

An Improved Jump Point Search Pathfinding Algorithm for
Hexagonal Grid Maps

Xuxuan Peng

International School, Beijing University of Posts and Telecommunications, Beijing, China

2023213448@bupt.cn

Abstract: Pathfinding in hexagonal grid maps is a common problem in some specific areas,

especially in video games (like the highly acclaimed Civilization series). The main challenge

of these problems lies in how to handle the paths that seemingly different, but in fact

equivalent. Jump Point Search (JPS) is regarded as the best algorithm in the current research

based on square grid maps. It effectively solved this problem. The efficiency of JPS far

exceeds other similar algorithms, including the widely used A-Star algorithm. This paper

presents an adaptation of the JPS algorithm for hexagonal grid maps and presents a

comparative analysis of its efficiency against the widely-used A-Star algorithm. The result

proved that the adjusted JPS algorithm has significantly improved the efficiency of solving

pathfinding problem compared to the A-Star algorithm when dealing with medium to long

paths and complex paths.

Keywords: Pathfinding, Jump Point Search, Hexagonal Grid Map, Algorithm

1. Introduction

The pathfinding problem is a prevalent challenge across various domains. To address it, researchers

have developed a range of algorithms, starting from the fundamental Dijkstra algorithm, depth-first

search, and breadth-first search, to the extensively employed A-Star algorithm, and the Jump Point

Search (JPS) algorithm [1-2], which is renowned for its speed. These algorithms, designed for square

grid environments, demonstrate robust performance. Moreover, the A-Star and JPS algorithms have

spawned a suite of enhanced variants, such as JPS+ [2] and HPA-Star [3], among others. Researchers

have also expanded the applicability of the JPS algorithm, including its adaptation to three-

dimensional spaces as the JPS-3D algorithm [4] and its use as an advanced solution for pipeline

routing [5]. The A-Star algorithm, notable for its balance between straightforward implementation

and computational efficiency, has found widespread use, particularly in applications like video games

[6]. Nevertheless, it is regrettable that the faster JPS algorithms have not gained comparable

popularity.

This paper introduces an adjusted JPS algorithm that can run in a hexagonal grid environment.

This paper presents an adjusted JPS algorithm tailored for hexagonal grids, along with a comparative

analysis based on running time between the adjusted JPS algorithm and the A-Star algorithm, as

evidenced by the results of several simple experiments. The research provides a faster method than

the A-Star algorithm for pathfinding problems in hexagonal grid maps, which is beneficial for fields

that need to solve pathfinding problems in hexagonal grids maps.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22521

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

112

2. Notation and Terminology

This article presents an algorithm designed for hexagonal grid maps. In such maps, each node can

have up to six adjacent nodes, and nodes are categorized as either passable or impassable (i.e.,

obstacles). The distance between any two adjacent passable nodes is defined as 1, and any attempt to

move from a passable node to an impassable node is deemed invalid.

For hexagonal grid maps, we will employ the form to denote the coordinates of each node, as

illustrated in Figure 1:

Figure 1: Coordinate System

Most of the following terminologies are referenced from Harabor and Grastien [1], and are

mentioned here for ease of reading:

The notation d⃗ refers to one of the six allowable movement directions.

π = ⟨a0, … , an⟩ represents a path from node a0 to node an, π = ⟨a0, … , an⟩\x represents paths

from a0 to an without passing through node x.

len(π) represents the length of path π.

p(x) represents the previous node (i.e. parent node) of node x in a path.

For a direction d⃗ , dL
⃗⃗⃗⃗ and dR

⃗⃗ ⃗⃗ represent the directions of left and right rotation π/3 along d⃗ ,

respectively.

d⃗ = ⟨x, y⟩ indicates that d⃗ is the direction from node x to node y for a pair of nodes 〈x, y〉 on a

straight line.

y = x + kd⃗ represents that node y can be reached by taking k unit moves from node x in

direction d⃗ .

3. Jump Point Search in Hexagonal Grid Maps

Jump Point Search (JPS) is a pathfinding algorithm for square grid maps. It combines the best-first

expansion strategy used by popular A-Star search with a neighbour pruning strategy.

