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Abstract: The Fibonacci sequence, introduced by the Italian mathematician Leonardo of Pisa 

(c. 1170–1250), also known as Fibonacci, was a pivotal concept in medieval mathematics. 

His influential book, Liber Abaci (The Book of Calculation, published in 1202), not only 

disseminated this sequence but also introduced the Hindu-Arabic numeral system to Europe. 

Beyond mathematics, this sequence has profound applications in fields such as computer 

science, natural sciences, finance, economics, art, and architecture, bridging both theoretical 

and practical domains. Given its widespread significance, understanding Fibonacci's 

contributions is crucial for advancing various disciplines. This study introduces the Fibonacci 

sequence and explores its applications in solving a diverse array of problems. Through the 

conduct of algorithmic experiments and the implementation of coded solutions, it aims to 

evaluate the computational efficiency of the sequence and delve into its wider mathematical 

significance.  
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1. Introduction 

Beyond its mathematical achievements, the Fibonacci sequence is also frequently observed in nature, 

as evidenced in the arrangement of bees, nautilus and sunflower [1]. This natural phenomenon has 

inspired extensive research into its properties and applications. One of the key motivations for this 

study is to explore the implementation of the Fibonacci sequence in Python programming, particularly 

in generating the sequence efficiently and analyzing its role in the Euclidean Algorithm, which is a 

classical method for computing the greatest common divisor (GCD) of two integers. The Fibonacci 

sequence exhibits unique mathematical properties that influence various computational algorithms, 

including the Euclidean Algorithm [2]. The Fibonacci sequence has been widely applied across 

various fields due to its low computational complexity and cost-effective nature. In computer science, 

it is commonly used in searching, hashing, and random number generation [3]. In financial markets, 

Fibonacci retracement is employed as a technical analysis tool for predicting price movements [4]. 

Additionally, Fibonacci numbers play a significant role in biological and chemical systems, 

influencing protein models and genetic patterns [5]. Despite its wide application, research gaps 

remain in optimizing the efficiency of Fibonacci calculations in programming and exploring deeper 

mathematical relationships in computational algorithms. Many studies have focused on Fibonacci's 

use in theoretical mathematics, but fewer have analyzed its integration into programming paradigms 

like Python, C, C++ and Java particularly in GCD computations using the Euclidean Algorithm. This 
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study aims to bridge this gap by examining how an engineer can implement in Python for generating 

these sequences and optimizing the GCD function.  

2. Methods to Construct the Fibonacci Sequence 

The Fibonacci sequence is a fundamental concept in mathematics and computer science. It consists 

of a series of numbers where each number is the sum of the two preceding ones, starting from 0 and 

1. Mathematically, it is expressed as: F(n)  =  F(n − 1)  +  F(n − 2) where F(0)=0 and F(1)=1. In 

Python, there are multiple ways to generate Fibonacci numbers, each with its advantages and 

disadvantages, which depend on what you value the most. This study will demonstrate how different 

codes can create a Fibonacci sequence with different space and time complexity. 

2.1. Recursive Method (Less Efficient) 

A straightforward yet inefficient method that most students can think of for generating Fibonacci 

numbers is recursion 

 

Figure 1: The process of creating the Fibonacci sequence and calculating specific numbers using a 

recursive method 

The coding in Figure 1 follows a self-referential structure, where each function call depends on 

the results of two previous calls. This method provides a clear and intuitive implementation but 

suffers from significant inefficiencies in terms of time complexity. One of the major drawbacks of 

recursion is exponential growth in function calls. Each recursive call spawns two additional calls, 

leading to a time complexity of O(2ⁿ). As a result, the computation time increases rapidly as the input 

size grows. For instance, calculating the 40th Fibonacci number as the picture shows using recursion 

takes several seconds, while some small Fibonacci numbers may be faster than some big numbers 

like 40. Moreover, the recursive method exhibits high memory consumption due to stack overflow 

risks. Since each recursive call is stored in memory until it resolves, deep recursion may exceed 

system limits, causing the program to crash. This issue makes recursion impractical for large values 

of n, while the recursive approach is conceptually simple and easy to implement. It is not efficient for 

handling large inputs, especially in this AI era. Alternative methods, such as dynamic programming 

or iteration, are preferable for optimizing performance and reducing memory usage. 
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2.2. Iterative Fibonacci Algorithm: (Most Efficient) 

 

Figure 2: the processes of generating Fibonacci numbers with an iterative approach 

Figure 2 shows the faster Fibonacci algorithm to create Fibonacci numbers with an iterative approach. 

