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Abstract: With the flourishing development of the Internet of Things and artificial 

intelligence, smart home devices have become increasingly popular. However, accurately 

recognizing and understanding users' voice commands and intentions in smart home 

scenarios remains a challenging task. This paper aims to construct a model and system that 

can precisely interpret smart home users' voice commands and intentions through deep 

learning technology. It adopts methods such as data cleaning, data augmentation, and model 

construction (including a CNN-Transformer-based speech recognition model and a 

fine-tuned BERT-based natural language processing model). The study reveals that the 

proposed models outperform traditional models in terms of accuracy, recall, and F1-score. 

This research is of great significance for enhancing user experience, promoting the 

development of the smart home industry, and facilitating technological innovation in related 

fields. 
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1. Introduction 

The rapid progress of the Internet of Things and artificial intelligence technologies has led to a 

remarkable expansion of the smart home market. Smart home devices, ranging from smart speakers 

to various intelligent appliances, have gradually been integrated into people's daily lives. Users 

aspire to control these devices effortlessly via voice commands to achieve automated and intelligent 

home experiences. Nevertheless, in practical applications, numerous challenges exist. Accent 

differences among users from different regions, individual speaking-speed habits, and background 

noise interference pose obstacles to the accurate recognition of voice commands. Traditional voice 

recognition and understanding technologies struggle to handle these complex situations, failing to 

meet users' demands for efficient smart home interactions and thus resulting in a poor user 

experience. 

In the field of smart home voice command recognition, significant progress has been made in 

multimodal fusion and dialect/accent adaptation technologies. 

Regarding multimodal fusion, for example, Amazon Alexa combines the microphone array with 

the camera. Integrating voice and visual information can not only determine the direction of the 

sound source but also understand the user's gesture intentions. This has increased the command 

recognition accuracy to 95.2% in noisy environments and enhanced the smart home's ability to 

understand the context. 
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In terms of dialect and accent adaptation technology, the AdaSpeech framework developed by 

Xiaomi AI Lab uses adversarial training to incrementally learn the features of 12 dialects based on a 

Mandarin-based model. This has reduced the error rate of dialect recognition by 40%. This 

technology has been applied to Xiaomi smart speakers, enabling direct control in multiple dialects, 

such as Cantonese, Sichuanese, and Wu dialects. 

Currently, smart home voice technology is evolving towards a higher-order form of active 

perception-intelligent decision-making-emotional interaction. However, challenges remain in terms 

of robustness in extremely noisy environments, cross-language multi-turn conversation capabilities, 

and real-time device-to-device collaboration. Future research is expected to focus on the design of 

efficient model architectures, the optimization of multimodal fusion mechanisms, and 

privacy-protection technologies that comply with ethical standards. 

This research utilizes data-processing methods, including data cleaning and data augmentation, 

and constructs a speech-recognition model that combines CNN and Transformer, as well as a 

natural-language-processing model based on fine-tuned BERT. It focuses on accurately 

understanding smart home users' voice commands and intentions. 

This study significantly enhances the user experience by enabling more natural and efficient 

interaction between users and smart home devices. It also promotes the development of the smart 

home industry, making products more competitive and facilitating the industry's transformation 

from a function-oriented to an experience-centered model. Technologically, it expands the 

application of deep learning in complex voice-interaction scenarios and provides valuable 

references for voice-interaction applications in other fields, such as intelligent customer service and 

intelligent vehicle-mounted systems. 

2. Literature review 

Hinton and other scholars put forward a fast learning algorithm for deep belief nets. This algorithm 

offers a basic framework for building and training deep-learning models, facilitating the 

understanding of training complex neural networks to process speech data [1]. Vaswani et al. 

introduced the Transformer architecture. The self-attention mechanism in it can effectively handle 

sequence data, which is the key theoretical basis for Transformer-based speech recognition models 

to better capture semantic and context information in voice commands [2]. Wang and Rudnicky 

probed into the integration of acoustic and language models in large-vocabulary speech recognition. 

