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Abstract: Nowadays more and more natural disasters and accidents happen around us, 

resulting in situations where people are trapped in danger. These areas often have complex 

terrains or high-risk environments. Rescue robots are becoming increasingly important in 

disaster relief and complex environment exploration. The use of rescue robots significantly 

improves search and rescue efficiency and reduces risk of casualties during rescue operations 

in hard-to-access or dangerous areas like earthquake ruins or fire scenes. This research 

develops an efficient rescue robot system that integrates advanced path planning and rapid 

map-building technologies for multi-target rescue tasks in complex environments. The 

system's core consists of two main modules: one is a multi-target path planning and obstacle 

avoidance module that combines A* and TSP algorithms, aimed at generating the shortest 

path covering all rescue points; the other is a map building module based on SLAM 

technology, for quickly and accurately drawing environmental maps. Comprehensive 

validation in computer simulation environments and real miniature car testing environments 

has shown that the path planning module combining A* and TSP algorithms can successfully 

plan the shortest rescue routes. Meanwhile, SLAM technology demonstrates its high accuracy 

and real-time performance in map building. The real miniature car's test results further 

confirm the system's feasibility and stability. This project offers a method to optimize the 

path planning of traditional rescue robots, potentially improving the efficiency of multi-target 

rescue missions. Additionally, the experimental results provide guidance and suggestions for 

the design, development, and deployment of actual rescue robots in the future. 
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1. Introduction 

1.1. Rationale 

Disasters including natural or man-made are unavoidable events in human society. In recent years, 

the frequency and intensity of these disasters have increased. Natural disasters such as floods, storms, 

tornadoes, wildfires and earthquakes have had a growing impact on densely populated urban areas. 

Meanwhile, human-made disasters like traffic accidents, industrial accidents and large-scale fires also 

pose significant threats to human lives [1]. As rapid urbanization and climate change exacerbate the 

complexity and scale of these events, governments and emergency services face increasing challenges 

in disaster response. 
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Fast rescue operations are crucial in disaster situations. According to the studies in the field of 

Urban Search and Rescue (USAR), the success rate of rescuing trapped individuals is highest within 

the first 48 hours after a disaster [2]. Beyond this critical time window, the chances of survival for 

victims decrease sharply, almost reaching zero. Despite deploying essential emergency forces such 

as firefighters, medical personnel, and police, extreme dangers in disaster areas often put rescuers at 

great risk.  

Conducting manual rescues in unstable debris, toxic environments and unpredictable hazards is 

not only highly dangerous but also time-consuming. To address these challenges, advancements in 

robotics provide the possibility to develop search-and-rescue robots [3]. These autonomous machines 

can effectively replace traditional rescue efforts, reducing the risks to rescuers while completing more 

efficient and accurate search missions. However, the application of search-and-rescue robots in real 

disaster scenarios also faces a series of technical challenges, particularly in areas such as 

environmental sensing, positioning, decision-making and path planning [4]. Among these 

technologies, the study of path planning algorithms is particularly crucial as it directly determines the 

robot's ability to autonomously navigate complex environments and complete tasks efficiently. 

Traditional path planning algorithms, such as the A* algorithm, though working well in known 

environments, may not meet the requirements for rapid response and adaptability in dynamic or 

unknown rescue settings [5]. 

1.2. Research Questions 

The efficiency and effectiveness of path planning in search-and-rescue robots have been a focus of 

research in recent years, particularly in multi-target rescue missions. Robots operating in disaster 

environments face a number of challenges, including navigating unpredictable terrain, identifying 

multiple targets, and optimizing paths to maximize rescue efficiency. Thus, the key question this 

research seeks to address is: How can the efficiency and effectiveness of path planning in multi-target 

search-and-rescue robots operating in complex environments be improved? 

In order to fully answer this question, it is important to consider the sub questions that guide the 

research: What are the current limitations of traditional path planning algorithms, such as A*, when 

applied to dynamic, real-world rescue environments?; How can the integration of  traditional 

algorithms like A* and Dijkstra improve real-time adaptability and decision-making in multi-target 

rescue missions?; How can Simultaneous Localization and Mapping (SLAM) techniques enhance 

real-time adaptability in complex environments?; What specific improvements can be made to 

prioritize multiple rescue targets in real-time based on urgency and environmental constraints? 

