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Abstract: Since the inception and evolution of artificial intelligence, control systems, 

particularly automated pathfinding, have constituted a pivotal area of significance. It is 

reflected in today's world of life in all aspects of autonomous driving, rescue robots and so 

on. Algorithms as the basis for the realization of this field exist in thousands of situations, 

which are reflected in different logic, different computational efficiency, different time and 

space complexity, etc. We will introduce the development history and basic principles of 

Dijkstra’s algorithm and Rapidly-exploring Random Trees algorithm, and analyze the 

advantages and disadvantages of each of these two algorithms to determine the domains in 

which they are applicable. In this paper, we will use MATLAB to set up a test environment 

and will investigate the effect of different environments comparing Dijkstra’s algorithm and 

RRT algorithm on the automatic control system in artificial intelligence. In addition, some 

experimental data and icons will be cited to support the experimental results by comparing 

the algorithms in terms of distance and efficiency. It is concluded that Dijkstra’s algorithm 

will be more suitable for static and low dimensional environments, while Rapidly-exploring 

Random Trees algorithm will be suitable for more complex and high dimensional 

environments. 
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1. Introduction 

With the advancement of technology, Artificial Intelligence (AI) is playing an increasingly important 

role in today's world and has become the foundation of some industries such as automated driving 

systems. According to Atakishiyev, Salameh and Yao [1], with the rapid progress in computationally 

powerful artificial intelligence (AI) techniques, AVs can sense their environment with high precision, 

make safe real-time decisions, and operate reliably without human intervention [1]. In the case of 

autonomous driving, for example, today's AI technology cannot be separated from the help of path-

planning algorithms, and as Lin [2] said, automatic driving has gradually become a hot topic of 

people's attention. Among them, path planning algorithms play a central role in the field of automatic 

driving [2]. Among many path planning algorithms, Dijkstra's algorithm and Rapidly-exploring 

Random Trees algorithm are two representative algorithms. Dijkstra’s algorithm was conceived by 

computer scientist Edsger W. Dijkstra in 1956. It can be used to find the shortest path to a specific 
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goal node by terminating the algorithm after determining the shortest path to the goal node. RRT 

algorithm was developed by Steven M. LaValle and James J. Kuffner Jr. They can easily handle 

problems with obstacles and differential constraints (incomplete and dynamic) and have been widely 

used for autonomous robot motion planning. This study conducts a comparative analysis of the 

Dijkstra and RRT algorithms by applying them to a single robot operating in both simple and complex 

environments, thereby assessing their suitability for different types of environments. This will be 

useful for future industries using AI path planning systems as the algorithms can be selected according 

to different environments, thus completing the task more efficiently and reducing errors and 

redundancy. 

2. Introduction to dijkstra and RRT algorithm 

2.1. Dijkstra algorithm and application 

Dijkstra’s algorithm, introduced by the Dutch computer scientist Edsger W. Dijkstra in 1956, 

represents a foundational and extensively employed method in computer science for determining the 

shortest path between two nodes within a graph. It is particularly effective for graphs with non-

negative edge weights and has thus become a cornerstone in areas such as network routing, transport 

systems and robotics. The algorithm iteratively selects the node with the smallest tentative distance 

from the starting node, updates the distance to its neighboring nodes, and marks it as ‘visited’. This 

process continues until the shortest path to the goal node has been determined or until all reachable 

nodes have been explored. Dijkstra’s algorithm employs a greedy approach and always selects the 

locally optimal step at each iteration, thus guaranteeing the shortest path. Although Dijkstra's 

algorithm is efficient in many applications, it has limitations such as not being able to handle graphs 

with negative edge weights. And in some cases the computational efficiency is too high, as in Fan 

and Shi, Dijkstra's algorithm is the most classical and mature algorithm for searching a shortest path 

in the graph, however this algorithm has the highly time complexity and takes up a larger storage 

space [3]. Nevertheless, Dijkstra's algorithm is still an important tool in the field of computer science 

and is highly regarded for its simplicity, reliability and effectiveness in solving the shortest path 

problem. 