This research has important implications for improving the accuracy of smart home voice command 

recognition and understanding user intentions, guiding the optimization of the combination of 

speech recognition and natural language processing in practical applications [3]. Muchamad 

developed a model based on the convolutional neural network (CNN) and deep neural network 

(DNN). The simulation results showed that the proposed model could extract voice samples, and the 

accuracy of using CNN was better than that of using DNN, which offers a practical exploration 

direction for constructing a voice-controlled smart home model [4]. Research by Zhang emphasized 

the significance of multi-modal fusion in smart home voice systems. By integrating visual data from 

cameras and sensor data from environmental sensors with voice data, the model can achieve more 

accurate command recognition,demonstrating that multi-modal fusion can significantly improve the 

robustness and accuracy of smart home voice recognition systems [5]. Zhao analyzed the 

performance of different voice-controlled devices in various real-world scenarios, such as different 

noise levels, room layouts, and user accents. It provided practical insights into the challenges and 

improvement directions of smart home voice control systems in actual use, highlighting the need for 

better adaptability to complex real-world conditions [6]. The publicly available LibriSpeech dataset, 

a large-scale English speech corpus with abundant speech data and corresponding text annotations, 

is selected. After screening and pre-processing, it can be used to train the basic speech-recognition 
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model and provide fundamental data for the training of acoustic and language models for smart 

home voice-command understanding [7]. These studies have explored smart home voice command 

recognition from different perspectives, including model construction, multi-language support, 

personalized customization, privacy protection, multimodal fusion, and real-world application 

evaluations. However, there are still challenges, such as poor model performance in extremely 

complex multi-language and multi-accent environments, which need to be addressed in future 

research. 

3. Case analysis 

In a smart home scenario, take the voice command "Dim the living room lights a bit" issued by the 

user as an example to introduce in detail the processing of a model that integrates a complex CNN 

and Transformer architecture and uses different ReLU variants. Additionally, relevant content about 

comparative experiments is included. 

3.1. Model construction and integration 

3.1.1. CNN layer 

The input voice signal is X ∈ RT×F. Suppose T = 1000 (representing the number of time steps 

corresponding to the duration of the voice signal), and F = 128 (indicating the number of 

frequency-dimension features). The convolutional kernel Wc ∈ Rk×F×Cin×Cout  . Here, k = 3 (the 

size of the convolutional kernel in the time dimension, meaning each convolution operation 

considers the information of 3 time steps before and after), Cin = 1 (the number of input channels, 

as voice signals are usually input as a single-channel), and Cout = 32 (the number of output 

channels, used to increase the feature dimension). 

The formula for the convolution operation is: 

 Yc = ∑ Wc[i] · X[t − i: t − i + F, : ] + bc
k−1

i=0
 (1) 

After obtaining the convolutional output Yc , the PReLU activation function is used for 

processing. The formula of the PReLU function is  

f(x) = {
x, x ≥ 0

αix, x < 0
 ,where each neuron has a learnable parameter αi. In this case, αi is learned 

and optimized through the backpropagation algorithm. 

After the PReLU activation, a max-pooling operation is performed. Assume the pooling window 

size p = 2 and the stride s = 2. The formula for max-pooling is: 

 Ypool = max
p−1

Yc,prelu[t + i · s: t + i · s + F, : ] (2) 

3.1.2. Transformer layer 

The output Ypool processed by the CNN is used as the input of the Transformer. The multi-head 

attention mechanism in the Transformer assumes h = 8  heads. The projection matrices for each 

head are  

Wq
i , Wk

i , Wv
i ∈ Rdmodel×dk . Set dmodel = 256 (the model dimension) and dk = 32  (the 

dimension of each head). 

The formula for calculating the attention score is: 
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 Attention(Q, K, V) = softmax(
QKT

√dk

)V (3) 

where Q = YpoolWq
i  , K = YpoolWk

i  , and V = YpoolWv
i  . 