By exploring these sub-questions, the research seeks to develop a comprehensive solution that not 

only enhances the robot’s ability to navigate complex environments but also improves its efficiency 

in rescuing multiple targets. 

2. Literature Review 

2.1. Limitations of Traditional Algorithms 

In the field of search-and-rescue robotics, numerous research efforts have focused on improving the 

efficiency and effectiveness of robots in navigating complex and dynamic environments. The main 

part of this is the development of algorithms that enable robots to plan optimal paths while accounting 

for real-time changes and multiple rescue targets. The Dijkstra algorithm, introduced by E. W. 

Dijkstra, is considered one of the foundational algorithms for finding the shortest path in a network 

of nodes [6]. This algorithm has served as a starting point for many subsequent path planning 

solutions due to its reliability in generating optimal paths in static environments. However, its 

application in dynamic and real-time rescue scenarios reveals certain limitations, particularly when 
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conditions within the environment are subject to rapid change. To overcome the challenges, 

researchers have sought to extend and refine Dijkstra's algorithm. For instance, Kang, Lee, and Kim 

proposed an improved version of Dijkstra’s algorithm by integrating it with Particle Swarm 

Optimization (PSO) [7]. This approach enhances real-time adaptability by optimizing the robot’s path 

based on dynamic environmental changes, allowing for more efficient navigation during rescue 

operations. Similarly, Noto also developed an extension of Dijkstra’s algorithm that incorporates 

advanced strategies in order to efficiently navigate complex environments with multiple obstacles [8]. 

2.2. Integration of Algorithms 

Despite these advancements, Dijkstra’s algorithm continues to face challenges in maintaining real-

time adaptability, which has been pushing researchers to explore alternative approaches. One such 

alternative is the A* algorithm, introduced by Hart, Nilsson, and Raphael. A* builds upon Dijkstra’s 

work by incorporating a heuristic function that estimates the cost to reach the goal, making it more 

efficient in larger, more complex environments.[9] While A* has become a popular choice due to its 

efficiency, it also struggles with handling multiple targets in dynamic rescue missions. To address 

this, Zhang and Zhao integrated A* with Dijkstra’s algorithm in their study, demonstrating how this 

combination improved overall pathfinding efficiency in multi-robot rescue scenarios [5]. Their 

findings highlight the importance of combining traditional algorithms to achieve better coordination 

with less response time in locating multiple victims during emergencies. 

2.3. SLAM Techniques 

In addition to advancements in path planning algorithms, the development of Simultaneous 

Localization and Mapping (SLAM) techniques has significantly contributed to the effectiveness of 

search-and-rescue robots. SLAM enables robots to map unknown environments while simultaneously 

determining their own position within those environments, making it a vital tool in disaster scenarios. 

In their influential work, Grisetti, Kümmerle, Stachniss, and Burgard presented a graph-based SLAM 

approach that enhances the robot’s ability to handle complex environments [10]. Similarly, Kuswadi, 

Santoso, Tamara, and Nuh demonstrated the practical application of SLAM in conjunction with the 

A* algorithm for mobile robots operating in indoor disaster areas, highlighting the effectiveness of 

this combination in navigating complex environments while avoiding obstacles in real time [11]. This 

method has proven particularly effective when integrated with algorithms like A*, allowing robots to 

dynamically adjust their paths in response to newly detected obstacles or targets in real-time. By 

combining SLAM with advanced path planning techniques, robots are able to have greater autonomy 

and adaptability, which are crucial for successful completion of rescue missions in unpredictable 

settings. 

