phase is building a single agent. The algorithm must let each agent know what the other 

agents are doing. Then, it needs to calculate the possible behavior. It may use a heuristic function to 

calculate the potential in an individual field. 

The sixth phase is the collaboration of multiple agents, where the algorithm designs an 

architecture of the multiple agents. Here, it takes the unit agents identified in the fifth phase. It may 

give them specific missions and roles or add the additional information (possibly) needed for 

coordination. 

3.1. Methodology 

1. Classifying objects: In Hagelba¨ck’s method [1], they identify the objects: Cliffs, Sheep, and own 

(and opponent) tanks, marines, and base stations. This depends on the specific situation. 

2. Building fields: In Hagelba¨ck’s algorithm [1], there are three driving forces in ORTS: 

(1). Avoid colliding with moving objects and cliffs 

(2). Hunt down the enemy’s force 

(3). Defend the bases 

The algorithm needs to compute three distinct fields: the navigation, strategic, and tactical fields. 

The navigation field is created based on static terrain, providing agents with information about 

passable and impassable areas. The strategic field assesses the overall layout and positions of units 

and objectives, while the tactical field focuses on immediate environmental threats and opportunities. 

Together, these fields guide agents in their decision-making processes. The strategic field is an 

attracting field; it makes units move toward the opponent’s objects. The tactical field can help 

schedule all units. 

3. Assigning charges: Each object in the environment, such as cliffs, sheep, or units, has a set of 

charges that generate a potential field around it. These fields influence the surrounding space, with 

each object contributing based on its properties. The fields generated by all objects are weighted and 

combined to form a total potential field. Agents use this combined field to guide their decision-

making and action selection, moving based on the highest or lowest potentials within the field. The 

total field directs agents by influencing their movement towards goals and away from obstacles based 

on the combined potential values. The actual formulas for calculating the potential fields depend 

greatly on the application. Here are some examples used in the experiment. 
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a) Cliff: The cliff generated a repelling field of obstacle avoidance. The potential 𝑝𝑐𝑙𝑖𝑓𝑓(𝑑) at a 

distance d (in tiles) from a cliff is a negative number when the distance is zero and decreases as the 

distance increases. Here, the “decreases” means it gets more negative. An example is the equation 

below: 

 𝑝𝑐𝑙𝑖𝑓𝑓(𝑑) = {
−80/𝑑2  𝑖𝑓 𝑑 > 0

−80         𝑖𝑓 𝑑 ≥ 0
 (1) 

When multiple cliffs influence a tile, it takes the minimum potential. 

After calculating all the potential fields generated by static terrain, the navigation fields are post-

processed in two steps to improve the agents’ abilities to move in narrow passages and avoid dead 

ends. 

1) The algorithm checks if cliffs are in all 16 directions within five tiles. If there are more than 

nine directions that have cliffs, it considers the tile (x, y) as a dead end, and a sample is like Fig 1. 

2) The algorithm handles a narrow passage between cliffs by checking if a tile (x, y) meets one of 

the following conditions: a sample is like Fig 2 

 
Figure 1: The figure is an example in article [1]. White tiles represent passable areas, black tiles 

denote impassable areas, and grey tiles indicate sections filled in by the algorithm to eliminate dead 

ends. 

a) the tile (x + 1, y) has negative potential and the tile (x 1, y) has negative potential. 

b) the tile (x, y + 1) has negative potential and the tile (x, y − 1) has negative potential. 

if any condition is met, the potential of (x, y) is set to 0. 

 
Figure 2: Example of the narrow passage in article [1]. White tiles have a potential of 0; the darker 

the color, the more negative potential a tile has. 

b) The opponent units: When considering the opponent units, the algorithm keeps them within the 

Maximum Shooting Distance (MSD). So, the ring whose radius is MSD has the maximum potential, 

which is greater than 0. If our units are too far from the opponent units, such as outside the Maximum 

Detection Range (MDR), the potential is 0. 

c) Own bases: Bases generate a repelling field for obstacle avoidance. The base is similar to a 

static obstacle. But note that if the bases are bigger, the farthest distance is the diagonal of the base, 

so there is a bit of difference from the static terrain. It generates negative potential when the tiles are 

near our bases and is zero if they are too far from them. 
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d) The own units and sheep: Own units and sheep are all moving obstacles for a specific agent, so 

their potential function is similar. They generate a repelling field for obstacle avoidance, too. At the 

same time, the potential is zero if the tiles are far from them, and if they become near them, the 

potential is negative. 