Unlike the recursive method, which involves repeated function calls, this implementation stores 

previously computed values in a list, ensuring that each Fibonacci number is calculated only once. 

One of the key advantages of this method is its time complexity of O(n). The while loop iterates from 

2 to n, while each iteration requires a constant number of operations. This contrasts sharply with the 

recursive approach, which has an exponential time complexity of O(2ⁿ) due to repeated function 

requests. As a result, the iterative approach is much more suitable for computing large Fibonacci 

numbers. On the other hand, the space complexity of this method is O(n) because it maintains a list 

to store all Fibonacci numbers up to n, which can turn time costs into space complexity. While this is 

more efficient than the recursive approach, which requires O(n) space for function call stacks, it is 

still suboptimal for memory usage. However, the iterative approach provides greater computational 

efficiency and mitigates stack overflow issues, offering a superior alternative to the recursive method. 

For most practical applications, it is the preferred method due to its balanced trade-off between 

performance and the simplicity of implementation. 

3. The other Function of Fibonacci 

3.1. Reasons to consider alternative questions 

After discussing the fundamental properties of the Fibonacci sequence, it is natural to explore its 

connections to other fields of mathematics. One classic example is the greatest common divisor 

(GCD), a fundamental problem in number theory. The GCD of two integers is the largest number that 

divides both without leaving a remainder. Computing the GCD effectively and correctly is crucial in 

various applications, such as cryptography, numerical computing, and algorithm design. One of the 

most well-known techniques for solving this problem is the Euclidean algorithm, which follows a 

recursive structure remarkably similar to the Fibonacci sequence. The Euclidean algorithm is one of 

the most efficient methods compared to other algorithms, while its time complexity is commonly 

stated as O(log(min(a, b))). 
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Figure 3: the function of GCD by the Brute-Force method. 

3.2. Analyzing the Computational Efficiency of the Brute-Force GCD Algorithm and the 

Superiority of the Euclidean Method 

The given algorithm in Figure 3 is a straightforward approach to calculating the greatest common 

divisor (GCD) of two integers, which follows a brute-force strategy by iterating through all possible 

divisors from 2 to min(a, b), so its efficiency is relatively low. Since the loop runs from 2 to min(a, 

b), the worst-case time complexity is O(min(a, b)). This means that for large values of a and b, the 

algorithm may take a significant amount of time to complete. Additionally, the approach relies on 

iterating through all potential divisors, making it less efficient compared to more optimized methods. 

A more efficient alternative is the Euclidean algorithm, which significantly reduces the problem size 

at each iteration through the application of the modulus operation. To comprehend the derivation of 

its complexity, a thorough examination of the algorithm’s iterative process and underlying 

mathematical properties is required. 

 

Figure 4: More efficient algorithms for optimizing functions. 

3.3. The Euclidean Algorithm’s Efficiency: Exploring Complexity through Fibonacci 

Numbers and the Golden Ratio 

The logic of the code in Figure 4 mainly comes from the Euclidean algorithm and its complexity is 

just O(min(a, b)). To determine the maximum number of steps required, we must consider the worst-

case scene. It has been established that the slowest reduction occurs when a and b are consecutive 

Fibonacci numbers [6]. In such cases, the sequence of modulus operations follows the Fibonacci 

recurrence relation: Fn mod Fn−1=Fn−2. This means that each step reduces the problem size 

according to the Fibonacci sequence. Since Fibonacci numbers grow approximately according to the 

formula: 

 F(n)  ≈  1/√5 ×  ϕⁿ (1) 
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where ϕ (the golden ratio) is approximately 1.618, the number of steps required to reach 1 is 

proportional to log∅ min (a, b) which simplifies to O(log min(a,b)). This characteristic ensures that 

the number of steps required is inherently logarithmic, resulting in a time complexity of O(log min(a, 

b)). Accordingly, the Euclidean method demonstrates a significantly higher level of computational 

efficiency, especially when dealing with large numerical values. 

4. Analysis of Fibonacci's Impacts 

Having examined the Python code, we now comprehend the generation of the Fibonacci sequence 

and its interrelation with the greatest common divisor (GCD). Notably, the complexity of the 

Euclidean algorithm is constrained by Fibonacci numbers, making it a fundamental concept in 

computational efficiency, data structures, and cryptography. Additionally, the influence of the 

Fibonacci sequence extends far beyond mathematical computations. This numerical pattern is applied 

widely in nature, biology, financial markets, architecture, and even in music and art. Many complex 

natural phenomena and modern technologies function by Fibonacci-based structures, highlighting 

their universal presence and significance in the real world. 

(1) Fibonacci in Technology and Computing 

In computer science, the Fibonacci sequence is widely used in algorithm design and data structures. 

