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Abstract: In the field of structural engineering, the degradation of structural performance is 

an inherent characteristic that is difficult to avoid, making structural damage identification a 

core research topic for ensuring engineering safety. This study addresses the damage 

identification problem in truss structures by integrating the Monte Carlo method with 

Bayesian updating theory. A finite element numerical model of the truss structure was 

established using OpenSees to conduct research on damage parameter updating, 

systematically revealing the correlation between monitoring information and the stiffness 

parameters of members requiring updating. The results demonstrate that highly correlated 

monitoring information exerts a significant positive effect on parameter updating. Under the 

premise of ensuring parameter identification accuracy, the quantity of detection information 

can be reduced to effectively lower monitoring costs. The information quality evaluation 

framework developed in this study provides theoretical support for data optimization and 

screening in structural damage identification, offering valuable references for the 

construction of practical structural health monitoring systems. This research contributes 

methodological insights for enhancing the efficiency and economy of damage detection in 

engineering structures. 

Keywords: Monte Carlo methods, Bayesian updating theory, Damage identification, 

Correlation Analysis 

1. Introduction 

Truss structures are widely employed in bridge and building engineering due to their advantages of 

lightweight, high stiffness, and flexible configurations. However, prolonged service durations subject 

these structures to performance degradation under coupled effects of environmental erosion, external 

impacts, and fatigue loads, leading to cumulative damage of varying severity. Failure to promptly 

identify and repair such damage may trigger catastrophic safety incidents, as exemplified by the 2006 

collapse of De la Concorde Overpass in Quebec, Canada, where fatigue crack propagation in steel 

truss web members and inadequate monitoring were identified as primary causes [1]. This 

underscores the critical engineering significance of structural damage identification research for 

ensuring operational safety, optimizing maintenance strategies, and extending service lifespan [2]. 

In the field of structural damage identification, Bayesian methods have achieved notable 

advancements. Sohn et al. [3] proposed a Bayesian probabilistic framework combined with finite 

element models to detect the most probable damage locations and severity in structures. Vanik et al. 

[4] applied Bayesian methodologies to structural health monitoring, identifying damage through 
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simulated data. For complex structural damage identification challenges, Ching and Chen [5] 

introduced an efficient Markov Chain Monte Carlo (MCMC) algorithm, significantly enhancing 

computational efficiency. Gao [6] conducted improvement studies on Bayesian model updating 

methods. Additionally, Mukesh et al. [7] developed finite element model updating techniques for 

nonlinear systems, offering a novel approach for advancing structural health monitoring technologies 

based on field-measured data. 

Despite groundbreaking progress in the theoretical framework and engineering applications of 

Bayesian updating mentioned above, existing literature still lacks systematic investigation into the 

quality of parameter information during Bayesian-based damage identification processes. To address 

this gap, this study establishes a coupled framework integrating Monte Carlo methods and Bayesian 

updating, and develops an OpenSees-based finite element model of truss structures for damage 

identification research. By employing parameter correlation analysis methods, we quantitatively 

evaluate the sensitivity characteristics of parameter information to target variables and delve into the 

mechanisms through which information quality influences Bayesian updating processes. 

2. Methods 

2.1. Introduction of Monte Carlo method 

The Monte Carlo method is a numerical computational approach based on stochastic sampling and 

statistical simulation, whose core principle lies in solving problems through extensive trials [8-9]. It 

is thus widely applied in fields such as quantifying uncertainty [10], financial sensitivity analysis [11], 

and engineering risk assessment [12], as well as in structural reliability analysis for calculating failure 

probabilities in engineering. This study primarily employs rejection sampling, a classical Monte Carlo 

technique, to generate random samples from the complex distribution of the target structure. The 

method involves selecting a simple proposal distribution 𝑞(𝑥)  and a constant M such that 𝑀 ∙
𝑞(𝑥)envelopes the target distribution 𝑝(𝑥). Candidate samples are drawn from 𝑞(𝑥), and their 

acceptance is determined by the probability 𝛼 =
𝑝(𝑥∗)

𝑀(𝑞∗)
. This technique is extensively utilized in 

Bayesian inference. 

2.2. Introduction of Bayesian updating method 

Bayesian updating is a statistical method based on Bayes' theorem 𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 . Bayesian 

updating dynamically refines the probability distribution (posterior distribution) of unknown 

parameters by integrating prior knowledge with newly acquired data. Its core principle lies in 

iteratively updating the posterior distribution as additional data becomes available, thereby refining 

information through data assimilation. Fundamental concepts are detailed in  [13]. This study focuses 

on Bayesian model updating within the context of structural health monitoring (SHM) [14], 

examining the updating effectiveness for structural damage to explore data information quality issues 

inherent in Bayesian. 