4. Decide the granularity: The game map is 1024 × 1024, and the terrain is constructed from tiles 

of 16 × 16. The paper [1] uses 8 × 8 to construct our potential field to get more details for deciding. 

However, the side effect is that it needs more memory and time to calculate the potential field. In this 

experiment, 8 × 8 is enough to handle everything within the proper time and memory. 

5. The unit agent: Let each agent make decisions with the tiles that have the maximum potential. 

If a unit can attack an opponent unit, it attacks it. Otherwise, the unit moves to the tile with the 

maximum potential around it. 

After making a decision, let other units know. Because the movement will change the potential in 

the future, the algorithm needs to calculate the movement’s influence. Then, other units can avoid 

collision with the units. So, the tactical field must be updated to change others’ decisions. If an agent 

has been idle for some time, let it randomly move in a direction to get out of local optima. If an 

opponent unit is within the maximum shooting distance, attack the opponent unit. 

For example, if units A and B want to move to a tile (x, y). If unit A updates first, B can avoid 

collision with unit A. The unit B will go to another tile. 

When the unit attacks an opponent unit, the unit must consider avoiding obstacles while keeping 

the opponent unit within the maximum shooting distance. In this situation, the units themselves can 

also be considered obstacles. 

6. The multi-agent system: In different games, there may be different tactical targets. So, 

sometimes, people can set high- level targets. 

3.2. The experiment 

1. Environment: Two different games were used in the experiment. 

(1) In Tank Battle, each player controls multiple tanks and several bases. For this experiment, each 

player has50 tanks and five bases. The tanks have long-range, powerful fire capabilities but a long 

cool-down period. The cool-down period means the time between shots. Bases are highly durable and 

can absorb significant damage before destruction but cannot attack other units. The game’s map 

features randomly generated terrain, which includes passable lowland areas and impassable cliffs, 

adding complexity to movement and strategy. 

(2) In Tactical Combat, each player controls a group of marines, with the objective being to 

eliminate all opposing marines. In this experiment, each player has 50 marines. The Marines can fire 

rapidly and possess average firepower. At the start of the game, they are randomly positioned on 

either the right or left side of the map. The map consists of passable lowland terrain, allowing 

unrestricted movement across the battlefield. 

2. Result: In the experiment, the algorithm won more than one-third of the teams in the tank battle 

game shown in Table 1 and won at least one second of teams in the tactical games shown in Table 2. 

WarsawA maps each unit’s position to a node on a grid to determine optimal paths. They target 

the enemy along a line, focusing on its weakest points at a specified range. 

WarsawB utilizes a dynamic graph with moving objects to find paths. While their units repel one 

another, they remain grouped in a large squad. During an attack, they spread out along a line at MSD, 

with each unit targeting the weakest enemy within range. In tactical combat, each unit aims to align 

with the same y-coordinate as its designated enemy target. 
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Table 1: Summary of the results of Orts tank-battle 2007 in the article [1] 

Team Win ratio Win/Games Team name 

nus 98% (315/320) National Univ. of Singapore 

WarsawB 78% (251/320) Warsaw Univ., Poland 

ubc 75% (241/320) Univ. of British Columbia, Canada 

uofa 64% (205/320) Univ. of Alberta, Canada 

uofa.06 46% (148/320) Univ. of Alberta 

BTH 32% (102.5/320) Blekinge Inst. of Tech., Sweden 

WarsawA 30% (98.5/320) Warsaw University, Poland 

umaas.06 18% (59/320) Univ. of Maastricht, The Netherlands 

umich 6% (20/320) Univ. of Michigan, USA 

Table 2: Summary of the results of the orts tactical combat in the article [1] 

Team Win ratio Win/Games Team name 

nus 99% (693/700) National Univ. of Singapore 

ubc 75% (525/700) Univ. of British Columbia, Canada 

WarsawB 64% (451/700) Warsaw Univ., Poland 

WarsawA 63% (443/700) Warsaw Univ., Poland 

uofa 55% (386/700) Univ. of Alberta, Canada 

BTH 28% (198/700) Blekinge Inst. of Tech., Sweden 

nps 15% (102/700) Naval Postgraduate School, USA 

umich 0% (2/700) Univ. of Michigan, USA 

 

Uofa employs a hierarchical command system, including roles like squad commanders and path-

finding commanders, to organize and control units. The units are grouped into clusters and attempt to 

encircle enemy forces by spreading to MSD. 

