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Abstract: With the flourishing development of the Internet of Things and artificial
intelligence, smart home devices have become increasingly popular. However, accurately
recognizing and understanding users' voice commands and intentions in smart home
scenarios remains a challenging task. This paper aims to construct a model and system that
can precisely interpret smart home users' voice commands and intentions through deep
learning technology. It adopts methods such as data cleaning, data augmentation, and model
construction (including a CNN-Transformer-based speech recognition model and a
fine-tuned BERT-based natural language processing model). The study reveals that the
proposed models outperform traditional models in terms of accuracy, recall, and F1-score.
This research is of great significance for enhancing user experience, promoting the
development of the smart home industry, and facilitating technological innovation in related
fields.

Keywords: Smart home, Voice command recognition, Deep learning, Transformer

1. Introduction

The rapid progress of the Internet of Things and artificial intelligence technologies has led to a
remarkable expansion of the smart home market. Smart home devices, ranging from smart speakers
to various intelligent appliances, have gradually been integrated into people's daily lives. Users
aspire to control these devices effortlessly via voice commands to achieve automated and intelligent
home experiences. Nevertheless, in practical applications, numerous challenges exist. Accent
differences among users from different regions, individual speaking-speed habits, and background
noise interference pose obstacles to the accurate recognition of voice commands. Traditional voice
recognition and understanding technologies struggle to handle these complex situations, failing to
meet users' demands for efficient smart home interactions and thus resulting in a poor user
experience.

In the field of smart home voice command recognition, significant progress has been made in
multimodal fusion and dialect/accent adaptation technologies.

Regarding multimodal fusion, for example, Amazon Alexa combines the microphone array with
the camera. Integrating voice and visual information can not only determine the direction of the
sound source but also understand the user's gesture intentions. This has increased the command
recognition accuracy to 95.2% in noisy environments and enhanced the smart home's ability to
understand the context.
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In terms of dialect and accent adaptation technology, the AdaSpeech framework developed by
Xiaomi Al Lab uses adversarial training to incrementally learn the features of 12 dialects based on a
Mandarin-based model. This has reduced the error rate of dialect recognition by 40%. This
technology has been applied to Xiaomi smart speakers, enabling direct control in multiple dialects,
such as Cantonese, Sichuanese, and Wu dialects.

Currently, smart home voice technology is evolving towards a higher-order form of active
perception-intelligent decision-making-emotional interaction. However, challenges remain in terms
of robustness in extremely noisy environments, cross-language multi-turn conversation capabilities,
and real-time device-to-device collaboration. Future research is expected to focus on the design of
efficient model architectures, the optimization of multimodal fusion mechanisms, and
privacy-protection technologies that comply with ethical standards.

This research utilizes data-processing methods, including data cleaning and data augmentation,
and constructs a speech-recognition model that combines CNN and Transformer, as well as a
natural-language-processing model based on fine-tuned BERT. It focuses on accurately
understanding smart home users' voice commands and intentions.

This study significantly enhances the user experience by enabling more natural and efficient
interaction between users and smart home devices. It also promotes the development of the smart
home industry, making products more competitive and facilitating the industry's transformation
from a function-oriented to an experience-centered model. Technologically, it expands the
application of deep learning in complex voice-interaction scenarios and provides valuable
references for voice-interaction applications in other fields, such as intelligent customer service and
intelligent vehicle-mounted systems.

2. Literature review

Hinton and other scholars put forward a fast learning algorithm for deep belief nets. This algorithm
offers a basic framework for building and training deep-learning models, facilitating the
understanding of training complex neural networks to process speech data [1]. Vaswani et al.
introduced the Transformer architecture. The self-attention mechanism in it can effectively handle
sequence data, which is the key theoretical basis for Transformer-based speech recognition models
to better capture semantic and context information in voice commands [2]. Wang and Rudnicky
probed into the integration of acoustic and language models in large-vocabulary speech recognition.
This research has important implications for improving the accuracy of smart home voice command
recognition and understanding user intentions, guiding the optimization of the combination of
speech recognition and natural language processing in practical applications [3]. Muchamad
developed a model based on the convolutional neural network (CNN) and deep neural network
(DNN). The simulation results showed that the proposed model could extract voice samples, and the
accuracy of using CNN was better than that of using DNN, which offers a practical exploration
direction for constructing a voice-controlled smart home model [4]. Research by Zhang emphasized
the significance of multi-modal fusion in smart home voice systems. By integrating visual data from
cameras and sensor data from environmental sensors with voice data, the model can achieve more
accurate command recognition,demonstrating that multi-modal fusion can significantly improve the
robustness and accuracy of smart home voice recognition systems [5]. Zhao analyzed the
performance of different voice-controlled devices in various real-world scenarios, such as different
noise levels, room layouts, and user accents. It provided practical insights into the challenges and
improvement directions of smart home voice control systems in actual use, highlighting the need for
better adaptability to complex real-world conditions [6]. The publicly available LibriSpeech dataset,
a large-scale English speech corpus with abundant speech data and corresponding text annotations,
is selected. After screening and pre-processing, it can be used to train the basic speech-recognition
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model and provide fundamental data for the training of acoustic and language models for smart
home voice-command understanding [7]. These studies have explored smart home voice command
recognition from different perspectives, including model construction, multi-language support,
personalized customization, privacy protection, multimodal fusion, and real-world application
evaluations. However, there are still challenges, such as poor model performance in extremely
complex multi-language and multi-accent environments, which need to be addressed in future
research.