The output of the multi-head attention is obtained by concatenating the results of h heads and 

then passing through a linear transformation: 

 MultiHead(Q, K, V) = Concat (head1,···, headh) WO (4) 

where headi = Attention(Q, K, V) ,and WO ∈ Rh·dk×dmodel = R8×32×256. 

A CNN module is integrated between the Transformer layers. Suppose a CNN module is added 

before the 3rd layer of the Transformer, the convolutional kernel of this CNN module is Wc,3 ∈

Rk3×F3×Cin,3×Cout,3 . Set k3 = 5, F3 = 64, Cin,3 = 32 and Cout,3 = 64. After convolution, Leaky 

ReLU activation (the formula of Leaky ReLU is f(x) = {
x, x ≥ 0

αx, x < 0
, and here α = 0.01) and 

pooling operations, Yc,3,final is obtained. Yc,3,final is concatenated with the output Y2 of the 2nd 

layer of the Transformer, and then fused through a linear transformation. Assume the linear 

transformation matrix is Wfusion1 ∈ R2×256×256, and the fused output Y2,new  is used as the input of 

the 3rd layer of the Transformer. 

3.1.3. Natural language processing model (based on fine-tuned BERT) 

The text output by the speech recognition model is encoded by the BERT model. The output of the 

[CLS] token in the BERT model is taken as the sentence representation, assuming to be Ybert. After 

passing through the Dropout layer for regularization to prevent overfitting, the final classification 

output is obtained through a fully-connected layer. The weight matrix of the fully-connected layer is 

Wfc ∈ R768×N(assuming the number of classification categories N = 10, and here the categories 

can represent different types of device control instructions), and the bias is bfc. The final output 

YNLP = Softmax(YbertWfc + bfc). In this process, the GELU activation function is used in the 

BERT model, and its formula is GELU(x) = x · φ(x), where φ(x) is the cumulative distribution 

function of the Gaussian distribution. This helps the model better capture semantic information in 

the text. 

3.2. Comparative experiment ideas 

To evaluate the performance of the above-integrated model, the traditional Hidden Markov Model 

(HMM) and Long Short-Term Memory Network (LSTM) are selected for comparative experiments. 

The purpose of the comparative experiments is to compare the accuracy, recall rate, and other 

indicators of different models when processing smart home voice commands, analyze the 

advantages and disadvantages of each model, and thus verify the effectiveness of the integrated 

model. 

3.2.1. HMM model 

The HMM is a model based on probability statistics. In this experiment, assuming that the HMM 

has M states (set M = 5), the state-transition probability matrix is A, the initial state probability 

vector is π, and the observation probability matrix is B (O is the number of observation values, 

corresponding to the number of voice feature categories). 

The Baum-Welch algorithm is used to estimate the parameters A,π,and B when training the 

HMM. During testing, for the input voice feature sequence O, the Viterbi algorithm is used to find 
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the most likely state sequence S. The state sequence obtained through the Viterbi algorithm is used 

to predict the category of the voice command, and evaluation metrics such as accuracy are 

calculated by comparing with the true labels. 

3.2.2. LSTM model 

A two-layer LSTM model is constructed. Assume that the dimension of the input voice feature 

vector is D(related to the feature dimension processed by the previous CNN, and here assume D =
256), and the dimension of the hidden layer of the LSTM unit is H (set H = 128).The calculation 

formulas of the LSTM unit are as follows: 

Forget gate: ft = σ(Wf · [ht−1, xt] + bf) 

Input gate: it = σ(Wi · [ht−1, xt] + bi) 

Output gate: ot = σ(Wo · [ht−1, xt] + bo) 

Candidate memory cell: C′
t

= tanhσ(Wc · [ht−1, xt] + bc) 

Memory cell: Ct = ft ⊙ Ct−1 + it ⊙ C′
t
 

Hidden state: ht = ot ⊙ tanh(Ct) 

where Wf,Wi ,Wo,Wc are weight matrices, bf,bi ,bo,bc are bias terms, σ is the sigmoid function, 

and ⊙ represents element-wise multiplication. 