For instance, enhancing the efficiency of priority queue operations, which are essential for optimizing 

graph algorithms like Dijkstra’s shortest path algorithm. Additionally, Fibonacci numbers are widely 

used in recursive algorithms, dynamic programming, and hashing techniques, helping to improve 

computational efficiency. 

(2) Fibonacci in Financial Markets 

In finance, the Fibonacci sequence is usually used for technical analysis, particularly in Fibonacci 

retracement levels. Traders use these levels (23.6%, 38.2%, 61.8%) to predict potential price 

movements in stocks, forex, and cryptocurrencies, as these percentages often represent natural points 

of support and resistance in market trends. 

(3) Fibonacci in Nature and Biology 

Numerous natural patterns adhere to the Fibonacci sequence. The arrangement of leaves on a stem, 

known as phyllotaxis, the spiral configurations in sunflowers and pinecones, and the proportional 

dimensions of seashells and hurricanes all manifest Fibonacci ratios. This mathematical structure 

facilitates optimal sunlight exposure for photosynthesis in plants, thereby illustrating its evolutionary 

advantage. 

(4) Fibonacci in Architecture and Design 

Architects and designers will use Fibonacci proportions. From ancient Greek temples to modern 

skyscrapers, the Golden Ratio (φ  ≈  1.618) plays an important role in aesthetically pleasing 

structures and visual harmony and balance. It is also found in graphic design, photography, and logo 

creation, contributing to the beauty of various artistic compositions. 

(5) Fibonacci in Music and Art 

Musicians and composers, including Bach and Mozart, have structured compositions using 

Fibonacci numbers, arranging notes, rhythm, and sections based on these ratios. In visual arts, the 

Golden Spiral, derived from Fibonacci proportions, guides the composition of paintings and 

photographs, enhancing their appeal. 

The Fibonacci sequence is not just a mathematical function but a fundamental principle woven 

into the fabric of modern life. Whether in technology, finance, nature, architecture, or art, its influence 

is vast and undeniable. Understanding and applying Fibonacci principles can lead to better efficiency, 

innovation, and aesthetic appeal in many industry fields. Beyond theoretical computations, Fibonacci 

numbers also play a crucial role in various real-life applications. They are widely observed in nature 

(such as leaf arrangements and shell spirals), financial markets (through Fibonacci retracement in 
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stock trading), architecture and design (utilizing the golden ratio for aesthetic harmony), and even 

music and art (where Fibonacci proportions enhance composition). These applications demonstrate 

the far-reaching influence of Fibonacci mathematics on both science and everyday life. 

5. Conclusion 

In this paper, we have investigated the generation of the Fibonacci sequence using Python and 

evaluated the efficiency of the iterative Fibonacci algorithm in comparison to the recursive method. 

The iterative method optimizes performance by converting time complexity into space complexity, 

allowing for significant reductions in execution time. By carefully evaluating computational costs 

and specific requirements, we can leverage this method to achieve better efficiency. Additionally, we 

investigated the greatest common divisor (GCD) problem and analysed why the Euclidean algorithm 

with a time complexity of O(log min(a, b)). This efficiency is closely linked to the Fibonacci sequence, 

as Lamé, G.’s theorem states that the number of steps in the Euclidean algorithm is bounded by the 

Fibonacci sequence, reinforcing the deep mathematical connection between these concepts. Beyond 

theoretical computations, Fibonacci numbers also play a crucial role in various real-life applications. 

They are widely observed in nature (such as leaf arrangements and shell spirals), financial markets 

(through Fibonacci retracement in stock trading), architecture and design (utilizing the golden ratio 

for aesthetic harmony), and even music and art (where Fibonacci proportions enhance composition). 

These applications demonstrate the far-reaching influence of Fibonacci mathematics on both science 

and everyday life. 

Despite the insights gained in this study, certain limitations remain. Our discussion primarily 

focused on basic algorithmic efficiency without delving into advanced optimizations such as matrix 

exponentiation or memoization, which can further enhance Fibonacci sequence computations. 

Additionally, while we highlighted the connection between Fibonacci numbers and the Euclidean 

algorithm, deeper exploration into their implications for modern cryptography and data structures 

remains an open field for future research. As AI demands continue to grow, it is essential to seek even 

more optimized algorithms that balance efficiency and resource consumption to calculate and handle 

huge information. We hope that researchers will build upon these foundations in the future, 

optimizing existing methods and exploring new applications of Fibonacci mathematics in fields 

ranging from computing to artificial intelligence. By doing so, we can drive further innovation and 

push the boundaries of algorithmic efficiency. 
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