3.  Case analysis

In a smart home scenario, take the voice command "Dim the living room lights a bit" issued by the
user as an example to introduce in detail the processing of a model that integrates a complex CNN
and Transformer architecture and uses different ReLU variants. Additionally, relevant content about
comparative experiments is included.

3.1. Model construction and integration

3.1.1.CNN layer

The input voice signal is X € RT*F. Suppose T = 1000 (representing the number of time steps
corresponding to the duration of the voice signal), and F = 128 (indicating the number of
frequency-dimension features). The convolutional kernel W, € RK¥FXCinXCout = Here, k = 3 (the
size of the convolutional kernel in the time dimension, meaning each convolution operation
considers the information of 3 time steps before and after), C;, = 1 (the number of input channels,
as voice signals are usually input as a single-channel), and C,,; = 32 (the number of output
channels, used to increase the feature dimension).
The formula for the convolution operation is:

Y =X W][i] - X[t—ist—i+F:]+b, (1)

After obtaining the convolutional output Y., the PReLU activation function is used for
processing. The formula of the PReLU function is
(= %X =0
() = {aix, x<0”
and optimized through the backpropagation algorithm.
After the PReL.U activation, a max-pooling operation is performed. Assume the pooling window
size p = 2 and the stride s = 2. The formula for max-pooling is:

where each neuron has a learnable parameter «;. In this case, a; is learned

Y, = maxY t+i-s:t+i-s+F,:] (2)

pool —
p—1

c,prelu [

3.1.2. Transformer layer

The output Ype01 processed by the CNN is used as the input of the Transformer. The multi-head

attention mechanism in the Transformer assumes h = 8 heads. The projection matrices for each
head are

W(i],Wli(, Wl € Rdmoderdk  Set dpoqe = 256 (the model dimension) and dy = 32 (the
dimension of each head).
The formula for calculating the attention score is:
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T
Attention(Q, K, V) = softmax(%)v (3)

I
where Q = YpoolWi, K = Ypoo Wi , and V = Yoo Wi .

The output of the multi-head attention is obtained by concatenating the results of h heads and
then passing through a linear transformation:

MultiHead(Q, K, V) = Concat (headl,---, headh) wo 4)

where head; = Attention(Q,K,V) ,and WO € RPdkXdmodel = R8*32x256
A CNN module is integrated between the Transformer layers. Suppose a CNN module is added
before the 3rd layer of the Transformer, the convolutional kernel of this CNN module is W, 3 €

RKs*FsXCin3XCouts ~ Set kg = 5,F;3 = 64,Cipn3 = 32 and Cyyr3 = 64. After convolution, Leaky
>

ReLU activation (the formula of Leaky ReLU is f(x) = {oc))? iz 8, and here a = 0.01) and

pooling operations, Y. 3 fina 1S obtained. Y3 fina 1S concatenated with the output Y, of the 2nd

layer of the Transformer, and then fused through a linear transformation. Assume the linear

transformation matrix is Wrysiony € R?*2°6%256 and the fused output Y, pey is used as the input of

the 3rd layer of the Transformer.

3.1.3. Natural language processing model (based on fine-tuned BERT)

The text output by the speech recognition model is encoded by the BERT model. The output of the
[CLS] token in the BERT model is taken as the sentence representation, assuming to be Yperi. After
passing through the Dropout layer for regularization to prevent overfitting, the final classification
output is obtained through a fully-connected layer. The weight matrix of the fully-connected layer is
Wi € R768*N(assuming the number of classification categories N = 10, and here the categories
can represent different types of device control instructions), and the bias is bg.. The final output
Ynip = Softmax(YpertWse + bge). In this process, the GELU activation function is used in the
BERT model, and its formula is GELU(x) = x - @(x), where ¢(x) is the cumulative distribution
function of the Gaussian distribution. This helps the model better capture semantic information in
the text.

