
Application of RSA algorithm in e-passport with python3

implementation

Yiyang Liu

Cheshire Academy, Cheshire, CT 06410

Yiyang.liu@cheshireacademy.org

Abstract. The e-passport is a bold approach which companied with Biometric Identification

and Radio Frequency Identification. By employing the RSA encryption algorithm, e-passport

have become effective for protecting the security during the transmission of information. This

paper introduces the application of the RSA encryption algorithm in the e-passport, the

possible security risks and vulnerabilities of active authentication, and the implementation of

RSA encryption and decryption. The processing of RSA encryption and decryption is

simulated by using Python, and the advantages and disadvantages of using this implementation

in an e-passport are discussed. Because this paper uses a relatively basic RSA algorithm logic,

there are certain security issues when applying it to an actual e-passport.

Keywords: RSA, Active Authentication, Python Simulation, Security, E-passport.

1. Introduction

The E-passport is a passport with an embedded smart card with the use of Radio Frequency

Identification and Biometric Identification, to contain the personal data of the passport holder. Many

countries have adopted e-passports to verify the identity of the passport holder and to make travelling

convenient. In 2019, more than 150 different countries, including China and the United States, are

already using e-passports[1]. However, the security and integrity of e-passports is critical. The

International Civil Aviation Organization has created several sets of e-passport standards, RSA is one

of the recommended algorithms used for active authentication protocols[2]. According to ICAO

standards, face recognition is a biometric technology available worldwide that can be used for e-

passport identification. Thus, the e-passport will contain a digital photo image of the holder's face,

fingerprint and iris data.

ICAO specification recommend the use of a security feature called "Active Authentication". Active

authentication is derived from the RSA algorithm. It guarantees that an e-passport has a private key as

proof of its authenticity. The corresponding public key is stored as part of the signature data on the

passport. Its main purpose is to prevent the passport from being cloned [3].

The discussion on e-passport security should include the security of the e-passport distribution,

management and validation systems. However, this paper discusses only the basic security

mechanisms described in the ICAO specification: Active Authentication and the simulation of RSA

implementation in Python, and discusses whether these security mechanisms achieve their original

goals, whether the RSA algorithm achieves its goals, and presents the corresponding problems and

remaining issues.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

77

2. RSA Algorithm

RSA is a simple but efficient encryption algorithm with a private key and a public key, the private key

being stored in an electronic passport. The RSA algorithm is summarized in three main steps[4].

2.1. Key generation

(1) Choose two large prime numbers (p and q).

(2) Calculate n = p × q and z = (p − 1)(q − 1)

(3) Select an integer number e where 1 < e < z as a public key. It should satisfy GCD (e, φ(n)) = 1.

(4) Compute the private key d such that d = e − 1mod z)

(5) You can bundle private key pair as (n, d), and public key pair as (n, e)

2.2. Encryption

In RSA, plain text and cipher text both should not over [log2n]. The cipher text is made by

CipherText = Memod n.

2.3. Decryption

The text is recovered employing the private key(d) by PlainText = Cdmod n

Figure1. Diagram of RSA encryption and decryption algorithms.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

78

The RSA algorithm is based on the computation of fast exponentiation with modulo and Extended

Euclid Algorithm. The strength of RSA is determined by the time complexity required for n to obtain

p and q. Therefore, the larger the prime numbers p and q, the harder it is to factorize n.

2.4. Active authentication

Figure2. Active authentication flow.

Reader can distinguish whether the data was not a clone of the original data by employing Active

Authentication. Electronic passports that support active authentication an "active authentication key

pair", the private key in key pair is stored in the chip; it will not be copied by anyways, but the chip

can use it for internal authentication. The corresponding public key is stored as part of the e-passport

data; thus, the checking system can read it and verify its authenticity by active authentication[5].

Figure 2 shows how active authentication works. Active authentication is achieved by

implementing challenge-response authentication between the authentication terminal and the e-

passport chip, which requires the chip to have data processing capabilities. To implement active

authentication, the reader sends an 8-byte random number to the e-passport, which is encrypted with

the private key (KPrAA) and returns the encrypted data to the reader, which decrypts it with the public

key (KPuAA), and if the result is correct, the e-passport is proven to be legitimate. Here Sigsk(X) is an

RSA or Rabin-Williams signature with a 9796-2 padding, signed with thee-passport's secret key SK[6].

3. Implementation of RSA

The first step is creating two prime numbers with large bytes.

