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Abstract. The e-passport is a bold approach which companied with Biometric Identification 

and Radio Frequency Identification. By employing the RSA encryption algorithm, e-passport 

have become effective for protecting the security during the transmission of information. This 

paper introduces the application of the RSA encryption algorithm in the e-passport, the 

possible security risks and vulnerabilities of active authentication, and the implementation of 

RSA encryption and decryption. The processing of RSA encryption and decryption is 

simulated by using Python, and the advantages and disadvantages of using this implementation 

in an e-passport are discussed. Because this paper uses a relatively basic RSA algorithm logic, 

there are certain security issues when applying it to an actual e-passport. 

Keywords: RSA, Active Authentication, Python Simulation, Security, E-passport. 

1. Introduction 

The E-passport is a passport with an embedded smart card with the use of Radio Frequency 

Identification and Biometric Identification, to contain the personal data of the passport holder. Many 

countries have adopted e-passports to verify the identity of the passport holder and to make travelling 

convenient. In 2019, more than 150 different countries, including China and the United States, are 

already using e-passports[1]. However, the security and integrity of e-passports is critical. The 

International Civil Aviation Organization has created several sets of e-passport standards, RSA is one 

of the recommended algorithms used for active authentication protocols[2]. According to ICAO 

standards, face recognition is a biometric technology available worldwide that can be used for e-

passport identification. Thus, the e-passport will contain a digital photo image of the holder's face, 

fingerprint and iris data. 

ICAO specification recommend the use of a security feature called "Active Authentication". Active 

authentication is derived from the RSA algorithm. It guarantees that an e-passport has a private key as 

proof of its authenticity. The corresponding public key is stored as part of the signature data on the 

passport. Its main purpose is to prevent the passport from being cloned [3]. 

The discussion on e-passport security should include the security of the e-passport distribution, 

management and validation systems. However, this paper discusses only the basic security 

mechanisms described in the ICAO specification: Active Authentication and the simulation of RSA 

implementation in Python, and discusses whether these security mechanisms achieve their original 

goals, whether the RSA algorithm achieves its goals, and presents the corresponding problems and 

remaining issues. 
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2. RSA Algorithm 

RSA is a simple but efficient encryption algorithm with a private key and a public key, the private key 

being stored in an electronic passport. The RSA algorithm is summarized in three main steps[4]. 

2.1. Key generation 

(1) Choose two large prime numbers (p and q). 

(2) Calculate n = p × q and z = (p − 1)(q − 1) 

(3) Select an integer number e where 1 < e < z as a public key. It should satisfy GCD (e, φ(n)) = 1. 

(4) Compute the private key d such that d = e − 1mod z) 

(5) You can bundle private key pair as (n, d), and public key pair as (n, e) 

2.2. Encryption 

In RSA, plain text and cipher text both should not over [ log2n ]. The cipher text is made by 

CipherText = Memod n.  

2.3. Decryption 

The text is recovered employing the private key(d) by PlainText = Cdmod n 

 

Figure1. Diagram of RSA encryption and decryption algorithms. 
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The RSA algorithm is based on the computation of fast exponentiation with modulo and Extended 

Euclid Algorithm. The strength of RSA is determined by the time complexity required for n to obtain 

p and q. Therefore, the larger the prime numbers p and q, the harder it is to factorize n. 

2.4. Active authentication 
 

 

Figure2. Active authentication flow. 

Reader can distinguish whether the data was not a clone of the original data by employing Active 

Authentication. Electronic passports that support active authentication an "active authentication key 

pair", the private key in key pair is stored in the chip; it will not be copied by anyways, but the chip 

can use it for internal authentication. The corresponding public key is stored as part of the e-passport 

data; thus, the checking system can read it and verify its authenticity by active authentication[5].  

Figure 2 shows how active authentication works. Active authentication is achieved by 

implementing challenge-response authentication between the authentication terminal and the e-

passport chip, which requires the chip to have data processing capabilities. To implement active 

authentication, the reader sends an 8-byte random number to the e-passport, which is encrypted with 

the private key (KPrAA) and returns the encrypted data to the reader, which decrypts it with the public 

key (KPuAA), and if the result is correct, the e-passport is proven to be legitimate. Here Sigsk(X) is an 

RSA or Rabin-Williams signature with a 9796-2 padding, signed with thee-passport's secret key SK[6].  