3.2. Comparative experiment ideas

To evaluate the performance of the above-integrated model, the traditional Hidden Markov Model
(HMM) and Long Short-Term Memory Network (LSTM) are selected for comparative experiments.
The purpose of the comparative experiments is to compare the accuracy, recall rate, and other
indicators of different models when processing smart home voice commands, analyze the
advantages and disadvantages of each model, and thus verify the effectiveness of the integrated
model.

3.2.1.HMM model

The HMM is a model based on probability statistics. In this experiment, assuming that the HMM
has M states (set M = 5), the state-transition probability matrix is A, the initial state probability
vector is 7, and the observation probability matrix is B (O is the number of observation values,
corresponding to the number of voice feature categories).

The Baum-Welch algorithm is used to estimate the parameters A,m,and B when training the
HMM. During testing, for the input voice feature sequence O, the Viterbi algorithm is used to find
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the most likely state sequence S. The state sequence obtained through the Viterbi algorithm is used
to predict the category of the voice command, and evaluation metrics such as accuracy are
calculated by comparing with the true labels.

3.2.2.LSTM model

A two-layer LSTM model is constructed. Assume that the dimension of the input voice feature
vector is D(related to the feature dimension processed by the previous CNN, and here assume D =
256), and the dimension of the hidden layer of the LSTM unit is H (set H = 128).The calculation
formulas of the LSTM unit are as follows:

Forget gate: f, = (W - [he_q, X¢] + by)

Input gate: iy = o(W; - [he_q, X¢] + b;)

Output gate: o, = a(W, - [hi_1,X¢] + by)

Candidate memory cell: C’ . = tanho(W, - [he—q, x¢] + be)

Memory cell: C, =f, O Ci—q +i; O C’

Hidden state: h; = o © tanh(C,)
where Wr,W; \W,, W, are weight matrices, bg,b; ,b,,b. are bias terms, o is the sigmoid function,
and (O represents element-wise multiplication.

The input of the LSTM model is the pre-processed voice feature sequence. After being processed
by two LSTM layers, the hidden state hp of the last time step is taken and mapped to the
classification space through a fully-connected layer. The weight matrix of the fully-connected layer
is Wi € RPN (N is the number of classification categories, and also assume N = 10), and the
bias is bj.. The final output Yig, = Softmax(htWjs. + bye.). The performance of the LSTM
model is evaluated by calculating the difference between Yig,, and the true labels.

t

3.3. Model processing in the case

When the user says the order "Dim the living room lights a bit," the voice signal first enters the
CNN layer. The convolutional kernel slides over the time series of the voice signal to extract local
features, such as the frequency changes during the pronunciation of specific syllables. The PReLU
activation function adaptively adjusts the neuron's response to positive and negative features
through the learnable o; parameter, enhancing the model's ability to capture weak voice features.
The max-pooling operation retains key features while reducing the data dimension.

The features processed by the CNN enter the transformer layer. The multi-head attention
mechanism captures the long-distance semantic relationships among words such as "living room,"
"lights," and "dim" by calculating the attention scores of voice features at different positions. The
CNN module integrated between the Transformer layers uses the Leaky ReLU activation function
to retain negative features, recaptures some easily overlooked local features in the voice, such as the
subtle intonation changes during the pronunciation of the action "dim," and fuses them with the
long-distance semantic information processed by the Transformer.

The text output by the speech recognition model enters the natural language processing model.
The BERT model deeply understands the semantics of the text, and the GELU activation function
helps the model better handle complex semantic relationships in the text. Through the fully
connected layer and the Softmax function, the model finally determines the instruction intention,
identifies "living room lights" as the device object and "dim" as the operation intention, and
executes the corresponding operation.

In the comparative experiments, for the same voice command sample, "Dim the living room
lights a bit," the HMM model performs command recognition based on its probability calculation
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and state-transition mechanism, and the LSTM model processes voice features through its memory
cells and gating mechanisms for recognition. By comparing the recognition results of the integrated
model, the HMM model, and the LSTM model on a large number of similar voice command
samples, evaluation metrics such as accuracy and recall rate are calculated to evaluate the

performance of different models.
Number of correctly predicted commands

For example, Accuracy = rotal number of commands , and Recall rate =

Number of actually correct commands that are correctly predicted ..
Y Ye . Through these indicators, the advantages

Number of actually correct commands
and improvement directions of the integrated model in processing smart home voice commands
compared with traditional models can be clearly seen.