3. Numerical example 

3.1. Modelling 

A statically indeterminate truss structure model is illustrated in Fig. 1, with the following global 

geometric parameters: 

Total length of the structure: 40 meters, with each member of the lower chord measuring 10 meters 

in length. 
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Structural height: 10 meters, where Nodes 7 and 8 are positioned 10 meters vertically above the 

lower chord, while Nodes 6 and 9 are located at a vertical distance of 5 meters from the lower chord. 

All members initially exhibit identical axial stiffness EA. 

Structural health monitoring revealed varying degrees of damage in Members 3, 7, and 11: 

Member 3 (Axial stiffness reduced to 0.9EA), Member 7 (Stiffness degraded to 0.7EA), Member 11 

(Stiffness decreased to 0.8EA). It is critical to note that the measured stiffness parameters exhibit 

random errors, which follow a normal distribution with a mean of 0 and standard deviation of 0.05. 

 

Figure 1: Truss structure 

To determine the specific damage outcomes of Members 3, 7, and 11, the structure will be 

subjected to loading under two predefined schemes: 

Loading Scheme 1: Apply vertical downward compressive forces of 100 kN at Nodes 7 and 8, as 

illustrated in Fig. 2. 

Loading Scheme 2: Building upon Scheme 1, introduce an additional vertical upward reaction 

force of 100 kN at Node 2, as shown in Fig. 3. 

 

Figure 2: Loading Scheme 1 

 

Figure 3: Loading Scheme 2 
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3.2. Analysis of effect 

3.2.1. Comparison of loading test and update results 

By integrating Bayesian updating with Monte Carlo methods, a numerical framework was 

implemented using the OpenSees-based model. Leveraging displacement data from Nodes 2, 3, 4, 7, 

and 8, 100,000 iterations of rejection sampling were performed on the truss structure under Loading 

Scheme 1, yielding the structural damage updating results depicted in Fig. 4, Fig. 5, Fig. 6.  

 

Figure 4: Loading Scheme 1 Member 3 update results 

 

Figure 5: Loading Scheme 1 Member 7 update results 
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Figure 6: Loading Scheme 1 Member 11 update results 

When compared to the preset prior, the structural damage updating effectiveness for Members 3 

and 7 demonstrates notable improvement, whereas the updating performance for Member 11 remains 

suboptimal. To address this limitation, Loading Scheme 2 was proposed to enhance the updating 

accuracy for Member 11. Employing the same methodology, 100,000 iterations of rejection sampling 

were conducted on the truss structure under Loading Scheme 2, yielding the structural damage 

updating results illustrated in Fig. 7, Fig. 8, Fig. 9. 

 

Figure 7: Loading Scheme 2 Member 3 update results 
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Figure 8: Loading Scheme 2 Member 7 update results 

 

Figure 9: Loading Scheme 2 Member 11 Update result 

3.2.2. Correlation analysis based on Bayesian update effect 

For Loading Scheme 1, a correlation analysis using the CORREL function was applied to randomly 

generated displacement samples and the stiffness of members requiring updating, yielding the results 

summarized in Table 1. 

From Table 1, it is evident that the displacement data from the five monitored nodes (2, 3, 4, 7, 8) 

exhibit weak correlations with the stiffness of Member 11, indicating that these nodes are insensitive 

to stiffness variations in Member 11 under the first loading scheme. Consequently, the updating 

results derived from these nodal displacements are highly unreliable. 

In contrast, for Loading Scheme 2, the same correlation analysis was performed, with results 

presented in Table 2. The analysis reveals a significant enhancement in correlations between the 

stiffness of Member 11 and displacements at Node 2 and Node 7, as visually corroborated by Fig. 10 

and Fig. 11. The scatter plots demonstrate a discernible linear relationship, confirming that these 
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nodes exhibit improved sensitivity to stiffness changes in Member 11 under the second loading 

scheme. 