2.4. Target Prioritization 

Beyond path planning and localization, researchers have also focused on developing strategies for 

autonomous exploration and target prioritization in rescue missions. Qiu, Chen, Zeng, Xiao, and 

Zhang investigated target-based exploration strategies specifically designed for search-and-rescue 

operations [12]. Their study demonstrated that robots equipped with these strategies could 

dynamically modify their search patterns based on real-time information about the locations and 

conditions of trapped victims. Similarly, Calisi and Angelelli explored distributed algorithms for 

autonomous exploration in disaster environments, emphasizing the integration of SLAM technology 

to optimize area coverage and reduce mission times [13]. This ability to prioritize targets allows 

robots to drastically improve the speed and efficiency of rescue missions, ensuring that victims in 

critical condition are rescued first.  
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The interconnected nature of these studies highlights the importance of combining path planning, 

localization, and target prioritization to create a comprehensive solution for search-and-rescue robots. 

By leveraging the strengths of each approach, researchers are paving the way for the development of 

more efficient, adaptable and ethical robotic systems capable of saving lives in complex and 

unpredictable disaster environments. 

3. Gaps in Understanding 

One of the key challenges is the lack of real-time adaptability in traditional path planning algorithms. 

While algorithms like Dijkstra and A* have shown success in static and predictable environments, 

their efficiency decreases significantly in dynamic scenarios where conditions change rapidly. 

Kairanbay and Jani emphasized the need for continuous improvement in the real-time performance 

of shortest path algorithms to better suit the unpredictable nature of disaster environments [14].  

Although multi-objective approaches, such as those proposed by Jin and Razali and Geraghty, show 

promise, there is still insufficient research on optimizing these algorithms to balance path efficiency 

and multiple rescue priorities effectively [15,16]. 

Additionally, while the genetic algorithms have been explored and developed in solving complex 

optimization problems such as the Traveling Salesman Problem (TSP), there is limited research on 

applying these algorithms effectively in highly dynamic environments where target locations and 

obstacles may frequently shift. Razali and Geraghty’s work on selection strategies within genetic 

algorithms provides a foundation for future research, but there are still rooms to improve the 

adaptation of these strategies to real-world scenarios with high levels of uncertainty and variability 

[16]. Addressing these gaps is essential for enhancing the overall effectiveness of search-and-rescue 

robots in real-world missions, ensuring that they can operate efficiently and reliably in unpredictable 

and challenging disaster environments. 

As the research into search-and-rescue robotics progressed, the initial research question aimed to 

explore how traditional path planning algorithms could be improved to enhance the efficiency and 

effectiveness of multi-target rescue missions. While this overarching question remains relevant, the 

focus has sharpened to address specific challenges in optimizing these traditional algorithms for 

multi-target path planning in real-world applications. The revised research question focuses on: How 

can traditional path planning algorithms be improved and integrated to optimize real-time adaptability 

and target prioritization in multi-target search-and-rescue missions? 

4. Methodology 

4.1. Common Methods 

Research in search-and-rescue robotics relies heavily on a combination of simulation-based testing 

and real-world experimentation to evaluate the effectiveness of various algorithms and robotic 

systems. This combined approach aims to better recreate the challenges of real rescue missions, 

allowing researchers to test and improve various path planning strategies, localization methods, and 

target detection. 

One of the most widely used approaches is the simulation of dynamic environments. Simulation 

platforms like the Robot Operating System (ROS) allow researchers to create realistic scenarios in 

which robots must navigate complex terrains, avoid obstacles, and locate multiple targets. A study by 

Jin introduced a multi-objective A* algorithm in a multi-objective simulation environment, 

demonstrating how simulations can optimize different path planning objectives simultaneously [17]. 

Jin’s work highlights the importance of using advanced algorithms in simulated rescue scenarios to 

enhance robot efficiency and adaptability [17]. Algorithmic integration is also a key focus in the field. 

Researchers like G. Frare has explored the integration of the Dijkstra algorithm with the Traveling 
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Salesman Problem (TSP) to improve multi-target path planning [18]. Frare’s approach emphasizes 

the need to combine foundational algorithms with more advanced optimization strategies to handle 

the complexities of dynamic environments efficiently [18]. Similarly, Chen et al. proposed the SMUG 

Planner, which focuses on multi-goal planning for mobile robots in challenging environments [19]. 

Their work underscores the importance of prioritizing safety and goal optimization when testing 

algorithms in simulated rescue missions. 