However, for hexagonal grids, the rules of the original JPS algorithm require adjustments. It is

evident that diagonal movements do not exist in hexagonal grid maps. Instead, it exists turning

movement - meaning that the movement is not straight (e.g. y = x + d1
⃗⃗⃗⃗ is a turning movement if

x = p(x) + d2
⃗⃗⃗⃗ and d1

⃗⃗⃗⃗ is inequal to d2
⃗⃗⃗⃗). Meanwhile, a good turning movement should be restricted

to
π

3
 degrees, as a path with valid larger angle turns imply that the path is not the shortest. Also, in

hexagonal grid maps, there are only 6 directions, and the cost of moving between adjacent passable

nodes will always be 1.

Therefore, we need to make some adjustments to the original definition of JPS to adapt to the

characteristics of hexagonal grid maps.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/150/2025.22521

113

Definitions 1-3 are referenced from Harabor and Grasstien [1], and there are slight differences in

these definitions:

Definition 1. Node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑥) is natural if:

d⃗ ⟨x, n⟩ = d⃗ ⟨p(x), x⟩
In hexagonal grid maps, each node has only 1 natural neighbour.

Definition 2. Node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑥) is forced if:

1. node n is not the only natural neighbour of x.

2. 𝑙𝑒𝑛(⟨𝑝(𝑥), 𝑥, 𝑛⟩) < 𝑙𝑒𝑛(⟨𝑝(𝑥), … , 𝑛⟩\𝑥)

Definition 3. Node y is a jump point from node x, heading in direction 𝑑 = ⟨𝑥, 𝑦⟩ if y both

minimizes the value k such that 𝑦 = 𝑥 + 𝑘𝑑 and lies 𝑘 steps from x in direction 𝑑 and one of the

following conditions holds:

1. node y is the goal node.

2. node y has at least one forced neighbour.

3. 𝑑 is a turning move and there exists a node 𝑧 = 𝑦 + 𝑘𝑖 𝑑𝑖
⃗⃗ ⃗ which lies 𝑘𝑖 ∈ 𝑁 steps in direction

𝑑𝑖
⃗⃗ ⃗ ∈ {𝑑𝐿

⃗⃗⃗⃗ , 𝑑𝑅
⃗⃗ ⃗⃗ } such that 𝑧 is a jump point from 𝑦 by condition 1 or condition 2.

The following are Pruning Rules and Jumping Rules for hexagonal grid maps. Pruning Rules have

slight differences, while Jumping Rules are consistent with Harabor and Grasstien [2], for ease of

reading only:

Pruning Rules: Given a node x, reached via a parent node p, we prune from the neighbours of x

any node n for which one of the following rules applies:

1. there exists a path π′ = ⟨p, y, n⟩, or simply π′ = ⟨p, n⟩ that is strictly cheaper than the path π =
 ⟨p, x, n⟩;

2. there exists a path π′ = ⟨p, y, n⟩ with the same cost as π = ⟨p, x, n⟩, but π′ has an earlier

turning move than π.

Jumping Rules: JPS applies to each forced and natural neighbour of the current node x a simple

“jumping” procedure; the objective is to replace each neighbour n with an alternative successor n0

that is further away.

Here is a simple example to demonstrate these concepts:

Referring to the scenario depicted in Figure 2.a, in the absence of obstacles, when addressing node

2 with node 1 as its parent, the neighboring nodes highlighted in gray in Figure 2.a can be entirely

disregarded. This is because the paths to these nodes are either not the shortest or are symmetrically

equivalent in length to paths that can be traversed by turning and moving from the preceding node,

without necessitating passage through node 2. Therefore, in the absence of any obstacles, for the

situation shown in Figure 2.a, we only need to consider one path: π = ⟨1,2,3⟩.
However, if obstacles are also taken into account, the situation will become different. Considering

the situation shown in Figure 2.b, where black nodes represent obstacles, we must consider two paths:

π1 = ⟨1,2,3⟩ and π2 = ⟨1,2,4⟩. Due to the existence of obstacles, π2 = ⟨1,2,4⟩ becomes the only

shortest path from node 1 to node 4. Node 2 becomes a jump point and node 4 is its forced neighbor.

