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Abstract: The rapid advancement of artificial intelligence (AI) has revolutionized urban flash 

flood risk assessment, offering transformative solutions from real-time warning systems to 

long-term resilience planning. Coastal and low-lying urban areas, housing over 40% of the 

global population, face escalating flood risks due to climate change, sea-level rise, and 

intensified extreme weather. Traditional flood modeling, reliant on physical parameters, 

struggles with computational inefficiency and data scarcity. AI-driven approaches, 

particularly deep learning (DL) and neural networks address these gaps by leveraging 

multi-source data fusion, dynamic prediction, and reinforcement learning (RL) to enhance 

accuracy and efficiency. Techniques such as convolutional neural networks (CNNs) and 

U-Net architectures enable automated flood mapping using satellite and sensor data, while 

hybrid models integrating hydrodynamic simulations with machine learning (ML) improve 

inundation forecasting. Despite progress, challenges persist, including data quality in 

developing regions, model generalizability, and ethical concerns in AI deployment. This 

review highlights AI's potential to bridge technical gaps, optimize emergency responses, and 

inform resilient urban planning while underscoring the need for robust datasets, 

interdisciplinary collaboration, and ethical frameworks to ensure equitable and sustainable 

flood risk management.   
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1. Introduction 

The increasing effects of climate change are putting further strain on coastal areas, which are socially 

and economically significant and heavily inhabited. The coastline is within 100 km of approximately 

60% of cities with populations over 5 million, which means that approximately 40% of the global 

population (approximately 2.4 billion people) resides within this range. Of these, 250 million 

individuals reside beneath the yearly coastal flood threshold [1]. The economic development and 

social stability of coastal regions are negatively impacted by the frequent extreme weather events that 

result in severe flooding in low-lying coastal areas, putting residents' lives and property at risk. 

Global climate change is resulting in an increase in temperatures, which in turn is raising sea levels. 

The movement of tropical cyclones is slowed, and their intensity increases. The intensity and 

frequency of extreme rainfall events are increasing. Coastal areas will be more prone to flooding due 

to climate change and the concentration of people and economic activity there [2]. 

This implies the need for a reliable flood modelling system, which is critical. At the same time, the 

conventional model is predicated on physical processes and parameters that are challenging to 

Proceedings of  the 3rd International  Conference on Software Engineering and Machine Learning 
DOI:  10.54254/2755-2721/150/2025.22398 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

9 



 

 

accurately measure. Through the implementation of deep learning in data-driven flood simulation, 

this disparity is gradually being closed. Deep learning models look at past flood data to understand 

and accurately show how floods spread and change, providing a method that doesn't rely on physical 

conditions and often results in more accurate simulation results [3]. 

This research attempts to examine advancements in machine learning and neural networks in 

addressing the computational inefficiencies and stringent data precision requirements that have 

historically constrained hydrological and hydraulic methodologies. A substantial aspect of modern 

research on flood warnings focuses on enhancing water level prediction algorithms to provide 

dependable models for precise flood forecasts, typically grounded in rainfall-water level correlations. 

This study enables a qualitative assessment of the magnitude and risks of floods, hence improving the 

efficacy of early warning systems for flooding and associated calamities [4]. 

2. Application of AI in flood forecasting and risk assessment 

Many researchers have successfully applied artificial intelligence to flood prediction and early 

warning systems. As an illustration, Tang et al. [5] carried out an exhaustive research project on flood 

forecasting by employing machine learning pattern identification and dynamic migration of 

parameters. Adhikari et al. [6] revealed that Convolutional Neural Networks (CNN) performed the 

best in flood forecasting using wavelet decomposition functions. This was the case regardless of the 

climate in the location that was tested. Flood risk categorisation was accomplished by Jin Dongxuan 

et al. [7] by utilizing extreme gradient boosting, random forest, and decision tree models, which 

demonstrated the highest level of accuracy. This research has demonstrated that artificial intelligence 

has a significant amount of potential in the field of urban flood management in various locales. 

