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Abstract: The increasing deployment of robotic systems in industrial applications has driven 

widespread use of two-link robots, valued for their high speed and precision. However, their 

inherent nonlinear dynamics and strong coupling effects present substantial challenges to 

achieving high-precision trajectory tracking. To address these issues, this paper proposes a 

feedforward–PID control strategy optimized using a hybrid Genetic Algorithm–Sequential 

Quadratic Programming (GA–SQP) approach. The proposed method combines the 

anticipatory capabilities of feedforward control with the corrective feedback of PID control, 

enabling automatic and efficient parameter tuning. Simulation results demonstrate that, in 

comparison to conventional PID control, the proposed approach enhances trajectory tracking 

accuracy by approximately 39.61%. Specifically, the GA–SQP-optimized controller reduces 

the Root Mean Square Error (RMSE) to 0.48mm for an Archimedean spiral trajectory, and 

further to 0.01mm for a Sine-like trajectory, confirming its adaptability across various 

trajectory profiles. Torque analysis further highlights the complementary interaction between 

feedforward and PID components, substantiating the method’s effectiveness. These results 

underscore the proposed strategy’s potential to significantly improve trajectory tracking 

accuracy and robustness for two-link robots, especially in complex dynamic environments. 

Keywords: Two-Link Robot Trajectory Tracking, Feedforward-PID Control, GA-SQP 

Hybrid Optimization, Nonlinear Dynamic Systems, Robot Control Parameter Optimization 

1. Introduction 

Robotic technology has become a key driver of innovation across various fields, including industrial 

manufacturing, healthcare, and exploration in extreme environments [1-4]. Among these applications, 

two-link robots are particularly significant in the industrial sector due to their simple design and large 

operational workspace. However, despite these advantages, two-link robots are characterized by 

inherently nonlinear dynamics and strong coupling effects, which present substantial challenges in 

control system design. The dynamic behavior of these robots is typically governed by second-order 

nonlinear differential equations, making accurate dynamic modeling and parameter identification 

essential for the development of reliable control frameworks [5,6]. 

Proportional–Integral–Derivative (PID) controllers are widely used in industrial applications 

because of their simplicity and cost-effectiveness [7,8]. However, their limitations become apparent 

when dealing with strongly coupled nonlinear systems. Comparative studies indicate that while PID 

control offers a fast response, the integration of state-feedback and feedforward methods results in 
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higher control accuracy. In contrast, standalone approaches, such as Linear Quadratic Regulator 

(LQR) control, often suffer from significant delays and steady-state errors [9]. 

Recent advancements in control strategies have led to notable improvements in robotic system 

performance. For instance, Shah et al. combined Computed Torque Control with PID control to 

effectively mitigate system nonlinearities [5], while Shao et al. developed a feedforward–PID scheme 

that reduced joint torque root mean square error (RMSE) by more than 60% compared to conventional 

methods [6]. In controller optimization, Fani et al. compared Particle Swarm Optimization (PSO), 

Genetic Algorithms (GA), and the Estimation of Distribution Algorithm (EDA) for tuning fractional-

order PID parameters [7]. Other notable innovations include Wu’s Fuzzy Fractional-Order Sliding 

Mode Control [10] and Darajat’s self-tuning sliding mode strategy [11], both of which improve 

system robustness and reduce steady-state errors. More recently, nature-inspired optimization 

methods, such as Golden Jackal Optimization, have been applied to enhance trajectory tracking 

accuracy and system resilience under varying environmental conditions [12]. 

To address the limitations of existing approaches, this paper proposes a feedforward-PID control 

strategy optimized through a GA-SQP hybrid optimization approach. The proposed strategy 

synergistically integrates the anticipatory nature of feedforward control with the robustness of PID 

control, enabling automatic parameter tuning and overcoming the constraints of traditional tuning 

methods. Experimental results validate the effectiveness of the proposed approach in improving 

trajectory tracking accuracy and enhancing system robustness. The structure of this paper is as follows: 

Section II presents the dynamic modeling; Section III describes the control system design; Section 

IV details the parameter optimization strategy and experimental verification; Section V concludes the 

paper and discusses future research directions. 

