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Abstract: As a common aquatic product, the freshness of bass directly impacts food safety 

and consumer experience. Traditional detection methods are limited by strong subjectivity 

and high destructiveness, making it difficult to meet the rapid and non-destructive testing 

requirements of modern food industry. Electronic nose technology provides an efficient 

solution for bass freshness detection by capturing characteristic volatile organic compounds 

produced during spoilage. This study systematically reviews the core aspects of this 

technology: in sample preparation, it standardizes the processing of fish meat and odor 

collection procedures; in system construction, it introduces the specific response mechanisms 

of gas sensor arrays to spoilage markers; in data analysis, it compares the application 

differences between traditional pattern recognition methods and deep learning algorithms. 

The study also identifies current industrial bottlenecks and future development directions. 

This study provides technical references for freshness detection in the bass and other aquatic 

industries, while also exploring technological innovations in the field of food freshness 

detection. 
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1. Introduction 

As a high-protein, low-fat premium aquatic resource prized for its tender texture and rich nutritional 

value, bass has become a staple on consumer dining tables. However, its inherent physiological 

characteristics result in a short shelf life, making it highly susceptible to quality deterioration during 

storage, transportation, and sales due to microbial proliferation, enzymatic reactions, and lipid 

oxidation. This degradation manifests not only in softened flesh texture and flavor loss but also in the 

production of volatile odorous substances such as ammonia, hydrogen sulfide, and trimethylamine, 

directly impacting consumer experience[1]. More critically, pathogenic bacteria like Pseudomonas 

and Enterobacteriaceae proliferating during spoilage may cause foodborne illnesses, posing public 

health risks. Consequently, developing an efficient and accurate freshness detection method has 

become crucial for ensuring bass quality safety, optimizing supply chain management, and meeting 

consumer demands [2]. 

Current freshness detection of fish primarily relies on three conventional methods: sensory 

evaluation, chemical analysis, and microbial testing. However, these techniques increasingly reveal 

limitations in modern applications. Although sensory evaluation can intuitively reflect quality 

changes, its strong subjectivity and lack of quantitative standards hinder large-scale implementation. 
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Chemical analysis offers high precision but requires complex sample pretreatment processes, 

consuming several hours and predominantly involving destructive testing [3]. Microbial testing 

accurately characterizes spoilage levels but demands prolonged detection cycles of 24-48 hours with 

cumbersome operations, failing to meet real-time monitoring needs [4]. Notably, these methods 

commonly suffer from high equipment costs and technical barriers, making them inadequate to 

address the food industry's urgent demand for rapid, non-destructive, and automated detection [5]. 

Addressing the shortcomings of conventional methods, electronic nose (e-nose) technology has 

gained significant attention in food quality detection as a novel approach mimicking biological 

olfaction [6]. This technology employs integrated gas sensor arrays to capture volatile organic 

compounds (VOCs), combined with pattern recognition algorithms to construct dynamic response 

profiles [7], forming a complete detection chain from data acquisition to intelligent analysis. 

Compared with traditional methods, e-nose technology demonstrates three breakthrough advantages 

[2]: detection cycles can be reduced to minutes, meeting stringent timeliness requirements in 

industrial production lines; non-destructive gas sampling preserves sample integrity for re-

examination; standardized procedures and automated analysis significantly reduce human errors, with 

detection repeatability improving by 30%-40% compared to manual assessments. These 

characteristics endow it with unique potential in quality monitoring of fresh food supply chains [8], 

particularly showing promising application prospects in real-time cold chain logistics monitoring [9]. 

Still, in the field of bass freshness detection, the use of e-nose technology in practice is a 

requirement of methodical investigation in three main ways. First, in order to prepare the sample, 

standardised procedures for the processing of fish meat and the collection of odors, and to deal with 

the problems of volatile compound stability and microbial heterogeneity in different storage settings, 

are necessary [3,4]. Second, sensor array design and signal processing mechanisms need optimization 

to enhance selective responses to bass-specific spoilage markers (e.g., trimethylamine), leveraging 

advancements in MOS-based sensing materials [5] and dynamic response profiling algorithms [6]. 

Third, comparative analysis of pattern recognition methods—from traditional PCA/SVM frameworks 

to deep learning architectures like 1D-CNN-BiLSTM [7,10]—must reconcile algorithmic 

interpretability with industrial scalability. This study organizes its investigation as follows: Section 2 

establishes standardized methodologies for sample preparation and e-nose system configuration; 

Section 3 evaluates traditional versus deep learning approaches in data analysis; and Section 4 

proposes future directions integrating multi-source data fusion [11,9] to bridge laboratory research 

with industrial deployment. By structuring research across these pillars, this work aims to advance e-

nose technology toward robust, field-deployable solutions for aquatic product quality control [1,8]. 