3. Implementation of RSA 

The first step is creating two prime numbers with large bytes.  

3.1. Generate a pseudo-prime number[7] 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 def probin(w):  # w means byte 

    list = [] 
    list.append('1') 
    for i in range(w - 2): 
        c = random.choice(['0', '1']) 
        list.append(c) 
    list.append('1') 
    res = int(''.join(list), 2) 
    return res 

To generate a pseudo-prime number, I first generate a w-digit binary number and ensure that both the 

beginning and the end are 1, thus generating a large enough pseudo-prime number. 
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3.2. Determine if a pseudo-prime number is a prime number 

3.2.1.  Fermat Theorem 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 def mod_P(a, b, p):  

    if b == 0: 

        return 1 

    res = mod_P((a * a) % p, b >> 1, p) 

    if b & 1 != 0: 

        res = (res * a) % p 

    return res 

I use the Miller-Rabin primality test, which is an implementation of Fermat's algorithm with the 

quadratic detection theorem, and its theoretical basis is derived from Fermat theorem. According to the 

Fermat theorem, if p is a prime(not 2), a is any integer, then ap ≡ a mod p, thus ap−1 ≡ 1 mod p. 

Thus, we can randomly choose an integer a, then compute aN−1mod N. If result is 1, we need further 

testing; if not, N is not a prime. 

3.2.2.  Miller-Rabin Test 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 def MillerRabin(a, p): 
    if mod_P(a, p - 1, p) == 1: 
        u = (p - 1) >> 1 
        while (u & 1) == 0: 
            t = mod_P(a, u, p) 
            if t == 1: 
                u = u >> 1 
            else: 
                if t == p - 1: 
                    return True 
                else: 
                    return False 
        else: 
            t = mod_P(a, u, p) 
            if t == 1 or t == p - 1: 
                return True 
            else: 
                return False 
    else: 
        return False 
 
def testMillerRabin(p, k): 
    while k > 0: 
        a = randint(2, p - 1) 
        if not MillerRabin(a, p): 
            return False 
        k = k - 1 
    return True 

According to the Miller-Rabin test, we can know that is p is a prime, and 0 < x < p, then x ≡ 1mod p. 

As p already passes Fermat theorem, we can know that p is an odd number, then p-1 is an even 

number, so we note p − 1 = m ∗ 2q . Then ap−1 ≡ 1 mod p  is equivalent to am2q
≡ 1mod p . If 

am2q
≡ 1mod p is valid, then according to the Miller-Rabin test, am2q−1

≡ 1mod p is also valid. 

Thus, we can further determine if a is a prime number by continuing to test if am2q−1
≡ 1mod p is 

valid. 
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3.3. Generate a large prime number. 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒 def makeprime(w): 
    while 1: 
        d = probin(w) 
        for i in range(50): 
            u = testMillerRabin(d + 2 * i, 5) 
            if u: 
                b = d + 2 * i 
                break 
            else: 
                continue 
        if u: 
            return b 
        else: 
            continue 

The pseudo-prime number generated directly at random is probably not a prime number because of the 

distribution pattern of prime numbers. At this time, we just need to do more cyclic searching. The 

probability is that we can find a large prime number. If not, we can generate a pseudo-prime number 

and carry out the above nearby search. 

3.4. Make up diction 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟓  

dict = {'a': '31', 'b': '32', 'c': '33', 'd': '34', 'e': '35', 'f ': '36', 'g': '37', 
        'h': '38', 'i': '39', 'j': '10', 'k': '11', 'l': '12', 'm': '13', 'n': '14', 
        'o': '15', 'p': '16', 'q': '17', 'r': '18', 's': '19', 't': '20', 'u': '21', 
        'v': '22', 'w': '23', 'x': '24', 'y': '25', 'z': '26', ' ': '50'} 

Here we create a dictionary for reference purposes only. 

3.5. Implementation of conversion between characters and numbers 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟔 def transferToNum(str): 
m = "" 

    for d in str: 
        m += dict[d] 
    return m 
 

def transferTostr(num): 
    n = "" 
    for i in range(0, len(num), 2): 
        n += {value: key for key, value in dict.items()}[num[i] + num[i + 1]] 
    return n 

Switch between characters and numbers here. transferTostr converts numbers to characters and 

transferToNum converts characters to numbers. 