2.1. Data Level Application: Multi-Source Heterogeneous Data Fusion 

The imaging capabilities of the Landsat satellite are crucial for mapping and understanding the 

dynamics of surface water. Typically, a method for comprehensive flood mapping and monitoring is 

provided by the combination of optical and synthetic aperture radar (SAR) data. Commercial Earth 

observation satellites generate huge amounts of data, which exceed the capacity of manual 

interpretation within the limited time frames required for effective flood response. Machine learning 

is essential for disaster response, environmental monitoring, and land management, as it facilitates 

more automated and efficient data analysis. These strategies can deliver relevant information rapidly, 

facilitating improved decision-making and more effective answers to diverse issues [8]. 

Unlike traditional methods that mainly use spectral indices, convolutional neural networks (CNNs) 

effectively gather both spectral and spatial information at the same time from training data. To 

recognize flooded-area boundaries and patterns and to capture spatial details, they are frequently built 

using architectures such as U-Net or FCN for semantic segmentation. Semantic segmentation on 

remote sensing imagery has been extensively employed in various applications, including 

environmental monitoring, land cover mapping, flood detection, and disaster management, with 

CNNs serving as a significant component of machine learning techniques [9]. 

Ahmed Imran et al. [10] have created a comprehensive flood monitoring framework that combines 

multimodal data inputs, such as meteorological prediction models and terrestrial sensor networks, 

with deep learning-based inundation detection to create a reliable early warning system for flood risk 

mitigation. The implementation of a novel image segmentation architecture, DeepLabv3, was 

achieved through the supervised learning of multispectral satellite imagery, which was supplemented 

with manually annotated flood extent labels. By conducting a comparative evaluation against 

benchmark segmentation methods, the proposed system demonstrated superior performance, 

attaining an overall segmentation accuracy of 87% across various hydrological scenarios. 
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Quantitative validation confirms the framework's efficacy in facilitating timely emergency 

preparedness through high-temporal-resolution flood forecasting and also confirms its suitability for 

real-time disaster management applications by maintaining computational efficiency. 

2.2. Model Level Application: Dynamic Prediction and Vulnerability Analysis 

Recent research has shown that machine learning and deep learning methods can identify implicit 

patterns and trends in data without understanding the physical mechanics governing hydrological 

processes. They offer considerable potential for overcoming the limitations of hydrological models 

and fulfilling the objective of dynamic prediction. Hou et al. [11] created a swift prediction model for 

urban flood inundation by combining high-precision hydrodynamics with machine learning methods. 

The hydrodynamic model was integrated with the random forest (RF) and k-nearest neighbour (KNN) 

algorithms to establish a correlation between rainfall characteristics and inundation results. This 

methodology removed the necessity for iterative calculations of intricate equations, thereby 

facilitating the rapid prediction of urban flood inundation. Combining these two models improves 

prediction stability and shows that the model can correctly predict urban flood inundation brought on 

by rainstorms. The developed model can generate the forecast results within one minute. This 

expeditious output offers decision-makers ample time to facilitate emergency decision-making, 

thereby enabling them to implement more appropriate anti-inundation measures. 

In comparison to the hydrological model, Konapala et al. [12] developed a hybrid model that 

combines machine learning and hydrological modelling. This model has the potential to enhance the 

stream flow simulation results of various basins in the United States. The "meteo-hydro-AI" method, 

which combines weather forecasts for rainfall, models that consider both surface water and 

groundwater, and AI to correct forecast errors, has become more popular for predicting floods. From 

2010 to 2017, Liu et al. [13] assessed this meteo-hydro-AI approach for the prediction of extreme 

floods in the Luohe Basin, yielding a 7-day advance time. They employed CSSPv2 land simulations, 

ECMWF ensemble forecasts, and LSTM deep learning. The integrated approach demonstrated its 

potential in ensemble forecasting of extreme floods by increasing Nash-Sutcliffe efficiency by 0.27–

0.82 and cutting root mean square errors by 22–49% at three outlets, in contrast to the traditional ESP 

method. 