Umich adopts a strategy driven by finite-state machines, guiding the overall tactics. For instance, 

units are organized into a single squad focused on hunting enemies, primarily emphasizing attacking 

opponent bases as their top priority. 

Umaas and Uofa entered the competition with their 2006 entries. No entry descriptions are 

available, and how they work is unknown. 

3. Discussion: The experiment shows that the artificial potential field is a good fit for solving real-

time strategy game problems compared to other algorithms. A PF-based solution may replace path 

planning with a heuristic method if the analysis is carried out carefully but efficiently [1]. Potential 

Field gives us an efficient and flexible method to solve the problem of finding paths and making 

decisions with multiple agents. But there are still some disadvantages: 

• The first issue pertains to resolution in the algorithm. The agent currently moves to the center of 

the 8x8 grid tile with the highest potential. This approach fails when the agent encounters nearby 

units or needs to navigate narrow passages. A potential solution is to enhance the functionality to 

estimate potential at a more granular point level, allowing for finer movement. Increasing the map 

resolution could improve navigation, though this approach is computationally expensive. 

• The Second issue is that the algorithm can’t correctly find the weakest opponents. Sometimes, it 

attacks a very difficult field to break because it is a local optima. In other words, the Potential Field 

method focuses on the local optima and is always misled by it. 

More experiments are needed to improve the algorithm or find different ways to optimize the 

parameters. This is a field worth researching. 
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4. Potential-Field-Based Navigation in Starcraft 

Real-Time Strategy (RTS) games, a sub-genre of strategy games, are typically set in a war 

environment and present significant challenges for both AI and human players. Traditional 

pathfinding algorithms like A* often fall short in dynamic game environments due to their static 

nature. In [2], a novel navigation algorithm based on potential fields is introduced, which combines 

A* with potential fields to address the dynamic elements of RTS games more effectively. 

4.1. Challenges 

In RTS games, armies typically consist of numerous units that need to navigate the game environment 

effectively. The real-time and dynamic nature of RTS games makes pathfinding a particularly 

demanding task for AI. The following are key challenges faced in RTS pathfinding: 

1. Dynamic and real-time aspects of RTS games: The constantly changing and real-time nature of 

RTS games presents significant difficulties for pathfinding. Traditional algorithms like A* struggle 

to handle these dynamic environments without modification [5]. If a movable object obstructs the 

path, having been located elsewhere during the initial calculation, the route is rendered invalid, 

requiring the agent to recalculate all or part of it. 

2. The problem of local optima: Another problem of potential fields is the risk of the agent 

becoming trapped in a local optimum, where the current position has the highest potential but is not 

the desired destination. Figure 3 provides an example of a map that poses significant challenges for 

a purely potential field-based approach. The top section of the map is displayed in the screenshot, 

highlighting the starting position of one player, with the other player’s starting position located below. 

The yellow circle indicates the only entry and exit point for the starting area. If the agents are 

instructed to move towards the original position of the opponent, the highest potential would lead 

them south of their own starting position, causing them to overlook the northern exit. 

 
Figure 3: Screenshot from the Baby Step map in the Broodwar expansion. The yellow circle shows 

the only entry/exit point of the starting area [2]. 

3. Complex situations: Typically, the total potential field is computed as a weighted sum of all 

subfields, so a different issue can arise, increasing potential risks in navigation in complex situations. 

In scenarios where multiple enemy units are concentrated in one area, which is common in RTS 

games, the highest potential might be centered within the enemy force, leading our agents to 

mistakenly move towards the opponent’s strongest position [2], as is shown in the upper image in 

Figure 4. 
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Figure 4: Total potential field when using the sum of opponent fields (left) or the max of opponent 

fields (right). Light areas have higher potential than darker areas [2]. 

4.2. Methods 

In [2], a hybrid approach combining potential fields and A* is proposed to 1) reduce the occurrence 

of multiple local optima in potential fields by employing A* where suitable and 2) leverage the 

dynamic world-handling capabilities of potential fields. In this integrated method, A* is utilized for 

navigation when the agent detects no enemy units, ensuring efficient pathfinding over long distances. 

When detecting an enemy unit or structure, the navigation shifts to potential fields, thereby 

minimizing local optima while taking advantage of the benefits that potential fields offer, such as the 

ability to surround enemy units. 

To mitigate the issue of local optima, the potential field navigation system employs a pheromone-

inspired approach. 