Dijkstra's algorithm plays an important role in Artificial Intelligence (AI), especially in pathfinding 

and optimisation tasks. One of its main applications is robot navigation, where a robot or autonomous 

agent must find the shortest path from a starting point to a goal while avoiding obstacles. By 

modelling the environment as a graph, Dijkstra's algorithm can efficiently compute optimal paths, 

enabling robots to move efficiently in complex spaces such as warehouses, factories or even outdoor 

terrain. In game AI, Dijkstra's algorithm is commonly used to determine the shortest path for a non-

player character (NPC) to traverse the game world. While more advanced algorithms such as A* have 

been widely adopted for their heuristic-based efficiency, Dijkstra's algorithm remains a fundamental 

approach, especially when heuristic information is unavailable or unreliable. Furthermore, Dijkstra’s 

algorithm is employed in AI-driven logistics and transportation systems, including courier services 

and route planning for public transit networks. By calculating the shortest paths between locations, 

the algorithm helps to optimise resource allocation and reduce operational costs. For illustration, 

Behún, M., Knežo, and D., Cehlár demonstrate the development of a model for determining the 

optimal path based on data derived from our algorithm, which was utilized to identify the most 

financially advantageous connection between customer and supplier locations [4]. 

2.2. RRT alogrithm and application 

The Rapid Exploration Random Tree (RRT) algorithm is a probabilistic path planning method widely 

used in robotics and artificial intelligence to solve complex motion planning problems. Developed by 
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Steven M. LaValle in the late 1990s, RRT is particularly effective in high-dimensional spaces and 

environments with obstacles where traditional path planning algorithms may struggle. RRT works by 

incrementally building a tree-like structure of feasible paths from a starting point to a goal. It 

randomly samples points in the configuration space and connects them to the nearest node in the tree 

structure, ensuring that paths do not collide. This random sampling allows RRT to explore the 

environment efficiently, even in cluttered or dynamic environments. Over time, the tree expands into 

unexplored regions, gradually finding paths to the goal. One of the main strengths of RRT is its ability 

to deal with non-holonomic constraints and high-dimensional problems, such as those encountered in 

robotic arm manoeuvring or automated vehicle navigation. Variants such as RRT* and RRT-Connect 

further enhance its capabilities by optimising the smoothing and convergence of the paths. 

Nevertheless, the RRT algorithm possesses certain limitations. As noted by Tian, Yan, and Park, the 

termination condition of tree formation is contingent upon the success in locating the goal [5]. This 

condition may result in the tree containing many nodes in the order of hundred. Due to these 

drawbacks, there are some strategies that can help the Due to these drawbacks, there are some 

strategies that can help the original RRT algorithm to reduce the number of nodes. The number of 

nodes is an important factor in computation to find an optimal path using the tree. 

In the field of robotics, RRT is widely used for autonomous navigation and manipulation tasks. 

For example, mobile robots and drones use RRT to plan collision-free paths in dynamic or cluttered 

environments such as warehouses, urban areas or disaster zones. Similarly, robotic arms can use RRT 

to find feasible trajectories to perform tasks such as pick-and-place operations to avoid obstacles 

while moving in tight spaces. The probabilistic nature of the algorithm allows it to adapt to real-time 

changes in the environment, making it suitable for applications that require fast decision-making. 

In self-driving cars, RRT plays a crucial role in path planning and obstacle avoidance. It helps self-

driving cars navigate complex road networks, car parks or off-road terrain by generating safe and 

efficient routes. In addition, RRT can be used to simulate environments to test and validate self-

driving systems before deployment, as is shown in Figure 1: 

 

Figure 1: Applications in complex environments: path planning for robot manipulators [6] 

3. Comparative analysis 

3.1. Environment 

This study will use MatLab to construct two 2D test environments, simple and complex, with the 

same size and starting and ending points. The simple environment is an environment without any 

obstacles and the robot only needs to move from the start point to the end point, while the complex 

environment generates a number of points as obstacles to block the robot's planned path. 
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Figure 2: Examples of complex and simple environments (personal matlab test) 

In order to reach a conclusion, this research will introduce a few criteria for judgement: 

* Runtime: the time it takes for the computer to run the algorithm, which allows us to consider the 

cost of time in order to judge which algorithm can plan a path in less time. 

*Running distance: Calculate the actual distance travelled by the robot from the starting point to 

the end point, which is also the key criterion of this test, it can intuitively see the difference between 

the two algorithms in terms of running efficiency. 

3.2. Simple environment 

In the simple environment, the map is set up as a 20x20 two-dimensional map with the start point set 

to (2,2) and the end point set to (18,18). Here are the results of the nine sets of tests. 