Through the above-mentioned complex model construction and integration methods, combined
with different activation functions, and through comparative experiments, not only can smart home
voice commands be understood and executed more accurately, but also the model performance can
be deeply analyzed, providing a basis for further model optimization and improving the interaction
efficiency of smart home systems and the user experience.

4. Experimental results and analysis

Table 1: The averages of the three metrics obtained by the three models after five Epochs

Epoch\Indicator CNN-Transformer HMM LSTM
Epochl/5 0.8190 0.7347 0.5835
Epoch2/5 0.8203 0.7142 0.5899
Epoch3/5 0.8289 0.7279 0.5731
Epoch4/5 0.8372 0.7572 0.6123
Epoch5/5 0.8554 0.7433 0.6300

Table 1 presents an intuitive comparison of the average values of three metrics, namely Accuracy,
Recall, and F1, over 5 Epochs. The following elaborates on each metric, makes a comparison based
on the data, and draws conclusions.

4.1. Comparisons among CNN-transformer, HMM and LSTM

In the field of smart home voice command recognition, model performance has a significant impact
on user experience and system utility. Comparative analysis of CNN-Transformer, HMM and
LSTM models in terms of accuracy, latency and error rate can help to understand the characteristics
of each model and provide a basis for choosing the optimal model.

The HMM (Hidden Markov Model) has an accuracy of 78.3% in a pure speech environment, but
in a noisy environment, the accuracy drops to 62.1%. Its inference latency ranges from 180 to 220
milliseconds, and the error rate is as high as 41% when processing long commands such as “Turn
on the bedroom light and draw the curtains.” This is mainly attributed to the insufficient ability of
HMM to deal with long-distance dependencies, the difficulty to effectively deal with the
interference and distortion of speech signals in noisy environments, and the difficulty to deal with
the complex semantics of long commands.

LSTM (Long Short-Term Memory Network) has improved its accuracy to 85.7% in a pure
environment and maintained 74.2% in a noisy environment. However, its inference delay is
250-300 ms, and its error rate is 28% in dialect speech recognition, such as the Sichuan dialect
accent. Although LSTM can capture the time-series patterns of speech signals better through
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memory units, it still has limitations in complex environments and dialects with unique
pronunciation and intonation patterns.

The CNN-Transformer hybrid model performs the best. The accuracy is as high as 92.5% in pure
speech environments and 88.1% in noisy environments. After the optimization of layer fusion, the
delay of each inference is only 120 to 150 ms, and the error rate is only 12% in complex scenarios,
such as multi-device control with background noise. The model combines the local feature
extraction capability of CNN and the global attention mechanism of Transformer, which can
accurately capture the local features and global semantic information of the speech signal,
effectively deal with various interference factors in complex scenes, and significantly improve the
inference speed while ensuring high accuracy.

The hybrid CNN-Transformer model outperforms HMM and LSTM in terms of accuracy,
latency, and error rate in complex scenes, which indicates that the architectural design of combining
CNN and Transformer has significant advantages in the field of smart home voice command
recognition and provides an important reference direction for future related research and
applications.

4.2. Discussion

The hybrid model outperforms traditional methods because it can utilize hierarchical features (local
patterns from CNN-+global semantics from Transformer). HMM and LSTM encounter difficulties
in handling contextual ambiguity and multi-task complexity, while the hybrid architecture addresses
these issues through an adaptive attention mechanism. The integration of PReLU/Leaky ReLU and
the fusion of CNN Transformer directly improve the feature retention ability in noisy or dialectal
inputs.

5. Conclusion

This paper focuses on using deep-learning technology to construct models and systems for
understanding smart home users' voice commands and intentions. Through data processing and the
construction of speech-recognition and natural-language-processing models, an accurate
understanding of voice commands in smart home scenarios has been achieved. The experimental
results show that the proposed models outperform traditional models in terms of accuracy, recall,
and Fl-score. This research is of great significance for enhancing user experience, promoting the
development of the smart home industry, and driving technological innovation in related fields.

The research has some shortcomings. The model's performance may decline in extremely
complex multi-language and multi-accent environments. Future research can focus on optimizing
the model structure, such as introducing variants of the attention mechanism in the Transformer
model. Additionally, more effective data-augmentation methods can be explored to improve the
model's robustness, and more comparative experiments with other deep-learning models (like GRU
and CNN) can be carried out to further validate the advantages of the Transformer model.

With the continuous development of artificial intelligence and the Internet of Things, the field of
smart home voice interaction will continue to evolve. Future research may lead to the application of
more advanced deep-learning algorithms, enabling models to better understand complex user
intentions in various scenarios. Cross-field integration, such as the combination of smart home
voice interaction with virtual reality technology, may bring new development opportunities and
enhanced user experiences.
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