The total potential field is designed to prevent the most appealing points from being located at the 

center of enemy formations. This calculation accounts for all relevant objects, excluding enemy units 

and structures. The proposed solution calculates the overall potential field by taking the maximum 

value of all potential fields generated by enemy units and buildings rather than using a weighted sum, 

as is shown in the bottom image of Figure 4. This greatly improved the performance of the ORTS 

bot. 

Another enhancement proposed is to have the generated fields be determined not only by the agent 

and the object it interacts with but also by the agent’s internal state [2]. The agent is in an attack state, 

as is presented in the top image of Figure 5, and the potential field created by the enemy unit shows 

the highest potential at the agent’s maximum shooting distance. Conversely, if the agent is in a retreat 

state, as is showcased in the bottom image of Figure 5, the highest potential shifts to be outside the 

opponent’s maximum shooting distance. 
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Figure 5: Total potential field for an agent in attack state (left) and in retreat state (right). Red areas 

are repelling [2]. 

4.3. Experiments 

A series of experiments were carried out to evaluate two versions of a bot navigating the game 

StarCraft as Terran, each competing with the built-in AI opponents: Terran, Zerg, and Protoss. The 

first bot version employed only the A* algorithm for navigation, while the second combined A* with 

a potential field approach. Each bot version played two matches on two different maps against each 

of the three races. 

The chosen maps were: 

• Fading Realm: A two-player map distinguished by its multiple plateaus, each set at different 

heights. 

• Destination 1.1: A map designed for two players, prominently showcased in the AIIDE 2011 

StarCraft bot competition. 

In the first experiment, each bot was faced with built-in AI opponents: Terran, Protoss, and Zerg. 

The experiment indicated that the built-in AI posed a minimal challenge to both bot versions. Both 

won 11 out of 12 games, each losing only one game to an early Zealot rush by Protoss. The distinction 

in their average scores was negligible. 

To conduct a more rigorous comparison, a second experiment was performed where the two bot 

versions competed directly against each other. As is showcased in Table 3, the results revealed that 

the hybrid A* and potential fields approach was superior, securing 5 out of 6 victories. Importantly, 

both versions utilized identical strategies, build orders, and squad setups—the sole difference being 

the use of potential fields when engaging enemy units or structures. 

Additionally, games were played using only potential fields for navigation. However, these 

matches invariably ended in a draw. While the bot demonstrated strong defensive capabilities, it 

struggled with the complex choke points on the maps. Despite employing a trail containing 20 

positions to navigate local optima, the bot couldn’t master sufficient forces to breach enemy defenses 

and secure a win. This suggests that a more robust method for handling local optima would be 

necessary for this approach to succeed on typical StarCraft maps. 

However, there are still drawbacks in the experiments. As the complexity of maps increases in 

highly dynamic game environments, more experiments should be carried out to compare the hybrid 

pathfinding system to a nonhybrid pathfinding system in terms of win ratio in more complex game 

environments. For example, a noticeable distinction exists between straightforward two-player maps 

and the more intricate four-player maps, which can lead to significant variations in the outcomes of 

hybrid and nonhybrid pathfinding for the latter. Plus, more experiments should be performed to test 
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how much hardware resources each of them requires to evaluate their performance better, and there 

should be more tests for statistical significance, such as a two-sample T-test between proportions. 

Hence, more improvements can be made to the experiments. 

4.4. Discussions 

The findings from the two experiments demonstrate that a navigation system combining A* with 

potential fields surpasses the performance of a bot relying solely on A* for navigation. As previously 

discussed in this paper, navigation methods based on potential fields are effective at encircling 

opponents by employing exponential subfields or piecewise linear. However, when integrating 

potential fields with A*, timing is critical; switching to potential fields too late prevents agents from 

adequately spreading out around the enemy while switching too early increases the risk of getting 

trapped in complex local optima. 

Table 3: Results from the bot playing against itself.[2] 

Map Winner PF+A* Score A* Score 

Destination PF+A* 60079 44401 

Destination PF+A* 60870 34492 

Destination PF+A* 54630 30545 

Fading Realm A* 52233 79225 

Fading Realm PF+A* 72549 45814 

Fading Realm PF+A* 82441 44430 

Avg  63800 46485 

StDev  11527 17198 

 

On the other hand, a navigation system that relied exclusively on potential fields proved ineffective 

due to the complexity and the numerous local optima present in the chosen StarCraft maps. 