2.3. Decision-making Level: Emergency Response and Resilience Planning 

In several poor nations or areas, the use of AI in flood management can alleviate a deficiency of 

labour. [7] employ deep learning models to forecast flood water levels in the CarayCaray Basin 

located in eastern Visayas. The accuracy of the DNN model was deemed superior to all other 

flood-level forecast models. They employed high-gradient boosting, random forests, and decision 

tree models for flood categorisation. The extreme gradient boosting model had the greatest accuracy. 

We anticipate that AI-driven prediction models will diminish losses from natural disasters and 

improve mitigation methods as flood management becomes increasingly necessary. Explicit flood 

warnings can be sent based on established flood level patterns, enabling preemptive actions to be 

implemented before flood catastrophes. 

Reinforcement Learning (RL) excels in addressing the dynamic complexities of urban flood 

management and the necessity for sequential decision-making in contexts with several potential 

solutions [14]. Reinforcement learning can be taught using simulation environments or historical data, 

facilitating real-time flood forecasting to swiftly respond to changing flood circumstances and 

enhancing comprehension of the intricate interactions between flood dynamics and intervention 

options [15]. 
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Furthermore, flood mitigation is an essential element of urban flood risk assessment and 

prevention. The primary objective of pluvial flood mitigation is to reduce the possible damage and 

threats to humans and their property. This idea directs the formulation of mobile pump deployment 

techniques. Limited research has incorporated human aspects into flood prediction and the scheduling 

of mobile pumps. The Coupled Human and Natural Systems (CHANS) modelling framework, 

introduced by Qin et al. [16], employs reinforcement learning (RL) to investigate mobile pump 

placement and scheduling for efficient urban pluvial flood control. It employed advanced 

hydrodynamic modelling for real-time, precise flood inundation forecasts, delivering high-resolution 

data for reinforcement learning training. The framework skilfully includes human factors related to 

floods, like how many people live in an area and the damage to buildings, which improves the data 

used for scheduling pumps and allows for a direct look at the social and economic effects of floods. 

This approach offers a comprehensive tool and critical insights for policymakers to formulate more 

efficient pluvial flood management plans, thereby reducing the impact of flooding on urban 

inhabitants and their properties. 

3. Technical challenges  

3.1. Data Bottleneck and Model Generalization 

Obtaining high-quality datasets continues to be a considerable issue in many developing nations. 

Despite the prevalent usage of open-access satellite data, issues such as data latency, data loss, and 

low resolution may result in imprecise flood susceptibility maps. 

The primary issues in contemporary urban flash flood prediction are model dependability and 

data quality. Current models predict floods by looking at the straight-line relationship between input 

variables and the chance of floods happening, which may not accurately reflect more complex 

patterns. High-quality datasets are scarce. Open-access satellite data constitute the predominant data 

sources in these nations. Nonetheless, challenges such as current data availability, data loss, and 

low-resolution data represent significant potential issues. These flaws may lead to erroneous flood 

susceptibility maps in these nations [18]. 

Chen et al. [19] provide an extensive flood prediction for Hurricane Harvey with a 1-hour lead 

time, utilizing high-resolution quantitative precipitation predictions (QPFs) from operational Rapid 

Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models, in conjunction with deep 

learning nowcasts. The predictions of 2D flood extent utilising HRRR and AI hybrid forcings 

provide approximately 50% accuracy in forecasting future inundated regions. Conversely, AI 

nowcasts demonstrate negligible displacement errors; however, they underestimate precipitation 

intensity. These findings suggest that binary tests with low thresholds, frequently employed in this 

domain, overlook the significance of precipitation intensity mistakes in the analysis of exceptional 

events. The integration of QPFs and AI nowcasting methodologies does not enhance overall 

accuracy. When accurate forecasting is essential when observational data is unavailable, numerical 

weather prediction models are employed. Quantitative Precipitation Forecasts (QPFs) give basic 

information about how often floods might happen and how much flooding could occur, with the 

High-Resolution Rapid Refresh (HRRR) model performing slightly better than the Rapid Refresh 

(RAP) model. The AI nowcast fails to accurately depict Hurricane Harvey's precipitation intensity, 

highlighting the method's possible limitations and the inadequacy of standard machine learning 

performance evaluations to disclose such insights. 