3.1. Generate a pseudo-prime number[7]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 def probin(w): # w means byte

 list = []
 list.append('1')
 for i in range(w - 2):
 c = random.choice(['0', '1'])
 list.append(c)
 list.append('1')
 res = int(''.join(list), 2)
 return res

To generate a pseudo-prime number, I first generate a w-digit binary number and ensure that both the

beginning and the end are 1, thus generating a large enough pseudo-prime number.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

79

3.2. Determine if a pseudo-prime number is a prime number

3.2.1. Fermat Theorem

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 def mod_P(a, b, p):

 if b == 0:

 return 1

 res = mod_P((a * a) % p, b >> 1, p)

 if b & 1 != 0:

 res = (res * a) % p

 return res

I use the Miller-Rabin primality test, which is an implementation of Fermat's algorithm with the

quadratic detection theorem, and its theoretical basis is derived from Fermat theorem. According to the

Fermat theorem, if p is a prime(not 2), a is any integer, then ap ≡ a mod p, thus ap−1 ≡ 1 mod p.

Thus, we can randomly choose an integer a, then compute aN−1mod N. If result is 1, we need further

testing; if not, N is not a prime.

3.2.2. Miller-Rabin Test

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 def MillerRabin(a, p):
 if mod_P(a, p - 1, p) == 1:
 u = (p - 1) >> 1
 while (u & 1) == 0:
 t = mod_P(a, u, p)
 if t == 1:
 u = u >> 1
 else:
 if t == p - 1:
 return True
 else:
 return False
 else:
 t = mod_P(a, u, p)
 if t == 1 or t == p - 1:
 return True
 else:
 return False
 else:
 return False

def testMillerRabin(p, k):
 while k > 0:
 a = randint(2, p - 1)
 if not MillerRabin(a, p):
 return False
 k = k - 1
 return True

According to the Miller-Rabin test, we can know that is p is a prime, and 0 < x < p, then x ≡ 1mod p.

As p already passes Fermat theorem, we can know that p is an odd number, then p-1 is an even

number, so we note p − 1 = m ∗ 2q . Then ap−1 ≡ 1 mod p is equivalent to am2q
≡ 1mod p . If

am2q
≡ 1mod p is valid, then according to the Miller-Rabin test, am2q−1

≡ 1mod p is also valid.

Thus, we can further determine if a is a prime number by continuing to test if am2q−1
≡ 1mod p is

valid.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

80

3.3. Generate a large prime number.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒 def makeprime(w):
 while 1:
 d = probin(w)
 for i in range(50):
 u = testMillerRabin(d + 2 * i, 5)
 if u:
 b = d + 2 * i
 break
 else:
 continue
 if u:
 return b
 else:
 continue

The pseudo-prime number generated directly at random is probably not a prime number because of the

distribution pattern of prime numbers. At this time, we just need to do more cyclic searching. The

probability is that we can find a large prime number. If not, we can generate a pseudo-prime number

and carry out the above nearby search.

3.4. Make up diction

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟓

dict = {'a': '31', 'b': '32', 'c': '33', 'd': '34', 'e': '35', 'f ': '36', 'g': '37',
 'h': '38', 'i': '39', 'j': '10', 'k': '11', 'l': '12', 'm': '13', 'n': '14',
 'o': '15', 'p': '16', 'q': '17', 'r': '18', 's': '19', 't': '20', 'u': '21',
 'v': '22', 'w': '23', 'x': '24', 'y': '25', 'z': '26', ' ': '50'}

Here we create a dictionary for reference purposes only.

3.5. Implementation of conversion between characters and numbers

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟔 def transferToNum(str):
m = ""

 for d in str:
 m += dict[d]
 return m

def transferTostr(num):
 n = ""
 for i in range(0, len(num), 2):
 n += {value: key for key, value in dict.items()}[num[i] + num[i + 1]]
 return n

Switch between characters and numbers here. transferTostr converts numbers to characters and

transferToNum converts characters to numbers.

3.6. Implementation of Extended Euclid Algorithm

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟕 def ext_gcd(a, b):
 if b == 0:
 x_ori = 1
 y_ori = 0
 x = x_ori

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

81

 y = y_ori
 e = a
 return e, x, y
 else:
 e, x_ori, y_ori = ext_gcd(b, a % b)
 x = y_ori
 y = x_ori - a // b * y_ori
 return e, x, y

This algorithm relies on the fact that if x divides both a and b, there will be a pair of coefficients (c, d)

such that a * c + b * d = x. The algorithm finds these coefficients by repeatedly subtracting the smaller

argument from the larger one until the smaller one becomes 0. Instead of repeatedly subtracting, it is

better to calculate how many times b can be subtracted from a and then subtract b * c.