Similarly, for the situation shown in Figure 2.c, we need to consider three paths: π1 = ⟨1,2,3⟩, π2 =
⟨1,2,4⟩, and π3 = ⟨1,2,5⟩. For 2.c, node 2 has two forced neighbors: node 4 and node 5.

Figure 2: Simple Examples

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/150/2025.22521

114

For each search, assuming the algorithm is processing node x with direction d⃗ , according to the

definition of jump points, we need to find potential jump points by the following methods to ensure

that we do not miss any jump points:

1. Keep searching along direction d⃗ until the algorithm find a jump point or the next node reached

along direction d⃗ is an obstacle or outside of the grid. The algorithm will return at this time.

2. After moving n ∈ [0,+∞] nodes along direction d⃗ and reach a node xn , search in both

directions dL
⃗⃗⃗⃗ and dR

⃗⃗ ⃗⃗ until a jump point is found, or the next node reached along direction dL
⃗⃗⃗⃗ or dR

⃗⃗ ⃗⃗
is an obstacle or outside of the grid. For this situation, if the algorithm find a jump point, it not only

need to record the found jump point, but also need to record the node xn , and node xn has a

predecessor successor relationship with the found jump point. (Definition 3.3)

Based on these steps, we can create a function to find the jump points with given a direction.

Algorithm 1 Function find_jump_point

Require: x: initial node, d⃗ : direction

1: current ← x

2: jump_points(x) ← ∅

3: repeat

4: current ← step(current, d⃗)

5: if current is a jump point then

6: jump_points(x) ← current
7: Return jump_points(x)

8: for dn
⃗⃗⃗⃗ ∈ {dL

⃗⃗⃗⃗ , dR
⃗⃗ ⃗⃗ } do

9: current_RL ← current
10: repeat

11: current_RL ← step(current_RL, dn
⃗⃗⃗⃗)

12: if current_RL is a jump point then

13: jump_points(x) ← current, current_RL

14: break

15: until current_RL is an obstacle or current_RL is outside of the grid

16: until current is an obstacle or current is outside of the grid

17: return jump_points(x)

This function is able to find jump points by given point and given direction.

In addition, the algorithm needs to process the obtained jump points in a certain order. This part is

similar to A-Star Algorithm and Original JPS Algorithm.

In the hexagonal grid maps, consider two nodes a = (x1, y1, z1) and b = (x2, y2, z2) in it, the

distance H〈a, b〉 between them will be:

 H〈a, b〉 = max (|x1 − x2|, |y1 − y2|, |z1 − z2|) (1)

Also, the algorithm can efficiently record the path length for each jump point identified during its

processing. Then, the algorithm is able to put all the jump points that it has already found but

unprocessed into a minimum heap according to a value f such that:

 f = lengtℎ_of_patℎ(n) + H〈n, goal〉 (2)

Which n is a jump point it has got but unprocessed, lengtℎ_of_patℎ(n) represents the length of

the path currently found from the starting node to node n.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/150/2025.22521

115

4. Experiment Setup, Result and its Analysis

Owing to personal constraints, the following is a list of the relevant programs and devices that were

utilized in the course of this experiment:

1. Grid Generation: The program is written in Python. The hexagonal grid maps used are randomly

generated by generating them with a specified radius, and then traversing the nodes in each grid.

During the traversing process, each node has a probability of becoming an obstacle node with an input

value (i.e. obstacle rate).

2. Algorithms: The A-Star algorithm applicable to hexagonal grids and the adjusted JPS algorithm

are both written in python. The operation of the A-Star algorithm is not elaborated here, and the

general logic of the adjusted JPS algorithm can be seen in the previous text.

3. Devices: A 2.5 GHz AMD Ryzen 9 7945HX processor with 16GB RAM, running Windows 11

24H2.

The experimental method is as follows: the experiment will be conducted in several rounds, with

several tests conducted in each round. For each test, the program will randomly generate a hexagonal

grid with the value of that round as the radius. Then, the program will randomly specify two nodes

with a distance (not path length) greater than or equal to the value of the round but less than or equal

to 1.25 times the value of the round as the starting and ending points (the program will ensure that

both the starting and ending points are passable nodes). For each test, if there exists a path and the

path length is less than or equal to 1.25 times the total number of rounds, the program will record the

length of the path and the time required for both algorithms. If there are multiple data with the same

path length, the program will calculate their average time as the data displayed in the chart.