3.2. Ethical disputes 

Al-Rawas et al. [17] fill this research gap by combining geospatial data, remote sensing, and AI to 

detect flood-affected areas in Tehran's Kan basin. They used deep learning methods, specifically 
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U-Net and FCN algorithms, on optical and radar images from four flood events. The U-Net model's 

consistent superiority across diverse datasets and flood intensities, along with its ability to utilize data 

from multiple sources, makes it a potent tool for flood detection, assessment, and resource allocation 

in disaster management. 

In urban planning, accurate flood zone delineation facilitates better risk assessment and mitigation 

strategies, enabling planners to formulate flood resilience plans, use zoning regulations to evaluate 

flood risks, and bolster community resilience for future floods. The research findings support 

immediate flood response and provide a foundation for long-term planning and policy development 

to protect communities and reduce the socioeconomic impacts of flooding. Future research could 

look at combining data from Sentinel-3, TerraSAR-X, LiDAR, and ground-based sensors to make 

segmentation more accurate; testing how well the U-Net model works in different geographic areas 

with various environmental conditions to see if it can be used widely; investigating improved deep 

learning models like U-Net++ and those that use attention mechanisms to boost segmentation results; 

and creating real-time early warning systems based on U-Net predictions to improve flood risk 

management and disaster response. 

4. Significance of AI-Based Flood Management 

AI applications for flood forecasting and risk management demonstrate advancements in data, 

modelling, and decision-making. Satellite imagery (e.g., Landsat, SAR) and IoT sensors, when 

processed using CNNs, attain 87% accuracy in real-time flood mapping at the data level. Hybrid 

models that combine hydrodynamic simulations with machine learning techniques reduce the 

forecast time from hours to minutes and enhance Nash-Sutcliffe efficiency from 0.27 to 0.82. 

Reinforcement learning enhances emergency responses by integrating socio-economic variables such 

as population density. Case studies, including Hurricane Harvey and Tehran's Kan Basin, illustrate 

AI's capacity to forecast flood extents (50% accuracy) and assess hazards (F1 score: 0.92). 

Although AI revolutionised flood risk management, technological and ethical concerns persist. 

Numerous areas limit the availability of high-quality labelled data, a significant requirement for deep 

learning models. Hybrid approaches such as Meteo-hydro-AI integrate physical modelling with 

data-driven insights, yet they encounter challenges with real-time computational requirements. 

Ethical issues encompass algorithmic prejudice, as vulnerable populations frequently lack access to 

sophisticated monitoring systems, exacerbating disparities in disaster response. The opaque nature of 

neural networks impedes transparency in crucial decision-making processes. Future initiatives should 

prioritise interpretable models, the incorporation of human behavioural dynamics, and technologies 

like LiDAR and edge computing. Resolving these difficulties would enable AI technologies to attain 

both technical accuracy and social equality in climate resilience. 

5. Conclusion 

Artificial intelligence technologies are transforming flood risk assessment by facilitating expedited, 

more precise projections and data-informed resilience solutions. AI integrates multi-source data 

fusion and reinforcement learning for resource allocation, enhancing classical hydrological models, 

especially in dynamic metropolitan settings. Case studies highlight its capacity to reduce 

socio-economic losses via prompt alerts and enhanced mitigation strategies. Nonetheless, ongoing 

challenges—namely data scarcity, model universality, and ethical transparency—require immediate 

focus. To enhance AI's contribution to flood control, it is essential to prioritize high-resolution 

information, promote worldwide data-sharing activities, and incorporate ethical norms into 

algorithmic design. By integrating technology innovation with socio-environmental factors, AI can 
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enable cities to address the challenges of climate change, protect at-risk people, and promote 

sustainable urban development amid increasing flood threats. 
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