In addition to simulations, physical testing is also a crucial method for validating the effectiveness 

of algorithms and robot designs. Kiyani and Khan developed a prototype search-and-rescue robot that 

was tested in physical environments to assess its real-world performance [20]. This testing allowed 

them to evaluate the robot’s obstacle avoidance capabilities and adaptability to different types of 

terrain. Researchers frequently construct maze-like environments using foam boards or other 

materials to simulate the kinds of challenges that robots are likely to encounter in disaster scenarios. 

This physical experimentation provides insights into the robot’s ability to perceive and react to 

unexpected obstacles and dynamically changing target locations.  

Data collected from both simulations and physical tests is crucial for the refinement of algorithms 

and models. Researchers like Colas et al. emphasize the importance of data analysis in 3D path 

planning and execution for search-and-rescue ground robots [21]. Their approach involves collecting 

and analyzing quantitative data to refine algorithms continuously and improve the robot’s real-world 

performance. To measure the effectiveness of integrated systems, metrics such as path efficiency 

which includes computation time and traveled distance, target prioritization accuracy, and so on are 

commonly used. 

Lastly, the field also incorporates genetic algorithms as a method for solving complex optimization 

problems in search-and-rescue missions. Studies by Deng, Liu, and Zhou have explored the use of 

genetic algorithms in solving the symmetric TSP, which is critical for multi-target rescue operations 

[22]. Razali and Geraghty have similarly analyzed different selection strategies to enhance the 

performance of genetic algorithms, showcasing their multiple considerations in addressing path 

planning challenges [16]. 

4.2. Modified Research Method 

Based on the analysis of common methods in this field, the modified research method I have 

developed consists of three phases: Algorithm Design and Development, Robot Design and 

Integration, and Experimental Testing and Evaluation. The structuring of these three phases ensures 

the proper execution of the experiment and the collection of accurate and reliable data. 

4.2.1. Algorithm Design and Development 

The goal at this phase is to design multiple preliminary improved path planning algorithms, which 

will be tested in the following simulation tests to identify the optimal performing algorithm. Firstly, 

I analyzed three classic path planning methods: the Dijkstra algorithm, the A* algorithm, and the 

Traveling Salesman Problem (TSP) optimization algorithm. The Dijkstra algorithm is a single-source 

shortest path method based on graph search. It follows a greedy strategy by continuously expanding 

the node with the smallest cost [23]. While it guarantees an optimal solution, its wide search scope 

makes it computationally heavy—especially in complex environments, leading to longer calculation 

times. On the other hand, the A* algorithm builds on Dijkstra by adding a heuristic function (usually 

based on Manhattan or Euclidean distance) to estimate the cost from the current node to the target 

[24]. This reduces the search area and improves efficiency. In many cases, especially on large maps, 

A* runs faster than Dijkstra. However, both algorithms are limited when handling multiple targets 

because they focus on optimizing a single path without considering the connections between multiple 
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target points. To overcome this, I introduced the TSP optimization algorithm. Its goal is to find the 

shortest route that visits all target points, thus avoiding unnecessary detours and repeated visits. TSP 

typically uses the nearest neighbor approach or other optimization strategies to generate a globally 

optimized route [25]. When combined with Dijkstra or A*, it has the potential to enhance the overall 

efficiency of multi-target path planning. Therefore, by integrating the A* algorithm, Dijkstra 

algorithm, TSP algorithm, and Simultaneous Localization and Mapping (SLAM) technology, I plan 

to develop an algorithm capable of handling multi-target search-and-rescue tasks. This algorithm will 

not only account for task prioritization but also adapt to dynamic environmental changes. 

 

Figure 1: Algorithm Design Flowchart 

The Figure 1 above illustrates the thought process of my algorithm design. As illustrated in the 

flowchart, I have designed two improved algorithms: the A+TSP algorithm and the Dijkstra+TSP 

algorithm. Based on this, I further consider the robot's physical dimensions and potential obstacles, 

incorporating a more secure path planning strategy into the algorithm. By expanding neighboring 

points and introducing distance constraints, the robot can have more choices for its motion direction. 

Subsequently, for algorithm implementation and simulation testing, I use PyCharm for coding and 

simulation to ensure the correctness of the algorithm logic and the feasibility of its implementation. 