Firstly, this study conducted an experiment with a total of 300 rounds, 50 times per round, and an

obstacle rate of 0.25. The result is shown in Figure 3:

Figure 3: Result of the first experiment with rounds 300, times per round 50 and obstacle rate 0.25.

The experimental results indicate that for hexagonal grid maps, the adjusted JPS algorithm has

higher efficiency than the A-Star algorithm in long path situations. As evidenced by the preceding

chart, the efficiency disparity between the modified JPS algorithm and the A-Star algorithm increases

with the length of the path. Regarding short path scenarios, here are the result from another

experiment, comprising 50 rounds and 100 times per round, with an obstacle density of 0.25, the

result is as shown in Figure 4:

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22521

116

Figure 4: Result of the experiment with rounds 50, times per round 100 and obstacle rate 0.25.

It can be seen that in the case of shorter paths, the A-Star algorithm is comparable to the adjusted

JPS algorithm, and the adjusted JPS algorithm is even slower in the case of extremely short paths. I

infer that this phenomenon is related to the order of search directions: when the adjusted JPS

algorithm processing maps, for situations that the path is short, the algorithm may only get fewer

jump points - meaning fewer searches. At this stage, the processing sequence of the “correct direction”

search for jump points during the algorithm’s execution significantly influences the runtime,

particularly at the starting point where a search in all six directions is undertaken despite only one

being necessary. This aspect represents a potential avenue for the optimization of the algorithm. In

conclusion, the modified JPS algorithm demonstrates substantially higher efficiency compared to the

A-Star algorithm when applied to complex scenarios and medium to long-distance paths.

5. Conclusion

This paper provides a JPS algorithm that is adjusted to hexagonal grid maps, which still follows the

basic framework of the original JPS algorithm, namely Forced Neighbour, Jump Point, Pruning Rules,

and Jumping Rules are basic principles, but necessary adjustments have been made to these

frameworks for to adapt to new hexagonal grid map scenarios. This research offers a comprehensive

elucidation of the implementation of the newly adjusted JPS algorithm, encompassing essential

aspects such as the identification of jump points and the application of heuristic functions.

Furthermore, through controlled comparative experiments, this study has substantiated that the

adjusted JPS algorithm exhibits substantial advantages over the widely employed A-Star algorithm,

particularly in scenarios characterized by medium to long distance paths and complex trajectories.

The algorithm’s processing speed is notably superior, and the disparity in running time between the

new algorithm and the A-Star algorithm becomes increasingly pronounced as the path length extends.

Naturally, the new algorithm has some potential issues, and one possible optimization direction is to

identify the priority of the direction that needs to be searched through some method to improve its

performance in short paths. Meanwhile, the direction of expanding properties, such as improving the

algorithm into 3D hexagonal grid scenarios and optimize according to the needs of certain specific

professional fields, is also an interesting direction. In addition, changing heuristic functions to

optimize their performance may also be one of the potential optimization directions.

References

[1] Harabor, D., & Grastien, A. (2011). Online Graph Pruning for Pathfinding On Grid Maps. Proceedings of the

AAAI Conference on Artificial Intelligence, 25(1), 1114-1119.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/150/2025.22521

117

[2] Harabor, D.; and Grastien, A. (2012). The JPS pathfinding system. In International Symposium on Combinatorial

Search, volume 3.

[3] Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. (2021). A Systematic Literature Review of A*

Pathfinding. Procedia Comput. Sci., 179, 507–514.

[4] Nobes, T.; Harabor, D.; Wybrow, M.; and Walsh, S. (2022). The Jump Point Search pathfinding system in 3D.

Proceedings of the 15th International Symposium on Combinatorial Search (SoCS), 15(1): 145–152.

[5] Min J.-G., Ruy W.-S., Park C. S. (2020). Faster pipe auto-routing using improved jump point search. International

Journal of Naval Architecture and Ocean Engineering, 12, 596–604.

[6] Mehta P, Shah H, Shukla S, Verma S. (2015). A Review on Algorithms for Pathfinding in Computer Games. 2nd

International Conference on Innovations in Information Embedded and Communication Systems.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/150/2025.22521

118