2. Establishment of the two-link robot model 

This study focuses on a planar two-link robotic manipulator operating within a vertical gravitational 

field. Link 1 (length 𝑙1 , mass 𝑚1) connects to the fixed base via Joint 1, rotating with angular 

displacement 𝑞1(𝑡) under torque 𝜏1. Link 2 (length 𝑙2, mass 𝑚2) connects to Link 1 via Joint 2, 

rotating with angular displacement 𝑞2(𝑡) under torque 𝜏2. The centers of mass are located at the 

midpoints of each link. The basic physical parameters of the system are summarized in Table 1. 

Table 1: Basic parameters of the robot 

Link 𝒍(m) 𝒎(kg) 𝒈(m/𝐬𝟐) 

Link1 1.0 10 9.81 

Link2 1.0 5 9.81 

 

A schematic diagram of the robot structure is illustrated in Figure 1. 

 

Figure 1: Schematic diagram of the two-link robot model 
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The dynamic model of the system is derived using the work-energy principle. By constructing the 

Lagrangian from the total kinetic energy 𝑇 and total potential energy 𝑉, and applying the Euler–

Lagrange equation, the standard dynamic equation of the system is obtained [13]: 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏 (1) 

Here, 𝑀(𝑞) is the inertia matrix, 𝐶(𝑞, 𝑞̇) is the Coriolis matrix, 𝐺(𝑞) is the gravity vector. The 

explicit forms of these matrices are given as follows: 

 𝑀(𝑞) =

[
 
 
 
 (
𝑚1

3
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 𝐺(𝑞) = [
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2
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] (4) 

The driving torque matrix is 𝜏 = [𝜏1 𝜏2]𝑇⁡,the angular velocity vector is 𝑞̇ = [𝑞̇1 𝑞̇2]
𝑇 , and 

the angular acceleration vector is 𝑞̈ = [𝑞̈1 𝑞̈2]
𝑇. 

3. Feedforward-PID control for the two-link robot model 

To achieve accurate control of the two-link robotic system, a classical PID controller is first designed. 

The PID control law is expressed as: 

 𝜏𝑖(𝑡) = 𝐾𝑝𝑒𝑖(𝑡) + 𝐾𝑖 ∫  
𝑡

0
𝑒𝑖(𝜏)𝑑𝜏 + 𝐾𝑑

𝑑𝑒𝑖(𝑡)

𝑑𝑡
 (5) 

where 𝑖 = 1,2⁡denotes the joint number; and 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 represent the proportional, integral, and 

derivative gains, respectively. These gains are tuned to ensure a desirable transient response. 

To mitigate noise amplification caused by the ideal derivative term, a first-order filter is introduced, 

resulting in a modified control law: 

 𝜏𝑖
′(𝑡) = 𝐾𝑝𝑒𝑖(𝑡) + 𝐾𝑖 ∫  

𝑡

0
𝑒𝑖(𝜏)𝑑𝜏 + 𝐾𝑑𝑧(𝑡) (6) 

where the filtered derivative signal 𝑧(𝑡) follows the differential equation: 

 𝑧̇(𝑡) = 𝑁[𝑒̇𝑖(𝑡) − 𝑧(𝑡)] (7) 

The PID parameters were optimized in Simulink, resulting in the following gains: for Joint 1, 

𝐾𝑝1 =5516, 𝐾𝑖1 =10236, 𝐾𝑑1 =602, with a noise filter coefficient 𝑁1 =184; for Joint 2, 𝐾𝑝2 =7207 

𝐾𝑖2 =62592, 𝐾𝑑2 =50, and 𝑁2 =18014. 

To enhance control performance, this paper proposes a composite feedforward-PID control 

strategy based on the dynamic model of the two-link robot. The control torque is decomposed into 

two components: the feedforward compensation term 𝜏𝑓𝑓(𝑡) and the filtered PID control term 𝜏𝑖
′(𝑡). 