3.6. Implementation of Extended Euclid Algorithm 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟕 def ext_gcd(a, b): 
    if b == 0: 
        x_ori = 1 
        y_ori = 0 
        x = x_ori 
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        y = y_ori 
        e = a 
        return e, x, y 
    else: 
        e, x_ori, y_ori = ext_gcd(b, a % b) 
        x = y_ori 
        y = x_ori - a // b * y_ori 
        return e, x, y 

This algorithm relies on the fact that if x divides both a and b, there will be a pair of coefficients (c, d) 

such that a * c + b * d = x. The algorithm finds these coefficients by repeatedly subtracting the smaller 

argument from the larger one until the smaller one becomes 0. Instead of repeatedly subtracting, it is 

better to calculate how many times b can be subtracted from a and then subtract b * c.  

3.7. Implementation of fast exponentiation with modulo 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟖 def powmode(a, b, c): 
    bina = bin(b)[2:][::-1] 
    lenbina = len(bina) 
    basea = [] 
    lastb = a 
    basea.append(lastb) 
    for _ in range(lenbina - 1): 
        nextb = (lastb * lastb) % c 
        lastb.append(nextb) 
        lastb = nextb 
    result = multi(basea, bina, c) 
    return result % c 
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟗 def expo(a, bina, n): 
    r = 1 
    for x in range(len(a)): 
        array = a[x] 
        if not int(bina[x]): 
            continue 
        r *= array 
        r = r % n 
    return r 

The exponentiation implementation has the time complexity of logarithms. Instead of iterating from 1 

to e and then multiplying b by r (the result), it iterates from the most significant bit of e to the least 

significant bit of e, doing r = r * r + bit at each bit. The reason for this is that if r equals b^x and you 

append a bit to the end of x, then the new x will be x*2+bits 

3.8. Generate keys and test[8] 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟎 def probin(w): def gen_key(pri, pub): 
    n = pri * pub 
    fy = (pri - 1) * (pub - 1) 
    e = 35537 
    q = e 
    w = fy 
    a = ext_gcd(q, w)[1] 
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    if a < 0: 
        d = a + fy 
    else: 
        d = a 
    print("Public key:" + "(" + str(n) + "," + str(e) + ")\nPrivate key:" + "(" + str(n) + 
"," + str(d) + ")") 
    return (n, e), (n, d) 
It’s the process of generating both private and public keys. 
def encrypt(p, pub): 
    a = pub[0] 
    b = pub[1] 
    c = exp_mode(p, a, b) 
    return c 
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟏 def probin(w): def decrypt(c, selfkey): 
    a = selfkey[0] 
    b = selfkey[1] 
 
    p = exp_mode(c, a, b) 
    return p 

Encryption m is the message being encrypted Encryption becomes c, decryption c is the ciphertext, 

decryption is plaintext m 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏𝟐 if __name__ == "__main__": 
    p = makeprime(528) 
    print("p:", p) 
    q = makeprime(528) 
    print("q:", q) 
 
    print("1.Generate public-private key") 
    pubkey, selfkey = gen_key(p, q) 
 
    print("2.enter plain text") 
    plaintext = str(input()) 
    m = int(transferToNum(plaintext)) 
 
    print("3.Encrypting messages with public keys") 
    c = encrypt(m, pubkey) 
    print("Ciphertext:", c) 
 
    print("4.Decryption with private key") 
    d = decrypt(c, selfkey) 
    print("Plain text:", transferTostr(str(d))) 

Input plain text and encrypt it, finally output the decrypted plain text 

Here is one of the results: 

p: 

6522337184933208778188207795453717056809610527985898985951475206141671890966868684

61294192790286645206983890442437887949322625381972890759572100761457802921119 

q: 

4983645611124327831057776684627329308757644533946240138649648889219956087050390641

43128664052696147382863612643768421305137907543935284078751988673868336345163 
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4. Generate public-private key 

Public Key:  

(3250501708596538929119456505759819159118294265306071358835742185614538035422676

3257974265519960108109171730529419716183538536392849170964922342176577413838232513