Detailed simulation experiments are conducted in the ROS2 environment under the Ubuntu system 

to test the algorithm's performances. The simulation experimental setup features a complex virtual 

maze that mimics the distribution of obstacles and passageways in post-disaster environments. 

Multiple target points are set up to assess the algorithm’s ability of planning paths in multi-target 

scenarios. I assign different priority levels to these target points. For instance, green points represent 

high-priority targets, such as trapped individuals, which the algorithm must visit first. Yellow points 

indicate lower-priority targets, like valuable items, which the algorithm should try to visit without 

significantly increasing the overall path cost. This set up better simulates the varying importance of 

different objectives in real rescue missions. It forces the algorithm not only to find the shortest path 

but also to balance the priorities of the targets. Finally, based on the results of the simulation tests, I 

select the best-performing algorithm for subsequent physical validation. Then, I will make necessary 
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debugging and parameter adjustments to further optimize the algorithm. This aims to maximize the 

performance of the algorithm in complex environments through iterative improvements. The tuning 

process includes, but is not limited to, adjusting algorithm parameters, optimizing computational 

efficiency, and improving the accuracy and safety of path planning. 

4.2.2. Robot Design and Integration 

In the robot design and integration phase, my goal is to develop a robot capable of testing the 

improved algorithm in physical experiments. I carefully select and integrate various hardware 

components to meet the algorithm requirements and address the complexity of rescue tasks. Based 

on a deep understanding of algorithm needs and the complexity of rescue tasks, I select the following 

components as the robot's core parts (see Fig 2): 

- Autonomous intelligent controller for implementing advanced decision-making and executing 

the path planning algorithm; 

- 3irobotix 3i-T1 lidar sensor for high-precision environmental perception and map construction; 

- Brushless DC gear motor to provide stable and efficient power output; 

- 18650 lithium-ion battery to provide long-duration energy support for the robot. 

After selecting suitable components, I proceed with the design and integration of the robot's power 

system, sensing system, and control system. This aims to achieve robot’s optimal performance by 

ensuring the compatibility and efficient collaborative work of various systems. Subsequently, 

integrating the improved path planning algorithm into the robot's control software is another key task 

of this phase. I need to ensure that the algorithm can seamlessly interact with hardware components, 

including data collection from sensors and control of the power system, to achieve precise navigation 

and task execution. Finally, I conduct detailed on-site debugging of the robot to make sure that all 

systems can work as expected. This step involves adjusting parameters, testing functions, and 

optimizing performance. The figure below shows the connection setup of the components I designed. 

 

Figure 2: Hardware Connection Diagram 

4.2.3. Experimental Testing and Evaluation 

In this phase, I create a physical environment to validate the effectiveness and adaptability of the 

improved algorithms in real-world settings. Unlike the simulated environment, the physical maze 

experiment better mimics the unpredictable factors that affect a robot's navigation and decision-
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making in rescue scenarios. This approach allowed me to evaluate the algorithm’s robustness and 

feasibility under real-world physical conditions. 

Firstly, I construct various maze configurations with foam boards in an empty classroom of 

approximately 10m*8m. These mazes are designed to simulate environments like earthquake rubble 

or indoor rescue scenes. The mazes include passages and corners of varying widths, and some sections 

are fitted with additional obstacles to introduce uncertainty. These mazes serve as the basic platform 

for experiments, used to test the robot's navigation capabilities and task execution efficiency.  

The testing plan is conducted in two stages. In the first stage, the robot is placed in the maze, using 

its sensor system to traverse the maze and construct a planar map of the maze. This step tests the 

robot's environmental perception and map construction capabilities. After constructing the maze 

planar map, different task points are marked on the map, and priorities are set for these task points. 