 

Figure 10: Scatter plot of correlation between Node 2 displacement and Member 11 stiffness 

 

Figure 11: Scatter plot of correlation between Node 7 displacement and Member 11 stiffness 

Regarding information quality, under Loading Scheme 2, only the displacements of two highly 

correlated nodes (Nodes 2 and 7) were utilized for updating Member 11, and the results were 

compared against those derived from all five monitored nodes. As illustrated in Fig. 12 and Fig. 13, 

the updating effectiveness for Member 11 based on two-node displacement measurements shows 

negligible deviation from that achieved using five-node data. This demonstrates that selecting high-

correlation, high-quality information while discarding low-correlation, low-quality data can yield 

comparable or superior updating outcomes while significantly reducing measurement costs. 
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Figure 12: Updated results using only two node displacement information 

 

Figure 13: Updated results using five node displacement information 

Building upon these findings, Loading Scheme 2 was reapplied using displacement data from all 

nodes to update the truss structure. A correlation analysis via the CORREL function was conducted 

between randomly generated displacement samples and the stiffness of members requiring updating, 

with results summarized in Table 3. The analysis reveals that Members 2 and 6, as well as Members 

4 and 9, exhibit nearly identical correlations with the target members requiring updating. This implies 

that measuring either member from these pairs (e.g., Member 2 or 6) suffices to achieve optimal 

updating outcomes. Consequently, redundant data with equivalent updating effects can be 

systematically filtered out without compromising the accuracy of the damage identification process. 

and 6, as well as Members 4 and 9, exhibit nearly identical correlations with the target members 

requiring updating. This implies that measuring either member from these pairs (e.g., Member 2 or 

6) suffices to achieve optimal updating outcomes. Consequently, redundant data with equivalent 

updating effects can be systematically filtered out without compromising the accuracy of the damage 

identification process. 
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Table 1: Displacement correlation with member stiffness in Loading Scheme 1 

 
2 node 

displacement 

3 node 

displacement 

4 node 

displacement 

7 node 

displacement 

7 node 

displacement 

Member 3 

stiffness 
0.628088969 0.722069677 0.698049808 0.746788005 0.795126059 

Member 7 

stiffness 
0.688306001 0.605009954 0.633715605 0.571388767 0.501039883 

Member 11 

stiffness 
0.121842569 0.027540193 0.017353003 0.056849576 0.012176588 

Table 2: Displacement correlation with member stiffness in Loading Scheme 2 

 

 

2 node 

displacement 

3 node 

displacement 

4 node 

displacement 

7 node 

displacement 

7 node 

displacement 

Member 3 

stiffness 
0.512985952 0.787505813 0.770026268 0.782603527 0.843569661 

Member 7 

stiffness 
0.436379897 0.516970065 0.546745833 0.470553878 0.418094153 

Member11 

stiffness 
0.664143785 0.054895516 0.013222064 0.232682095 0.021967048 

Table 3: Correlation between all nodal displacements and member stiffness in Loading Scheme 2 

 
2 node 

displacement 
3 node 

displacement 
4 node 

displacement 
6 node 

displacement 
7 node 

displacement 
8 node 

displacement 
9 node 

displacement 

Member3 

stiffness 
0.505589092 0.785270155 0.767425942 0.505589092 0.782208245 0.840053111 0.767425942 

Member7 

stiffness 
0.438769104 0.509087001 0.53924605 0.438769104 0.461638883 0.412727228 0.53924605 

Member11 

stiffness 
0.654068619 0.067336409 0.000278479 0.654068619 0.242682032 0.007716687 0.000278479 

4. Conclusion 

Given the critical role of structural damage identification in engineering safety assessments, this study 

establishes a truss structure damage identification model based on a Monte Carlo-Bayesian updating 

framework, employing Bayesian probabilistic updating methods to elucidate the significant influence 

of information quality on the damage identification process. The primary contributions are 

summarized as follows: 

1) Inefficiency of Low-Quality Information: Under Loading Scheme 1, Bayesian probabilistic 

updating analysis reveals the inefficacy of low-quality information (weakly correlated data) 

in damage updating processes, highlighting its limited contribution to resolving structural 

uncertainties. 

2) Mechanism of Information Quality Impact: By contrasting probabilistic updating outcomes 

under Loading Scheme 2, the study systematically demonstrates how information quality 

governs identification accuracy. Findings indicate that prioritizing high-quality (strongly 

correlated) observational data significantly enhances damage identification efficiency, 

enabling higher-precision probabilistic updates under constrained resource conditions. 

3) Empirical Validation and Future Directions: Empirical results confirm that information 

quality optimization effectively improves identification performance. However, optimal load 

augmentation patterns and displacement sensor placement strategies for truss structures 
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remain subjects for further exploration. Subsequent research will focus on algorithmic 

refinement and extending applications to broader engineering scenarios. 
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