Based on the dynamic formulation given in Equation (1), the total control torque 𝜏 is designed as: 

 𝜏 = 𝜏𝑓𝑓(𝑡) + 𝜏𝑖
′(𝑡) = 𝑀[𝑞𝑖,𝑑(𝑡)]𝑞̈𝑖,𝑑(𝑡) + 𝐶[𝑞𝑖,𝑑(𝑡), 𝑞̇𝑖,𝑑(𝑡)]𝑞̇𝑖,𝑑(𝑡) + 𝐺[𝑞𝑖,𝑑(𝑡)] + 𝜏𝑖

′(𝑡) (8) 
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To comprehensively evaluate the control performance, a multi-sine wave signal is designed as the 

desired joint trajectory [14]. The desired angular position 𝑞𝑖,𝑑(𝑡) for joint 𝑖 is defined as: 

 𝑞𝑖,𝑑(𝑡) = ∑ 𝐴𝑖𝑘
4

𝑘=1
sin(𝜔𝑖𝑘𝑡 + 𝜙𝑖𝑘) (9) 

where 𝐴𝑖𝑘, 𝜔𝑖𝑘, and 𝜙𝑖𝑘 represent the amplitude, angular frequency, and phase shift of the 𝑘-th sine 

component for joint 𝑖, respectively. Joint 1 employs sine components directly, while Joint 2 initially 

utilizes cosine components, which are then converted to sine form for uniform representation. The 

parameters for the excitation signal are listed in Table 2.  

Table 2: Parameters for the test signal 

𝒌 𝑨𝟏𝒌 𝝎𝟏𝒌(rad/s) 𝝓𝟏𝒌(rad) 𝑨𝟐𝒌 𝝎𝟐𝒌(rad/s) 𝝓𝟐𝒌(rad) 

1 0.3 1 
π

8
 0.4 1 

π

2
 

2 0.2 2 −
π

4
 0.25 2 −

π

5
 

3 0.15 3 
π

6
 0.15 3 

9π

14
 

4 0.1 4 −
𝜋

3
 0.1 5 −

π

8
 

 

The simulation results, shown in Figure 2, quantitatively demonstrate the effectiveness of the 

proposed control strategy. In particular, the feedforward–PID control substantially improves the 

tracking performance of Joint 1, reducing the RMSE from 6.39 × 10−3rad to 3.859 × 10−3rad, a 

39.61% improvement in accuracy. The feedforward compensation effectively suppresses the 

persistent oscillations observed in the PID-only case for Joint 1, while maintaining comparable 

tracking performance for Joint 2. These results demonstrate stable and accurate tracking, as well as 

effective anti-interference capabilities, validating the effectiveness of the feedforward-PID strategy 

for dynamic tracking in two-link robotic systems. 
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Figure 2: Response under multi-sine trajectory tracking with feedforward–PID control (a) Joint 1: 

position tracking and error comparison (b) Joint 2: position tracking and error comparison  
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4. Trajectory tracking based on hybrid GA-SQP optimized feedforward-PID control 

4.1. Design of feedforward-PID control method based on hybrid GA-SQP optimization 

To evaluate the dynamic performance of the proposed feedforward-PID controller, an Archimedean 

spiral trajectory is selected as the desired path for the robot’s end effector. The trajectory is discretized 

to ensure numerical stability during inverse kinematics computation. The resulting desired end-

effector positions at each sampling point 𝑡𝑘 are given by: 

 {
𝑥𝑑(𝑡𝑘) =

𝐴𝑡𝑘

𝑇
cos (

2π𝑛𝑡𝑘

𝑇
)

𝑦𝑑(𝑡𝑘) =
𝐴𝑡𝑘

𝑇
sin (

2π𝑛𝑡𝑘

𝑇
)

 (10) 

where 𝐴 = 0.7min(𝑙1 + 𝑙2, 1.4) , 𝑛 = 2 , 𝑇 = 10s , and 𝑡𝑘 = 𝑘
T

𝑁
(where 𝑘 = 0,1, … ,𝑁 ), with 𝑁 

representing the total number of discretized sampling points. 