5. Real Time Path Planning Using Flow Field and A* 

In [3], Path planning refers to the process of identifying a series of configurations without collisions 

from the starting position to the destination. Several techniques have been introduced, including 

roadmap methods, visibility graphs, and potential field-based techniques, which consider agents as 

points within a configuration space influenced by artificial potential fields. Although these techniques 

can be effective, they are often prone to local minima, where the robot may become trapped due to 

the A* potential function focusing solely on nearby obstacles [6]. To fix this issue, a better version 

of the A* algorithm is used, which adds obstacle potential fields to make sure the path is efficient. 

A* combines the cost of moving to a point with a guess of how far the goal is, often using the 

Euclidean distance. This method, which can be both optimal and complete in certain situations, is 

called the Valley Field. 

5.1. A. Methodology 

1. Problem Formulation: In [3], This paper imagines an agent operating in an unknown area with 

barriers. In such an area, where there are both passable and impassable regions, an obstacle map can 

be made using either a node-based system or a grid-based system. 

Fig.6 demonstrates an example of a grid-structured environment, where black pixels show barrier 

nodes and white pixels show nodes without obstacles. Fig.7 is based on this obstacle environment. 

The obstacle potential field and the target potential field can be created independently. 
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Obstacle Potential Field: The first step is to combine the potential field of the obstacle. This step 

uses a modified version of Dijkstra’s shortest route algorithm, applied to each point marked as a 

barrier. Normally, Dijkstra’s algorithm determines the shortest route from the starting node by 

building a set of nodes with the minimum distance from the starting point. However, in this version, 

it doesn’t search for a path; instead, it sets the potential energy while building the obstacle 

environment. The obstacle potential field creates lower potential energy at the nodes furthest from 

the obstacle. This part of the algorithm only needs to run once for each unique obstacle environment. 

 

Figure 6: A predefined barrier environment.[3] 

2. Target Potential Field: The second step of the algorithm is to calculate the target potential field, 

starting from the target node. It uses a modified version of a Dijkstra-like shortest path algorithm. In 

this step, the blue asterisk shows the node with the lowest potential, which is the target node. Nodes 

that are further from the target are given a higher potential. 

 

Figure 7: Potential field Process [3] 

3. Combining Potential Field: The total potential field used in this method is a weighted sum of 

the obstacle potential field and the target potential field. Therefore, for every node in the grid, the 

cumulative potential function is calculated as 

 𝑝𝑐𝑜 = 𝑘1 ∗ 𝑝𝑜𝑏 + 𝑘2 ∗ 𝑝𝑡𝑎 (2) 

In this context, 𝑝𝑐𝑜, 𝑝𝑜𝑏, and 𝑝𝑡𝑎 represent the combined potential, obstacle or barrier potential, 

and target potential, respectively. The weighted values k1 and k2 influence the path-finding agent 

operations moving through the environment. Increasing k1 compared to k2 will cause agents to avoid 

obstacles more, as it amplifies the influence of the obstacle potential field. 

5.2. B. Result and Discussion 

In some situations, the potential change in the combined potential field is zero. This happens in areas 

where the obstacle’s potential field change cancels out equally with the target’s potential field change. 

The potential field is depicted in Fig. 8 and Fig. 9. 
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Figure 8: Environment of obstacle [3]     Figure 9: The Potential Field of obstacle [3] 

As explained in section A, a combined potential field can be created in the given environment. 

Figure 10 shows how the combined potential field is utilized for guiding agent steering. The star 

symbols indicate the target nodes that decide the direction of movement. 

 

Figure 10: Final Flow Field [3] 

This scenario creates an area with constant potential, which could lead to steering problems. This 

region is more clearly visible in Figure 11, where the potential field vectors (represented by arrows) 

indicate the direction of potential variation. The area with no change in potential is in the blue 

rectangle, and a zoomed-in view of this area is shown in Figure 12. In this region, there is no potential 

differential, resulting in a zero vector. 

 

Figure 11: Flow field with the potential field vectors shown as black arrows [3] 

 

Figure 12: Zoomed in view to visualize the region of zero potential field [3] 

This paper provides an alternative strategy for solving the local minimum problem by utilising an 

improved A* search algorithm based on an obstacle potential field derived from a predictable path. 

This approach cancels the goal potential field and the combined potential field in favour of the A* 
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routing algorithm. As a result, the A* part of the navigation strategy must be executed individually 

for each goal and each agent rather than only once per goal. 