This step simulates actual rescue mission scenarios, such as areas that need to be prioritized for rescue 

or locations that require focused search efforts. After setting up the target points, the robot re-enters 

the maze and executes tasks according to the optimized path planning algorithm. In this stage, the test 

primarily examined its path planning efficiency, obstacle detection, and the differences between 

simulation and physical experiments when handling multiple target points. During the experiment, 

the robot’s path routes, travel distance, and travel time were recorded. If new obstacles appeared, the 

robot used its LiDAR to update the map in real time and dynamically replan its path, thereby testing 

its adaptability in an actual setting. The testing also introduces path smoothing techniques by 

considering the robot's size and potential obstacles. This is able to eliminate unnecessary turns and 

abrupt path changes, optimizing the robot's trajectory. 

5. Data Analysis and Results 

5.1. Simulation Results 

In the simulation tests, as mentioned in the previous section, I examined the performance of the two 

improved algorithms under different numbers of target points. I tested Dijkstra, A*, Dijkstra 

combined with TSP, and A* combined with TSP under scenarios with 1, 2, 4, and 8 target points. For 

each test, I recorded both the “Path Cost” (the total distance traveled) and the “Time Cost” (the total 

computation time). Every algorithm was run under the same map conditions, and I documented the 

generated paths while calculating the path cost and the time cost to evaluate efficiency and stability. 

Each experiment was repeated several times to ensure the data was reliable and statistically significant. 

“Path Cost” refers to the total length of the route from the starting point, through all target points, to 

the final destination. This metric measures how effectively the algorithm plans an optimal path. “Time 

Cost” is the total time the algorithm takes to compute this path, reflecting its computational efficiency. 

For search and rescue missions, a lower path cost means the robot can complete the rescue along a 

shorter route, while a lower time cost indicates that the algorithm provides quicker results—reducing 

decision delays and improving emergency response. 

In the data analysis, I compared the performance of the four algorithms across different numbers 

of target points by calculating the mean and standard deviation of the metrics I collected.  
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Figure 3: Path Planning Diagrams 

The path planning diagrams (Figure 3) illustrated the paths generated by the four algorithms under 

1, 2, 4, and 8 target scenarios. With just one target, all algorithms produced similar, direct paths. As 

the number of targets increased, the paths became much more complex. With two targets, the A* 

algorithm produced a more compact route compared to Dijkstra. Moreover, both Dijkstra+TSP and 

A*+TSP showed obvious improvements by minimizing unnecessary detours. When there were four 

targets, the paths from Dijkstra and A* started to show some backtracking, resulting in longer routes. 

In contrast, the combined methods provided more systematic paths with a better sequence of visits, 

reducing redundant travel. In the case of eight targets, the paths generated by Dijkstra and A* became 

quite redundant, whereas Dijkstra+TSP and A*+TSP achieved significantly shorter and more 

compact routes—demonstrating the clear advantage of TSP optimization when many targets are 

involved. 

 

Figure 4: Path Cost Bar Chart 

The bar chart (Figure 4) presented the “Path Cost” for each algorithm. With 1–2 targets, all 

algorithms maintained a similar cost, ranging between 1000 and 1200. This suggests that TSP 

optimization did not have a significant effect when the target count was low. However, with 4 targets, 
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the path costs for Dijkstra and A* jumped to nearly 3000, while the costs for Dijkstra+TSP and 

A*+TSP remained much lower. With 8 targets, the path cost for Dijkstra and A* approached nearly 

5000, but for the combined methods, it dropped to around 1300—a reduction of about 60%. This 

clearly indicates that TSP optimization greatly reduces the total path length in scenarios with many 

targets, especially when integrated with A*. 

 

Figure 5: Time Cost Line Chart 

The line chart (Figure 5) depicted the “Time Cost” for the algorithms. With 1–2 targets, A* had 

the shortest computation time, followed by Dijkstra. Since TSP optimization adds extra steps, its 

computation time was slightly higher when there were fewer targets. With 4 targets, Dijkstra’s 

computation time surged to around 18 units, while A* took slightly less time. With 8 targets, 

Dijkstra’s time rose sharply nearly 30 units, whereas A* took about 23 units. In comparison, 

Dijkstra+TSP and A*+TSP maintained more controlled times, roughly 17 and 12 units respectively. 

Notably, A*+TSP not only optimized the path but also delivered the best computational efficiency. 

