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Abstract: The study introduces a novel evaluation system designed to measure the 

metacognitive abilities of embodied agents. The system incorporates multiple metrics—

including task success rate, self-monitoring accuracy (measured by AUC), error detection 

speed, and confidence calibration error—to provide a comprehensive assessment of an 

agent’s internal monitoring and self-regulatory processes. Experiments were conducted in 

simulated environments (using Meta-World, etc.) and on a real robotic platform performing 

target grasping tasks. Two types of agents were compared: baseline agents relying solely on 

external feedback and agents enhanced with integrated metacognitive modules. The results 

demonstrate that agents with metacognitive capabilities consistently achieve higher 

performance, exhibit more precise self-monitoring, and respond more swiftly to unexpected 

events. This evaluation system serves as a robust tool for assessing metacognitive functions 

and offers promising implications for the development of more adaptable and reliable 

autonomous systems in dynamic environments, thus significantly enhancing overall system 

performance continuously. 

Keywords: Metacognition, Embodied Agents, Self-Monitoring, Error Detection, 

Autonomous Systems 

1. Introduction 

Embodied agents refer to AI entities with physical or virtual bodies that interact with the environment 

via sensors and actuators [1]. Unlike disembodied intelligence, they face real-world complexity, 

positioning them as a key path toward artificial general intelligence (AGI). Metacognition—“thinking 

about thinking”—enables agents to monitor, evaluate, and regulate their cognitive processes, 

enhancing adaptability and autonomy. However, current AI systems often lack such flexibility when 

encountering novel scenarios [2]. While metacognitive abilities could allow embodied agents to self-

monitor, adjust strategies, and improve learning efficiency, existing evaluation methods remain 

limited. Most focus on task outcomes, overlooking agents’ self-awareness and lacking standardized 

assessment criteria [3]. To address this gap, this paper aims to establish a systematic evaluation 

framework for assessing metacognitive capabilities in embodied agents, identifying key metrics and 

methodologies to enhance the comparability and practical relevance of research in this field. 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/150/2025.22347 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

47 



 

 

2. Related Work 

2.1. Cognitive Models 

In terms of cognitive architecture, many classical frameworks have begun integrating metacognitive 

mechanisms. For example, MIDCA (Metacognitive Integrated Dual-Cycle Architecture) employs a 

dual-loop system: the object-level handles routine planning and execution, while the meta-level 

monitors behavior, detects discrepancies, and guides adjustments [4]. Similarly, the Metacognitive 

Loop (MCL) architecture enables agents to detect mismatches between expected and actual outcomes, 

enhancing robustness in reinforcement learning contexts [5]. Other robotic control frameworks have 

incorporated self-error monitoring, allowing agents to evaluate their own actions for improved 

decision-making [6]. With the rise of deep learning, recent efforts have explored using large-scale 

pre-trained models to enhance metacognitive capabilities. For instance, vision-language models have 

been utilized to help robots interpret human-readable documentation for self-diagnosis and fault 

recovery [7-8]. In reinforcement learning, certain frameworks introduce competence awareness and 

strategy regulation, leading to improved performance in novel or unstructured tasks [9-10]. Beyond 

single-agent systems, research [11-12] has also shown that, in human-AI collaboration, expressing 

decision confidence improves team outcomes—highlighting the critical role of metacognition in both 

autonomous and collaborative settings. 

2.2. Framework Needs 

The absence of a unified metacognitive evaluation framework represents a significant gap in current 

research [13]. Although previous studies have demonstrated that metacognition can enhance the 

performance of embodied agents, the lack of standardized benchmarks hinders fair comparisons 

across methods and makes it difficult to identify weaknesses in existing mechanisms [14]. In real-

world applications, evaluating an agent’s self-monitoring and self-regulation is essential for 

determining its readiness for critical tasks. Yet, no standardized metacognitive evaluation method—

comparable to the Turing Test—currently exists. To address this, we propose a systematic framework 

for assessing metacognitive capabilities in embodied agents. Our approach unifies prior insights, 

defines core metrics, and introduces standardized testing protocols. Key contributions include: (1) the 

first structured index system for agent metacognition; (2) a generalizable evaluation architecture; and 

(3) empirical validation demonstrating both the framework’s utility and existing agent limitations. 