Table 1: Run distance in simple environment 

Distance 1 2 3 4 5 6 7 8 9 

RRT 31.05 28.77 29.99 28.89 25.64 26.54 28.88 31.23 26.44 

Dijkstra 22.63 22.63 22.63 22.63 22.63 22.63 22.63 22.63 22.63 

Table 2: Runtime in simple environment 

Runtime 1 2 3 4 5 6  7 8 9 

RRT 0.0215 0.0151 0.0078 0.0208 0.0047 0.0023 0.0061 0.0036 0.0021 

Dijkstra 0.0123 0.0075 0.0186 0.0057 0.0055 0.0055 0.0055 0.0056 0.0053 

 

According to Table 1 and 2, we can know that at the runtime level, excluding the possible outliers 

of test1 and 3, the runtime of Dijkstra is around 0.0055 seconds, which reflects the stability of having 

only one fixed route. Conversely, the RRT algorithm must generate distinct paths for each iteration, 

resulting in a running time that can vary significantly—ranging from very large to very small—thus 

embodying its inherently random nature. Regarding distance, Dijkstra’s algorithm consistently 

identifies the shortest path, yielding a fixed distance value. In contrast, the RRT algorithm’s inherent 

randomness causes the distance to fluctuate, and it typically exceeds that of the path length determined 

by Dijkstra’s algorithm. 
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3.3. Complex environment 

Table 3: Runtime in complex environment 

Runtime 1 2 3 4 5 6  7 8 9 

RRT 0.0089 0.0055 0.0064 0.0045 0.0032 0.0088 0.0067 0.0084 0.0092 

Dijkstra 0.0212 0.0209 0.0224 0.0241 0.0281 0.0215 0.0266 0.0234 0.0204 

Table 4: Run distance in complex environment 

Distance 1 2 3 4 5 6 7 8 9 

RRT 31.23 27.77 26.94 28.43 26.42 28.41 28.22 33.42 28.32 

Dijkstra 25.43 26.41 23.22 26.54 23.32 24.32 24.57 25.42 25.11 

 

As illustrated in Table 3, at the runtime level, Dijkstra’s algorithm generally exhibits a higher running 

time compared to the RRT algorithm. This discrepancy may be attributed to the increased time 

required for calculating and planning paths in complex environments. It is noteworthy that, despite 

the numerical difference in running times between the two algorithms being relatively small, this is 

influenced by the map size. Specifically, the running time of Dijkstra’s algorithm is substantially 

longer than that of the RRT algorithm, particularly when the map size is not excessively large. It is 

important to note that although numerically the RRT algorithm is only slightly smaller than Dijkstra's 

algorithm, this is due to the size of the map, which means that at the practical level, the actual running 

time of the RRT algorithm may be much smaller. In terms of distance, as is shown in Table 4 that 

Dijkstra's algorithm still represents the smallest path in the environment, so RRT will still take more 

distance, but because of the effect of time, it can still be considered more suitable for complex 

environments. 

The running time of an algorithm is influenced by various factors, including computer hardware 

and environmental conditions. In this study, the algorithm’s running time was measured using a single 

computer, thereby acknowledging the potential for differing performance outcomes when executed 

on alternative hardware configurations. In addition, the test environment chosen for this test is 

relatively single, only 2d 20x20 size, and is not enough to cover the three-dimensional world and 

larger and more complex environments. 

4. Conclusion 

Both Dijkstra's algorithm and the RRT algorithm are fundamental tools for path planning, but they 

excel in different scenarios due to their respective uniqueness. The Dijkstra algorithm is very effective 

in simple environments with low-dimensional spaces and static obstacles. It guarantees the shortest 

path by systematically exploring all possible paths, making it ideal for applications such as network 

routing or grid-based navigation. However, in high-dimensional or complex environments, the 

computational cost of the algorithm increases substantially, limiting its usefulness in real-time 

systems. Conversely, RRT demonstrates superior performance in complex, high-dimensional, and 

dynamic environments. Its probabilistic nature enables efficient exploration of expansive spaces and 

adaptability to evolving conditions, thereby rendering it the preferred methodology for motion 

planning in robotics, autonomous vehicles, and cluttered or unstructured settings. Although RRT does 

not guarantee the shortest path, its ability to quickly find feasible solutions makes it invaluable in 

real-time applications. However, in low-dimensional and simple environments, it will not be able to 

complete the task with the same efficiency as Dijkstra's algorithm. In summary, Dijkstra's algorithm 

is best suited for simple, static environments where optimality is critical, while RRT shines in 

complex, dynamic scenarios where adaptability and speed are priorities. The choice between the two 
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depends on the specific requirements of the application, which highlights the importance of choosing 

the right tool for the problem at hand. 
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