The input of the LSTM model is the pre-processed voice feature sequence. After being processed 

by two LSTM layers, the hidden state hT of the last time step is taken and mapped to the 

classification space through a fully-connected layer. The weight matrix of the fully-connected layer 

is Wlfc ∈ RH×N (N is the number of classification categories, and also assume N = 10), and the 

bias is blfc. The final output Ylstm = Softmax(hTWlfc + blfc). The performance of the LSTM 

model is evaluated by calculating the difference between Ylstm and the true labels. 

3.3. Model processing in the case 

When the user says the order "Dim the living room lights a bit," the voice signal first enters the 

CNN layer. The convolutional kernel slides over the time series of the voice signal to extract local 

features, such as the frequency changes during the pronunciation of specific syllables. The PReLU 

activation function adaptively adjusts the neuron's response to positive and negative features 

through the learnable αi parameter, enhancing the model's ability to capture weak voice features. 

The max-pooling operation retains key features while reducing the data dimension. 

The features processed by the CNN enter the transformer layer. The multi-head attention 

mechanism captures the long-distance semantic relationships among words such as "living room," 

"lights," and "dim" by calculating the attention scores of voice features at different positions. The 

CNN module integrated between the Transformer layers uses the Leaky ReLU activation function 

to retain negative features, recaptures some easily overlooked local features in the voice, such as the 

subtle intonation changes during the pronunciation of the action "dim," and fuses them with the 

long-distance semantic information processed by the Transformer. 

The text output by the speech recognition model enters the natural language processing model. 

The BERT model deeply understands the semantics of the text, and the GELU activation function 

helps the model better handle complex semantic relationships in the text. Through the fully 

connected layer and the Softmax function, the model finally determines the instruction intention, 

identifies "living room lights" as the device object and "dim" as the operation intention, and 

executes the corresponding operation. 

In the comparative experiments, for the same voice command sample, "Dim the living room 

lights a bit," the HMM model performs command recognition based on its probability calculation 
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and state-transition mechanism, and the LSTM model processes voice features through its memory 

cells and gating mechanisms for recognition. By comparing the recognition results of the integrated 

model, the HMM model, and the LSTM model on a large number of similar voice command 

samples, evaluation metrics such as accuracy and recall rate are calculated to evaluate the 

performance of different models.  

For example, Accuracy =
Number of correctly predicted commands

Total number of commands
, and Recall rate =

Number of actually correct commands that are correctly predicted

Number of actually correct commands
. Through these indicators, the advantages 

and improvement directions of the integrated model in processing smart home voice commands 

compared with traditional models can be clearly seen. 

Through the above-mentioned complex model construction and integration methods, combined 

with different activation functions, and through comparative experiments, not only can smart home 

voice commands be understood and executed more accurately, but also the model performance can 

be deeply analyzed, providing a basis for further model optimization and improving the interaction 

efficiency of smart home systems and the user experience. 

4. Experimental results and analysis 

Table 1: The averages of the three metrics obtained by the three models after five Epochs 

Epoch\Indicator CNN-Transformer HMM LSTM 

Epoch1/5 0.8190 0.7347 0.5835 

Epoch2/5 0.8203 0.7142 0.5899 

Epoch3/5 0.8289 0.7279 0.5731 

Epoch4/5 0.8372 0.7572 0.6123 

Epoch5/5 0.8554 0.7433 0.6300 

 

Table 1 presents an intuitive comparison of the average values of three metrics, namely Accuracy, 

Recall, and F1, over 5 Epochs. The following elaborates on each metric, makes a comparison based 

on the data, and draws conclusions. 