The results above showed that while the A* algorithm usually had a faster computation time than 

Dijkstra, Dijkstra often produced a more optimal path. However, when TSP was integrated, the 

dynamics changed. With fewer target points, TSP sometimes added extra computational overhead, 

increasing both the path length and task time. In contrast, when there were many target points, the 

A*+TSP algorithm can significantly reduce path cost and enhance overall efficiency. 

Overall, the improved A*+TSP algorithm demonstrated the best performance in multi-target 

rescue missions. It showed superior path optimization, lower path costs, and reduced computation 

time, particularly when a large number of target points were involved. Although TSP optimization 

may introduce extra computation when target numbers are low, it benefits in complex, multi-target 

environments. It significantly reduces redundant paths and enhances overall path planning, enabling 

the robot to visit more targets in less time within effective search and rescue operations. 

5.2. Physical Environment Test Results 

According to my research plan, after completing the simulation experiments and carrying out initial 

validations of the algorithm, I further tested the improved algorithm (A*+TSP) in a physical maze 

environment to assess its effectiveness and adaptability in real-world settings.  
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Figure 6: Testing Robot 

According to my robot design, the testing robot’s hardware platform combined an autonomous 

intelligent controller, a 3irobotix 3i-T1 LiDAR sensor, and a brushless DC motor drive system, all 

powered by 18650 lithium batteries (shown in Figure 6). This setup allowed the robot to explore and 

navigate the mazes successfully. In the beginning, the robot successfully scanned the empty maze 

using only its LiDAR and odometer and created an initial 2D map. This proved the mapping accuracy 

and stability of the SLAM system in the physical environment. 

 

Figure 7: Path Planning Diagrams 

 

Figure 8: Path Cost & Time Cost Line Chart 
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The robot entered the maze for the second time. When 2, 4, 6, or 8 target points were marked, the 

A+TSP algorithm was activated, successfully planning and executing the multi-target path. The path 

planning diagrams (Figure 6) and the data chart (Figure 7) for different numbers of targets indicate 

that in scenarios with fewer targets (2–4), the robot’s overall travel distance and completion time 

were relatively low. This suggests that when there are fewer targets, the A*+TSP algorithm can 

quickly complete multi-point navigation. As the number of targets increased to 6 or 8, the path 

coverage expanded significantly, leading to longer travel distances and increased time. Nevertheless, 

with priority management in place, the robot still visited all target points in the predetermined order 

efficiently. In the physical environment, obstacles that could not be completely modeled in advance 

sometimes disrupted the planned route, causing detours or temporary slowdowns. However, thanks 

to the combined effect of the improved algorithm and SLAM, the robot was able to quickly adjust its 

path upon detecting new obstacles, without any significant stalling or excessive re-searching. It is 

worth noting that factors such as sensor noise and ground friction tend to be more pronounced in 

narrow passages or sharp turns, occasionally causing minor delays in obstacle avoidance. Overall, 

though, the robot maintained a generally smooth and continuous pace. 

During the testing process, I paid special attention to the impact of path smoothing and 

maneuverability. In the physical environment, the constraints imposed by real-world dimensions are 

more evident. Without path smoothing techniques, the robot might end up starting and stopping 

frequently during turns or obstacle avoidance, or even become stuck in corners. To address this, I 

introduced a path smoothing technique to the algorithm to reduce the impact of sharp turns and 

cumulative errors. The experimental results confirmed that this improvement effectively lowered the 

risk of collisions and enhanced route continuity. However, it is also important to note that overly 

smooth paths may increase the distance needed for path adjustments at complex corners, slightly 

raising the time for certain segments. This effect was not apparent in the simulation but became a 

factor in the physical tests. Although the absolute values differed between the physical experiments 

and the simulations, the overall trends were consistent, demonstrating that the algorithm’s 

performance in real conditions generally followed the patterns observed in simulation. 