8949533779763854006387391084210842591467443667807546587062726119812995862318183225

095016988638558366638796435902404518646129545126340416038369459417646197397,35537) 

Private Key:  

(3250501708596538929119456505759819159118294265306071358835742185614538035422676

3257974265519960108109171730529419716183538536392849170964922342176577413838232513

8949533779763854006387391084210842591467443667807546587062726119812995862318183225

095016988638558366638796435902404518646129545126340416038369459417646197397,637349

6892112638449532704767463325520087873045179026149750246658232856186742045934703680

1683620461295187724999014149299855508789535701742853611809210518508822735482216818

6538825841772055985116369882117742162525942706640911150315046314040803198031238397

98783688344028253951723325009011375262745244266907820240020831697) 

(2)enter plain text 

i love you 

5. Encrypting messages with public keys 

Ciphertext:  

1984819764362544363128288661351406997700620673597614707227485037695086249309074

5401448392183454411997743153808822152106669925770709449471222631640320783517616967

0686520592965980938056052063630352890336190580798602238132635122470303741041312412

652561768254468138944959308103294509924885712471622784860696434147456889898 

Plain text: i love you 

6. Discussion 

The RSA algorithm modeled in this thesis has two advantages, one of which is its speed advantage 

over other primality tests. The Miller-Rabin algorithm ensures that the algorithm can test the data to be 

measured at a very high speed in terms of processing large numbers. At the same time, the fast-

exponential approach to computation ensures that the processing system does not slow down due to 

too much data. The second is stability. The algorithm requires a small processing capacity, which 

makes it easier for the processing system to process large numbers without excessive loss of hardware 

(chip) capacity and lifetime, which also ensures that the algorithm does not make errors in the process 

of processing data due to the lack of speed and capacity of the chip. 

However, at the same time, the present algorithm also has three drawbacks. The Miller-Rabin test 

is a more conservative test method, and the accuracy is very much improved compared to the Fermat 

test. It has been shown that the error probability of the Miller-Rabin test is about 
1

4
 after specifying any 

1-time a. After rotating k times a, the error rate of testing prime numbers is (
1

4
)

k
. When k is 6, the 

probability is less than 
1

1000
, but this also shows that there is no 100% guarantee that the number must 

be a prime number. Second, the method used in the algorithm to generate the prime number is the 

longer string to represent a binary number, and then convert it to the corresponding decimal integer, 

but the extra-long binary number may lead to digital overflow when converting to decimal, so that 

python cannot save it as the correct value and thus lead to data errors. The third is security. It is very 

simple for an attacker to track or eavesdrop on the data processing part of the algorithm, and once the 

attacker obtains the specific number of prime numbers, the corresponding public and private keys will 

be cracked as a result. 

7. Conclusion 

The Python3-based RSA implementation is feasible but cannot be applied to the actual e-passport 

authentication. The security and correctness pitfalls of the algorithm lead to the inability to ensure the 
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correctness and security of the e-passport authentication process, which also jeopardizes the security 

of the passport holder. The authors believe that it is not possible to enhance the algorithm based on the 

dry algorithm, and that the Miller-Rabin algorithm is inherently problematic, which cannot be solved 

by adding more algorithms. Therefore, the algorithm needs to be replaced with an algorithm that 

discriminates larger prime numbers with higher correctness. At the same time, additional algorithms 

can solve the security problem, but they will inevitably make the procedure too redundant and lead to 

a reduction in the speed of the processing system. 

This also illustrates, in disguise, the superiority of the algorithm in the real-life e-passport system. 

The e-passport uses a new processing algorithm that allows it to identify and authenticate e-passport 

information more quickly than the algorithm designed in this paper. Also, the e-passport uses 

advanced anti-eavesdropping technology in security to ensure the security of the e-passport in the 

authentication process. Therefore, this paper argues that the use of the e-passport that takes biometric 

technology is difficult to be copied and the risk of information leakage is extremely low[9]. 

Meanwhile, the algorithm in this paper should focus on how to improve the efficiency of the code so 

that the code still has fast processing speed in the face of large amounts of data and work on solving 

the possible eavesdropping phenomenon in the code to improve the security of the code. 
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