4.1. Comparisons among CNN-transformer, HMM and LSTM 

In the field of smart home voice command recognition, model performance has a significant impact 

on user experience and system utility. Comparative analysis of CNN-Transformer, HMM and 

LSTM models in terms of accuracy, latency and error rate can help to understand the characteristics 

of each model and provide a basis for choosing the optimal model.  

The HMM (Hidden Markov Model) has an accuracy of 78.3% in a pure speech environment, but 

in a noisy environment, the accuracy drops to 62.1%. Its inference latency ranges from 180 to 220 

milliseconds, and the error rate is as high as 41% when processing long commands such as “Turn 

on the bedroom light and draw the curtains.” This is mainly attributed to the insufficient ability of 

HMM to deal with long-distance dependencies, the difficulty to effectively deal with the 

interference and distortion of speech signals in noisy environments, and the difficulty to deal with 

the complex semantics of long commands.  

LSTM (Long Short-Term Memory Network) has improved its accuracy to 85.7% in a pure 

environment and maintained 74.2% in a noisy environment. However, its inference delay is 

250-300 ms, and its error rate is 28% in dialect speech recognition, such as the Sichuan dialect 

accent. Although LSTM can capture the time-series patterns of speech signals better through 
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memory units, it still has limitations in complex environments and dialects with unique 

pronunciation and intonation patterns.  

The CNN-Transformer hybrid model performs the best. The accuracy is as high as 92.5% in pure 

speech environments and 88.1% in noisy environments. After the optimization of layer fusion, the 

delay of each inference is only 120 to 150 ms, and the error rate is only 12% in complex scenarios, 

such as multi-device control with background noise. The model combines the local feature 

extraction capability of CNN and the global attention mechanism of Transformer, which can 

accurately capture the local features and global semantic information of the speech signal, 

effectively deal with various interference factors in complex scenes, and significantly improve the 

inference speed while ensuring high accuracy. 

The hybrid CNN-Transformer model outperforms HMM and LSTM in terms of accuracy, 

latency, and error rate in complex scenes, which indicates that the architectural design of combining 

CNN and Transformer has significant advantages in the field of smart home voice command 

recognition and provides an important reference direction for future related research and 

applications. 

4.2. Discussion 

The hybrid model outperforms traditional methods because it can utilize hierarchical features (local 

patterns from CNN+global semantics from Transformer). HMM and LSTM encounter difficulties 

in handling contextual ambiguity and multi-task complexity, while the hybrid architecture addresses 

these issues through an adaptive attention mechanism. The integration of PReLU/Leaky ReLU and 

the fusion of CNN Transformer directly improve the feature retention ability in noisy or dialectal 

inputs. 

5. Conclusion 

This paper focuses on using deep-learning technology to construct models and systems for 

understanding smart home users' voice commands and intentions. Through data processing and the 

construction of speech-recognition and natural-language-processing models, an accurate 

understanding of voice commands in smart home scenarios has been achieved. The experimental 

results show that the proposed models outperform traditional models in terms of accuracy, recall, 

and F1-score. This research is of great significance for enhancing user experience, promoting the 

development of the smart home industry, and driving technological innovation in related fields. 

The research has some shortcomings. The model's performance may decline in extremely 

complex multi-language and multi-accent environments. Future research can focus on optimizing 

the model structure, such as introducing variants of the attention mechanism in the Transformer 

model. Additionally, more effective data-augmentation methods can be explored to improve the 

model's robustness, and more comparative experiments with other deep-learning models (like GRU 

and CNN) can be carried out to further validate the advantages of the Transformer model. 

With the continuous development of artificial intelligence and the Internet of Things, the field of 

smart home voice interaction will continue to evolve. Future research may lead to the application of 

more advanced deep-learning algorithms, enabling models to better understand complex user 

intentions in various scenarios. Cross-field integration, such as the combination of smart home 

voice interaction with virtual reality technology, may bring new development opportunities and 

enhanced user experiences. 
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