Based on the experimental observations and data analysis, it is clear that the A*+TSP algorithm 

still maintains relatively stable and efficient navigation capabilities in a physical maze for multi-target 

rescue missions. Although both the path length and time increase as the number of targets grows, the 

data trend tends to flat through priority management and dynamic replanning, indicating that the 

algorithm still effectively maintains search efficiency—a conclusion that aligns with the simulation 

results. One key difference is that the physical environment introduces additional interferences such 

as sensor noise and mechanical friction, which diversify the sources of error. This suggests that further 

optimizations in path smoothing and motion control strategies are necessary. Overall, the physical 

maze experiment confirmed the feasibility and effectiveness of the improved algorithm and offers 

essential insights for its further development and application in actual search-and-rescue scenarios. 

6. Discussion 

In this research project, simulation results indicate that the combination of the A* algorithm and the 

TSP algorithm performs best in multi-target search and rescue tasks, significantly reducing path costs 

and computation time (Figure 8). In physical tests, the robot was able to reliably execute the improved 

algorithm and successfully complete tasks in complex environments, validating the feasibility of the 

improved algorithm. However, in scenarios with fewer target points, the use of the TSP algorithm 

may increase computational overhead, leading to longer path planning times. This suggests that the 

algorithm’s advantages are most pronounced in complex multi-target scenarios, while its optimization 

effects are relatively limited in simpler tasks. 
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Despite the demonstrated effectiveness of the improved algorithm, there are still some limitations. 

First, the physical experiments are influenced by environmental factors, such as ground friction and 

uncertainties in path-smoothing techniques, which may cause some deviations in the robot 

performances. These deviations caused certain limitations to the physical validation of the improved 

algorithm. Second, the experimental environment is a relatively controlled maze-like scenario, which 

has lower complexity and unpredictability compared to real disaster scenarios. Therefore, the 

algorithm’s adaptability to real-world applications requires further validation.  

Additionally, due to time and equipment constraints, the current study primarily focuses on single-

robot path optimization. However, the development of multi-robot collaborative search-and-rescue 

systems is crucial to the advancement of search-and-rescue robot research. Ko and Lau proposed a 

robot-assisted emergency rescue system that integrates wireless sensor networks, highlighting the 

advantages of multi-robot cooperation, such as more efficient data collection, faster environmental 

monitoring, and more precise victim localization [24]. This multi-robot system enables data sharing 

through the sensor network, facilitating information fusion in dynamic environments and enhancing 

decision-making capabilities. Moreover, Murphy explored the application of marsupial robots and 

shape-shifting robots in urban search-and-rescue missions, demonstrating the adaptability and 

collaborative potential of multi-robot systems in complex terrains [26]. For example, larger robots 

can carry smaller robots into narrow spaces or transform their shapes to adapt to different rescue 

environments, significantly increasing the coverage area and efficiency of rescue operations [26]. 

Therefore, path planning and task allocation in multi-robot systems are key factors in improving 

overall rescue efficiency. The development in this area will be a potential key focus of the project's 

next phase. 

7. Conclusion 

This project successfully developed a search and rescue robotic system based on an improved 

algorithm and validated the superiority of integrating the A* and TSP algorithms in multi-target path 

planning. Experimental results demonstrate that the algorithm effectively enhances the robot’s 

navigation efficiency in complex environments while maintaining low computational costs. The 

combination of simulation tests and physical experiments further confirms the feasibility of the 

improved algorithm in real-world applications and provides data support for future optimization of 

search and rescue robotics. 

This project has significant practical value. With the increasing frequency of natural disasters and 

human-made incidents, efficient search and rescue robots can perform more precise and rapid target 

search tasks within critical rescue timeframes, thereby reducing the risk of casualties. The improved 

path planning algorithm not only enhances the search-and-rescue capability of individual robots but 

also builds a base for future intelligent rescue systems, providing a reliable solution for disaster 

response. 

Future research can further optimize the system in several aspects. First, integrating more advanced 

SLAM technology could improve the accuracy of environmental mapping, making the robot more 

adaptable to dynamic and complex rescue scenarios. Second, as mentioned in the previous section, 

exploring multi-robot collaborative operations could optimize overall rescue efficiency through task 

allocation and information sharing. Additionally, incorporating increasingly powerful machine 

learning and AI technologies today could further enhance the intelligence of path planning, enabling 

robots to develop stronger autonomous learning and adapting capabilities to better handle dynamic 

changes in unknown environments. 
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