3. Method 

This study designs a metacognitive evaluation framework to quantify the performance of embodied 

agents in self-monitoring, self-regulation, and error detection. 

3.1. Main Modules 

• Data Collection Module: During task execution, this module records internal outputs—such as 

confidence scores, self-predictions, and error alerts—alongside environmental feedback, including 

task success rates and reward signals. 

• Evaluation and Analysis Module: This module computes predefined metrics, including self-

monitoring accuracy (evaluated using ROC curves and AUC of confidence predictions), error 

detection rate (the proportion of anomalies correctly identified by the agent), and self-regulation 

effectiveness (measured by improvements in task success rates before and after strategy 

adjustments). 
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• Feedback Adjustment Module: To further enhance agent performance, this module provides 

recommendations for improvement based on evaluation results, such as automatically adjusting 

parameters within the metacognitive module. 

 

Figure 1: The metacognitive assessment architecture 

This architecture draws inspiration from the monitor-control models in cognitive psychology and 

control theory, enabling agents not only to achieve high task performance but also to reflect on and 

adapt their decision-making processes in real time. Figure 1 shows the complete architecture diagram. 

3.2. Metacognition Assessment System 

 

Figure 2: Framework 

The figure 2 illustrates the detailed framework of the metacognition assessment system for embodied 

agents. It highlights the interaction between the perception-action cycle and the metacognitive layer, 

where the agent's internal assessments of confidence, error detection, and self-regulation are 

monitored and adjusted. The flow from sensory inputs through the cognitive processes to 

metacognitive feedback showcases the system’s collaborative modules. This visualization 

emphasizes the dynamic feedback loop between the agent’s performance and its metacognitive self-

awareness and regulation. The system computes metacognitive calibration using metrics such as the 

Brier score: 

𝐵𝑟𝑖𝑒𝑟 =
1

𝑁
∑(𝑓𝑖 − 𝑜𝑖)2

𝑁

𝑖=1

(1) 
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where fi is the agent’s predicted confidence and oi is the actual outcome, quantifying the accuracy of 

self-monitoring over time. Additionally, the system models self-regulation dynamics through an 

adaptive control function: 

𝜋𝑡+1 = 𝜋𝑡 + 𝜂 ⋅ ∇𝜋ℒ𝑚𝑒𝑡𝑎(𝜋𝑡) (2) 

where 𝜋𝑡is the policy at time t, 𝜂 is the learning rate, and ℒ𝑚𝑒𝑡𝑎 represents the metacognitive loss 

guiding policy adjustment based on internal feedback. 

4. Experiment 

To validate the effectiveness of the proposed evaluation framework, experiments were conducted on 

two types of platforms. 

4.1. Simulation Experiments 

Tasks such as “open door” and “object relocation” were selected within the Meta-World and 

ALFWorld environments. For each task, anomalous scenarios were introduced by randomly altering 

object positions and adding sensor noise, simulating real-world unexpected disturbances.  

Two types of agents were deployed for each task: 

Metacognitive Agent: Integrated with self-monitoring and self-regulation modules, capable of 

evaluating its internal state, detecting errors, and adapting strategies in real time during task execution. 

Baseline Agent: Lacking metacognitive modules, it relies solely on environmental feedback for 

decision-making. 

To ensure statistical reliability, each task was repeated multiple times (e.g., 30 trials per task). Key 

recorded metrics included task success rate, self-monitoring accuracy (measured by AUC of ROC 

curves), error detection rate, and the performance gain attributed to self-regulation. 