2. Materials and principles 

Sample preparation constitutes a critical component in e-nose experiments, where its standardization 

level directly impacts the reliability and reproducibility of detection outcomes. As a general review 

paper, this section will systematically elaborate on the general methodology of e-nose technology in 

fish freshness detection from three aspects: sample handling principles, e-nose system configuration, 

and operational workflow. 

2.1. Sample preparation methods 

Sample preparation comprises two components: fish meat processing and odor collection, following 

standardized procedures as outlined below: 
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2.1.1. Fish meat processing protocol 

Sample Selection: Typically, live or freshly caught fish (e.g., bass, salmon) are selected to ensure 

consistent initial freshness. 

Pretreatment: Rinse the fish with clean water to remove scales and internal organs, avoiding 

contamination. Cut the fish meat into uniform blocks (e.g., 2 cm × 2 cm × 1 cm) to ensure sample 

homogeneity. 

Storage Conditions: Place processed samples in sterile containers under varying temperature 

conditions (e.g., 4°C refrigeration, 25°C ambient temperature) to simulate real-world storage 

environments. 

Sampling Time Points:  Collect samples at specific intervals (e.g., 0 h, 12 h, 24 h, 48 h) to 

observe dynamic freshness changes over time. 

2.1.2. Odor collection protocol 

Sampling Environment: Conduct odor collection in a sealed, contamination-free, and temperature-

controlled environment to minimize external interference. 

Sampling Preparation: Place fish samples in clean sampling vials, reserving sufficient headspace 

for gas accumulation. 

Gas Collection: Allow vials to equilibrate at 25°C for 10 minutes to ensure full volatile release. 

Insert the e-nose probe to collect headspace gases, typically for 2 minutes. 

Probe Cleaning: Clean the probe immediately after collection to prevent residual odor 

interference in subsequent experiments. 

2.2. E-nose system configuration and working principles 

The e-nose is an intelligent sensing device mimicking biological olfaction, widely applied in food 

freshness detection. Its core modules include a sensor array, gas delivery system, and signal 

processing unit. 

2.2.1. Sensor types and response mechanisms 

The e-nose employs a multi-sensor array design, typically comprising about 10 metal oxide 

semiconductor (MOS) sensors. Each sensor exhibits specific responses to distinct categories of 

volatile organic compounds (VOCs), operating through the following mechanisms: 

Gas Adsorption: VOC molecules interact with the sensor’s surface-sensitive material, triggering 

chemical reactions. 

Electrical Signal Conversion: Resistance changes caused by chemical reactions are converted 

into electrical signals. 

Signal Transmission: Preprocessed signals (e.g., baseline correction, noise reduction) are 

transmitted to the data analysis module. 

2.2.2.  Sensor application characteristics 

In fish freshness detection, e-nose sensors specifically respond to characteristic gases produced during 

spoilage (e.g., ammonia, hydrogen sulfide, trimethylamine). By analyzing response patterns of the 

sensor array, quantitative freshness evaluation and classification can be achieved. 

2.2.3. Signal processing and data analysis 

Post-signal acquisition, the e-nose system processes data through the following steps: 
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Preprocessing: Apply baseline correction, denoising, and normalization to raw signals to enhance 

data accuracy and comparability. 

Pattern Recognition: Utilize algorithms such as Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), or Support Vector Machines (SVM) for dimensionality reduction and 

classification, generating quantitative freshness assessment results. 

Theoretically guiding the use of e-nose technology as a means of measuring the number of fish 

that are fresh is provided by the systematic description of the generic approaches that is described in 

this section; however, the process of establishing the basis for technical developments and advances 

in related research fields is also being done. 

3. Data analysis methods 

In e-nose-based fish freshness detection, raw data generated by sensor arrays require processing and 

analysis through pattern recognition methods to extract meaningful information and achieve 

classification. This paper systematically reviews their applications in bass freshness detection from 

two perspectives: traditional pattern recognition methods and emerging deep learning approaches. 

3.1. Traditional pattern recognition methods 

In the data analysis workflow of e-nose systems, traditional pattern recognition methods provide 

foundational technical support for bass freshness detection through multi-dimensional feature 

extraction and modeling strategies. Principal Component Analysis , as a classical unsupervised 

dimensionality reduction method, extracts principal components from sensor response data via 

orthogonal transformation, effectively enabling high-dimensional data visualization and noise 

filtering. However, its linear transformation characteristics limit the representation of nonlinear 

interactions among volatile gases during bass spoilage. To address this, Partial Least Squares (PLS) 

Regression demonstrates higher applicability in quantitative prediction of bass storage time by 

establishing latent variable correlation models between sensor responses and biochemical indicators 

(e.g., TVB-N values, total viable counts). Linear Discriminant Analysis (LDA) constructs 

discriminant feature spaces for freshness level classification by maximizing inter-class dispersion 

through projection strategies, yet its classification performance is constrained by data normality 

assumptions and weak adaptability to nonlinear sensor responses. 