3.7. Implementation of fast exponentiation with modulo

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟖 def powmode(a, b, c):
 bina = bin(b)[2:][::-1]
 lenbina = len(bina)
 basea = []
 lastb = a
 basea.append(lastb)
 for _ in range(lenbina - 1):
 nextb = (lastb * lastb) % c
 lastb.append(nextb)
 lastb = nextb
 result = multi(basea, bina, c)
 return result % c

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟗 def expo(a, bina, n):
 r = 1
 for x in range(len(a)):
 array = a[x]
 if not int(bina[x]):
 continue
 r *= array
 r = r % n
 return r

The exponentiation implementation has the time complexity of logarithms. Instead of iterating from 1

to e and then multiplying b by r (the result), it iterates from the most significant bit of e to the least

significant bit of e, doing r = r * r + bit at each bit. The reason for this is that if r equals b^x and you

append a bit to the end of x, then the new x will be x*2+bits

3.8. Generate keys and test[8]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟎 def probin(w): def gen_key(pri, pub):
 n = pri * pub
 fy = (pri - 1) * (pub - 1)
 e = 35537
 q = e
 w = fy
 a = ext_gcd(q, w)[1]

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

82

 if a < 0:
 d = a + fy
 else:
 d = a
 print("Public key:" + "(" + str(n) + "," + str(e) + ")\nPrivate key:" + "(" + str(n) +
"," + str(d) + ")")
 return (n, e), (n, d)
It’s the process of generating both private and public keys.
def encrypt(p, pub):
 a = pub[0]
 b = pub[1]
 c = exp_mode(p, a, b)
 return c

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟏 def probin(w): def decrypt(c, selfkey):
 a = selfkey[0]
 b = selfkey[1]

 p = exp_mode(c, a, b)
 return p

Encryption m is the message being encrypted Encryption becomes c, decryption c is the ciphertext,

decryption is plaintext m

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟐 if __name__ == "__main__":
 p = makeprime(528)
 print("p:", p)
 q = makeprime(528)
 print("q:", q)

 print("1.Generate public-private key")
 pubkey, selfkey = gen_key(p, q)

 print("2.enter plain text")
 plaintext = str(input())
 m = int(transferToNum(plaintext))

 print("3.Encrypting messages with public keys")
 c = encrypt(m, pubkey)
 print("Ciphertext:", c)

 print("4.Decryption with private key")
 d = decrypt(c, selfkey)
 print("Plain text:", transferTostr(str(d)))

Input plain text and encrypt it, finally output the decrypted plain text

Here is one of the results:

p:

6522337184933208778188207795453717056809610527985898985951475206141671890966868684

61294192790286645206983890442437887949322625381972890759572100761457802921119

q:

4983645611124327831057776684627329308757644533946240138649648889219956087050390641

43128664052696147382863612643768421305137907543935284078751988673868336345163

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

83

4. Generate public-private key

Public Key:

(3250501708596538929119456505759819159118294265306071358835742185614538035422676

3257974265519960108109171730529419716183538536392849170964922342176577413838232513

8949533779763854006387391084210842591467443667807546587062726119812995862318183225

095016988638558366638796435902404518646129545126340416038369459417646197397,35537)

Private Key:

(3250501708596538929119456505759819159118294265306071358835742185614538035422676

3257974265519960108109171730529419716183538536392849170964922342176577413838232513

8949533779763854006387391084210842591467443667807546587062726119812995862318183225

095016988638558366638796435902404518646129545126340416038369459417646197397,637349

6892112638449532704767463325520087873045179026149750246658232856186742045934703680

1683620461295187724999014149299855508789535701742853611809210518508822735482216818

6538825841772055985116369882117742162525942706640911150315046314040803198031238397

98783688344028253951723325009011375262745244266907820240020831697)

(2)enter plain text

i love you

5. Encrypting messages with public keys

Ciphertext:

1984819764362544363128288661351406997700620673597614707227485037695086249309074

5401448392183454411997743153808822152106669925770709449471222631640320783517616967

0686520592965980938056052063630352890336190580798602238132635122470303741041312412

652561768254468138944959308103294509924885712471622784860696434147456889898

Plain text: i love you

6. Discussion

The RSA algorithm modeled in this thesis has two advantages, one of which is its speed advantage

over other primality tests. The Miller-Rabin algorithm ensures that the algorithm can test the data to be

measured at a very high speed in terms of processing large numbers. At the same time, the fast-

exponential approach to computation ensures that the processing system does not slow down due to

too much data. The second is stability. The algorithm requires a small processing capacity, which

makes it easier for the processing system to process large numbers without excessive loss of hardware

(chip) capacity and lifetime, which also ensures that the algorithm does not make errors in the process

of processing data due to the lack of speed and capacity of the chip.