The A* version of Valley Field Path Planning offers configurability, with key parameters including 

the smallest separation distance 𝑔𝑚𝑖𝑛 and the desired distance from obstacles 𝑑𝑝𝑟𝑒𝑓. Representing the 

barrier potential of each node is assigned the z-value for the matching 2D position helps to perform 

the A* search algorithm in conjunction with the barrier potential field. This actually introduces a third 

dimension that must be considered in the A* search algorithm. Conceptually, we can imagine obstacle 

nodes as mountain maximum and minimum potential areas as valleys. However, the optimal route 

planning behavior is not equivalent to navigating through mountainous terrain using A*. The 

inclination of this terrain is critical in determining the final A* path. If the incline is shallow, A* may 

opt for a shorter path by traversing over the mountain rather than circumnavigating it. In a 2D 

environment, this situation would result in the agent closely staying close to obstacles. To prevent 

this, the slope of the mountain (denoted as k1) must exceed the maximum possible path length within 

the environment, particularly in an n × n grid environment. 

 𝑘1 ≥ 𝑛2/2 (3) 

The meaning of this equation is the highest attainable potential, 𝑝ℎ𝑖𝑔ℎ, within an n × n environment, 

it will be 

 𝑝ℎ𝑖𝑔ℎ = 𝑘1 ∗ √2𝑛2 (4) 

The value of k1 calculated from equation 2 ensures that the agent will navigate through regions of 

low potential whenever possible. However, if the agent needs to cross a gap containing a zone of 

elevated potential, it will continue to follow the region of high potential throughout the rest of its 

route. This occurs because the descent into the valley is longer than all paths around the mountain as 

a result of the value of k1. Thus, if the path involves nodes with high potential, the agent will tend to 

approach the obstacle. The effect of this may be seen in Fig. 13. 

 

Figure 13: Path (in blue) riding high potential [3] 

To avoid this path-planning behaviour, paths moving toward lower potentials must be associated 

with shorter paths in the A* algorithm. This can be done by reducing the g-cost when ∆po < 0. In this 

scenario, the g-cost represents a function of potential energy. In order to comply with the energy 

preservation, the total energy gained in moving down to the low potential energy region must equal 

the energy lost in moving up to the high potential energy region. In addition, the estimated cost 

function will be evaluated using the same method. With this adjustment to the A* algorithm, routes 

will be created through low-potential regions, as shown in Figure 14. 
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Figure 14: Path (in blue) favoring low potential regions [3] 

During the last iteration of the A* version of Valley Field Path Planning, it becomes 

straightforward to select a preferred obstacle close distance 𝑑𝑝𝑟𝑒𝑓 This parameter can be implemented 

by increasing the baseline of the barrier potential field to match the minimum barrier potential. This 

minimum potential value, 𝑝𝑚𝑖𝑛, is defined as follows: 

 𝑝𝑚𝑖𝑛 = 𝑝𝑚𝑎𝑥 − 𝑘1 ∗ 𝑑𝑝𝑟𝑒𝑓 (5) 

In this context, 𝑝𝑚𝑎𝑥 represents the maximum potential observed within the obstacle potential field. 

Beyond the 𝑑𝑝𝑟𝑒𝑓 parameter, a minimal gap distance for the path 𝑔𝑚𝑖𝑛 can also be readily enforced. 

This is accomplished by designating any node with an obstacle potential exceeding 𝑝𝑔𝑎𝑝 as non-

navigable. The gap potential, 𝑝𝑔𝑎𝑝, can be determined using equation 4. 

The A* modification of Valley Field Path Planning provides a cost-effective solution for 

configurable through-wall distances and minimum gap widths. Both methods can be extended to three 

dimensions. In the A* variant, the obstacle potential field introduces a fourth dimension. 

6. Conclusion 

Our research highlights several important advantages of artificial potential fields (APFs), including 

their ability to manage multiple agents simultaneously and their adaptability to dynamic gaming 

environments. However, challenges such as local minimums and computational complexity remain, 

so there is an A* need to integrate A* algorithms to address these limitations by combining improved 

A* Algorithms. These papers demonstrate the potential to mitigate local minimum problems while 

retaining the inherent flexibility and responsiveness of potential fields. In addition, we explore 

extending these methods to three-dimensional space, thereby extending their applicability to more 

complex and realistic game scenarios. The introduction of configurable parameters, such as obstacle 

proximity and minimum gap width, enhances customization so that it can be adapted to specific game 

requirements. The synergy between potential fields and the A* algorithm provides a powerful and 

flexible framework for wayfinding in RTS games, balancing computational efficiency and strategic 

depth. Future research could aim to improve these methods further, optimizing their performance and 

scalability in increasingly complex gaming environments 
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