At the classification algorithm level, SVM leverage kernel function mapping to transform 

nonlinear data into high-dimensional separable spaces, showing strong advantages in handling 

complex response patterns caused by sensor cross-sensitivity. For instance, radial basis function 

kernels effectively capture synergistic variations in amine and sulfide concentrations during bass 

spoilage. The K-Nearest Neighbors algorithm implements classification based on sample spatial 

distance metrics, offering rapid deployment advantages in small-scale datasets, but its sensitivity to 

sensor drift noise may lead to ambiguous classification boundaries. Probabilistic models such as 

Naïve Bayes classifiers construct posterior probability models under feature independence 

assumptions, providing computational efficiency suitable for real-time e-nose detection. However, 

their neglect of sensor response correlations may weaken early spoilage recognition capabilities. 

To enhance model robustness, ensemble learning methods optimize system performance through 

collaborative decision-making by multiple base models. Random Forest algorithms mitigate single-

sensor failure risks using multi-decision-tree voting mechanisms, while their built-in feature 

importance evaluation assists in identifying key sensor units sensitive to bass spoilage. Artificial 

Neural Networks (ANN) simulate complex relationships between sensor responses and freshness 

indicators via multi-layer nonlinear mapping, though overfitting risks require attention—

regularization strategies can constrain model complexity, particularly with limited samples. Time-
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series feature extraction methods like Discrete Wavelet Transform decompose temporal features (e.g., 

slopes, peaks, decay rates) from dynamic sensor response curves, providing supplementary 

information reflecting spoilage progression. Current research trends focus on hybrid model 

construction, such as feeding PCA-reduced features into SVM classifiers or using PLS-extracted 

latent variables as ANN inputs. These fusion strategies balance computational efficiency and 

classification accuracy, offering optimized solutions for the engineering applications of e-nose 

systems. 

3.2.  Development and advantages of deep learning methods 

The introduction of deep learning methods is driving systematic paradigm shifts in e-nose data 

analysis. Targeting the time-series signal characteristics generated by e-nose sensors, one-

dimensional convolutional neural networks (1D-CNNs) enable automatic extraction of local response 

features through direct sliding mechanisms of temporal convolution kernels. This approach avoids 

dimensional distortion caused by two-dimensional reconstruction. Its core advantage lies in 

autonomously uncovering latent pattern features in data through multi-level nonlinear 

transformations, particularly suitable for gas detection scenarios with fixed response cycles.  

Scholars are becoming more aware that temporal dependency modeling is becoming a bigger topic 

of study because to the increasing number of studies that study complicated spoiling processes. By 

including gating mechanisms and using them in place of temporal evolution patterns of volatile 

compound concentrations, recurrent neural networks and their variants are able to effectively record 

these patterns. An example of Bidirectional Long Short-Term Memory Network (Bi-LSTM) uses 

dynamic updates of memory units to give systems the capacity to recognize important inflection 

points in response curves. For the purpose of monitoring the production cycles of distinctive 

metabolites during the spoiling of aquatic products, this capability is very helpful. 

Recent advancements in multi-sensor synergy analysis have spurred interactive modeling methods. 

By abstracting individual sensors as dynamic nodes in graph structures, graph convolutional networks 

(GCNs) establish spatial correlation models based on cross-sensitivity parameters. The fundamental 

breakthrough of these methods lies in revealing systemic response patterns undetectable through 

single-sensor analyses. However, the interpretability limitations of current deep learning approaches 

remain unresolved. Balancing data-driven feature discovery with physicochemical mechanism 

constraints has become a key challenge for enhancing algorithmic reliability. 

Traditional pattern recognition methods (PCA, LDA, SVM) have seen long-term applications in 

bass freshness detection due to their computational efficiency and mechanistic interpretability. Yet 

their linear assumptions struggle to adapt to the nonlinear response characteristics of sensor arrays 

toward complex VOCs. Deep learning approaches like 1D-CNNs overcome the limitations of manual 

dimensionality reduction in traditional methods by extracting time-varying sensitive features directly 

from raw signals through temporal convolution and hierarchical nonlinear transformations. 

Compared to the segmented regression strategies for TVB-N thresholds in shallow models, deep 

learning achieves end-to-end continuous modeling of biomarker concentrations during spoilage, 

significantly improving weak signal discrimination capabilities. While current applications still 

require balancing computational costs with model generalization performance, lightweight 

architectures incorporating physical constraints are emerging as promising solutions to overcome 

these bottlenecks. 

4. Conclusion 

This study gives a fuller technical study of bass newness detection by means of the method of 

systematic analysis of classic and deep learning methods of pattern recognition method. Traditional 



Proceedings	of	the	3rd	International	Conference	on	Mechatronics	and	Smart	Systems
DOI:	10.54254/2755-2721/2025.22546

38

 

 

method shows great performances in basic situation, whereas the deep learning method is more 

applicable to complicated situation. The deep learning technology in the future can also combine the 

traditional method with deep learning technology, so it can improve the accuracy and the efficiency 

of bass newness detection more effectively and efficiently. 
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