However, at the same time, the present algorithm also has three drawbacks. The Miller-Rabin test

is a more conservative test method, and the accuracy is very much improved compared to the Fermat

test. It has been shown that the error probability of the Miller-Rabin test is about
1

4
 after specifying any

1-time a. After rotating k times a, the error rate of testing prime numbers is (
1

4
)

k
. When k is 6, the

probability is less than
1

1000
, but this also shows that there is no 100% guarantee that the number must

be a prime number. Second, the method used in the algorithm to generate the prime number is the

longer string to represent a binary number, and then convert it to the corresponding decimal integer,

but the extra-long binary number may lead to digital overflow when converting to decimal, so that

python cannot save it as the correct value and thus lead to data errors. The third is security. It is very

simple for an attacker to track or eavesdrop on the data processing part of the algorithm, and once the

attacker obtains the specific number of prime numbers, the corresponding public and private keys will

be cracked as a result.

7. Conclusion

The Python3-based RSA implementation is feasible but cannot be applied to the actual e-passport

authentication. The security and correctness pitfalls of the algorithm lead to the inability to ensure the

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

84

correctness and security of the e-passport authentication process, which also jeopardizes the security

of the passport holder. The authors believe that it is not possible to enhance the algorithm based on the

dry algorithm, and that the Miller-Rabin algorithm is inherently problematic, which cannot be solved

by adding more algorithms. Therefore, the algorithm needs to be replaced with an algorithm that

discriminates larger prime numbers with higher correctness. At the same time, additional algorithms

can solve the security problem, but they will inevitably make the procedure too redundant and lead to

a reduction in the speed of the processing system.

This also illustrates, in disguise, the superiority of the algorithm in the real-life e-passport system.

The e-passport uses a new processing algorithm that allows it to identify and authenticate e-passport

information more quickly than the algorithm designed in this paper. Also, the e-passport uses

advanced anti-eavesdropping technology in security to ensure the security of the e-passport in the

authentication process. Therefore, this paper argues that the use of the e-passport that takes biometric

technology is difficult to be copied and the risk of information leakage is extremely low[9].

Meanwhile, the algorithm in this paper should focus on how to improve the efficiency of the code so

that the code still has fast processing speed in the face of large amounts of data and work on solving

the possible eavesdropping phenomenon in the code to improve the security of the code.

Reference

[1] “Security Mechanisms in Electronic ID Documents.” Federal Office for Information Security, J

anuary 20, 2021. https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/SecurityMechanis

ms/securBAC/bac_node.html.

[2] “Doc Series // .” Doc Series. Accessed July 7, 2022. https://www.icao.int/publications/pages/p

ublication.aspx?docnum=9303.

[3] “Basics of Epassport Cryptography // .” Basics of ePassport Cryptography. Accessed July 7, 2

022. https://www.icao.int/Security/FAL/PKD/BVRT/Pages/Basics.aspx.

[4] Aljuaid, Nouf & Gutub, Adnan. (2019). Combining RSA and audio steganography on personal

computers for enhancing security. SN Applied Sciences. 1. 10.1007/s42452-019-0875-8.

[5] Shehata, Khaled, Hanady Hussien, and Sara Yehia. “FPGA Implementation of RSA Encryption

Algorithm for E-Passport Application.” The International Conference on Electrical Engineeri

ng 9, no. 9th (2014): 1–5. https://doi.org/10.21608/iceeng.2014.30363.

[6] Liu, Yifei, Timo Kasper, Kerstin Lemke-Rust, and Christof Paar. “E-Passport: Cracking Basic

Access Control Keys.” On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, O

DBASE, GADA, and IS, n.d., 1531–47. https://doi.org/10.1007/978-3-540-76843-2_30.

[7] “Python implements the rsa algorithm." Python implements the RSA algorithm. Accessed July 3

1, 2022. https://blog.csdn.net/qq_36944952/article/details/103973849?spm=1001.2101.3001.

6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFrom

Baidu~default-1-103973849-blog-46356869.pc_relevant_multi_platform_featuressortv2dupr

eplace&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommen

dFromBaidu~default-1-103973849-blog-46356869.pc_relevant_multi_platform_featuressort

v2dupreplace.

[8] Sharma, Shruti, and Harshali Zodpe. “Implementation of Cryptography Algorithm for E-Passpo

rt Security.” 2016 International Conference on Inventive Computation Technologies (ICICT),

 2016. https://doi.org/10.1109/inventive.2016.7830150.

[9] Lekkas, Dimitrios & Gritzalis, Dimitris. (2007). E-Passports as a Means Towards the First Worl

d-Wide Public Key Infrastructure. 4582. 34-48. 10.1007/978-3-540-73408-6_3.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230353

85

https://www.icao.int/Security/FAL/PKD/BVRT/Pages/Basics.aspx
https://doi.org/10.21608/iceeng.2014.30363