4.2. Real-World Robotic Experiments 

A mobile autonomous robot was tasked with “target object grasping.” The robot was required to 

autonomously navigate to a target zone and grasp an object, while variations in target location and 

obstacle interference were introduced to assess its adaptability under dynamic disturbances. As in the 

simulation experiments, both a metacognitive agent and a baseline agent were deployed. Task success 

rates and internal metacognitive metrics (e.g., confidence scores and error alerts) were recorded to 

evaluate the practical effectiveness of the metacognitive module in real-world conditions. 

4.3. Key Metrics 

• Task Success Rate: Proportion of tasks where the agent achieves the goal; reflects overall 

performance. 

• Self-Monitoring Accuracy (AUC): Measures how well the agent predicts its own correctness; 

higher AUC means better self-assessment. 

• Error Detection Rate: Percentage of failures or anomalies correctly identified by the agent; 

indicates awareness of unexpected events. 

• Self-Regulation Improvement: Increase in success rate after strategy adjustment; reflects the 

agent’s capacity to self-improve. 
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4.4. Experimental Results 

4.4.1. Task Success and Performance Metrics 

Table 1: Experimental Results Comparison 

Task 

Baseline 

Success 

Rate 

Metacognitive 

Success  

Rate 

Self-

monitoring 

AUC 

Error 

Detection 

Rate 

Self-regulation 

Improvement 

Rate 

Meta-World Door 64% 87% 0.81 23% 32% 

ALFWorld Transportation 42% 68% 0.85 27% 47% 

Real Robot Grasping 57% 76% 0.79 31% 38% 

 

Table 1 compares the overall task success rate, self-monitoring accuracy (measured by AUC), error 

detection rate, and self-regulation improvement rate between the baseline and metacognitive agents 

across various tasks. The data clearly shows that the metacognitive agent consistently outperforms 

the baseline in all key performance areas. 

4.4.2. Decision and Error Detection Delays 

Table 2: Decision Delay and Error Detection Delay Statistics 

Task 

Baseline 

Decision 

Delay (ms) 

Metacognitive 

Decision Delay 

(ms) 

Baseline Error 

Detection Delay 

(ms) 

Metacognitive Error 

Detection Delay 

(ms) 

Meta-World Door 118 153 398 247 

ALFWorld Transportation 127 161 447 282 

Real Robot Grasping 205 237 502 319 

 

Table 2 presents the average decision delay and error detection delay for both agents. Although the 

metacognitive agent incurs a slightly longer decision delay due to additional internal evaluations, it 

significantly reduces the error detection delay, enabling faster responses in abnormal conditions. 

4.4.3. Confidence Calibration Error Comparison 

Table 3: Confidence Calibration Error Statistics  

Task Baseline MCE Metacognitive MCE 

Meta-World Door 0.146 0.082 

ALFWorld Transportation 0.173 0.109 

Real Robot Grasping 0.198 0.123 

 

Table 3 shows the average Mean Calibration Error (MCE) for both agents across different tasks. 

Lower MCE values indicate that the agent’s confidence levels are more closely aligned with its actual 

performance. The metacognitive agent achieves substantially lower calibration errors, reinforcing the 

benefit of incorporating metacognitive processes. 

4.5. Results Analysis 

The evaluation system effectively differentiates between agents with and without metacognitive 

capabilities. In tasks such as door opening and transportation, metacognitive agents consistently 

achieved higher success rates and exhibited improved self-monitoring accuracy, as evidenced by 

increased AUC values. Additionally, these agents demonstrated significantly reduced error detection 

delays and lower confidence calibration errors compared to baseline agents. These metrics 
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collectively confirm that the evaluation system captures the essential aspects of metacognitive 

functioning, offering a comprehensive assessment of an agent's ability to monitor and adjust its own 

performance in dynamic environments. 

5. Conclusion 

The proposed evaluation system offers a robust framework for quantifying the metacognitive abilities 

of embodied agents. By integrating multiple performance metrics, it reliably distinguishes agents with 

enhanced self-monitoring, error detection, and self-regulation capabilities. The experimental results 

validate the system's effectiveness and highlight its value as a tool for advancing metacognitive 

functionalities in autonomous systems. This framework paves the way for further research into 

developing more adaptive and reliable embodied agents. 
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