Using the geometric relationships of a two-link planar manipulator, the forward kinematics 

equations are given by: 

 {
𝑥 = 𝑙1cos𝑞1 + 𝑙2cos(𝑞1 + 𝑞2)

𝑦 = 𝑙1sin𝑞1 + 𝑙2sin(𝑞1 + 𝑞2)
 (11) 

By applying the negative branch of the inverse kinematics solution for 𝑞2, the discrete desired 

joint angles corresponding to the desired end-effector positions (𝑥𝑑(𝑡𝑘), 𝑦𝑑(𝑡𝑘)) are computed as: 

 

{
 
 

 
 𝑞2𝑑(𝑡𝑘) = −arccos(

𝑥𝑑(𝑡𝑘)
2+𝑦𝑑(𝑡𝑘)

2−𝑙
1

2
−𝑙

2

2

2𝑙1𝑙2
)

,

𝑞1𝑑(𝑡𝑘) = arctan2(𝑦𝑑(𝑡𝑘), 𝑥𝑑(𝑡𝑘)) − arctan2 (𝑙2sin⁡ 𝑞2𝑑(𝑡𝑘), 𝑙1 + 𝑙2cos⁡ 𝑞2𝑑(𝑡𝑘))

 (12) 

Due to the periodicity of inverse trigonometric functions, angle discontinuities may occur at 2π. 

To address this, an angle unwrapping algorithm is applied to ensure smooth joint angle sequences, 

{𝑞̃𝑖𝑑(𝑡𝑘)}, as shown in Figure 3. To further suppress numerical noise introduced by finite differences 

and maintain smoothness across the entire trajectory, cubic spline interpolation is employed [15]. 

This technique generates smooth, continuous representations of the desired joint trajectories 𝑞𝑖,𝑑(𝑡), 
angular velocities 𝑞̇𝑖,𝑑(𝑡), and angular accelerations 𝑞̈𝑖,𝑑(𝑡). 
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Yes No

No

No Yes

 

Figure 3: Angle unwrapping flowchart 

Under the feedforward-PID control framework, the composite control torque 𝜏′(𝑡) is expressed 

as: 
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 𝜏′(𝑡) = 𝐾g𝜏𝑓𝑓(𝑡) + 𝜏𝑖(𝑡) (13) 

where 𝐾g is the feedforward gain matrix. The closed-loop dynamics of the two-link robotic system 

can be formulated in state-space representation as: 

 
𝑑

𝑑𝑡

[
 
 
 
 
 
 
 

𝑞1

𝑞2

𝑞̇1

𝑞̇2

∫  
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0
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∫  
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0
𝑒2(𝜎)𝑑𝜎]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝑞̇1

𝑞̇2

[𝑀(𝑞)−1 (𝜏′ − 𝐶(𝑞, 𝑞̇)𝑞̇ − 𝐺(𝑞))]
1

[𝑀(𝑞)−1 (𝜏′ − 𝐶(𝑞, 𝑞̇)𝑞̇ − 𝐺(𝑞))]
2

𝑒1

𝑒2 ]
 
 
 
 
 
 
 
 

 (14) 

Solving this system provides the actual joint trajectories 𝑞1(𝑡) and 𝑞2(𝑡). These joint positions 

are then substituted into the forward kinematics equation to compute the actual end-effector trajectory 

(𝑥, 𝑦), as defined in Equation (11). 

The parameter tuning of the controller is framed as a constrained optimization problem, where the 

objective is to minimize the tracking error of the end-effector trajectory over the planning horizon. 

The objective function is defined as: 

 min𝐽(𝜃) = ∫ ((𝑥𝑑(𝑡) − 𝑥(𝑡, 𝜃))
2
+ (𝑦𝑑(𝑡) − 𝑦(𝑡, 𝜃))

2
)

𝑇

0
d𝑡 (15) 

where 𝜃 = [𝐾𝑝1, 𝐾𝑖1, 𝐾𝑑1, 𝐾𝑝2, 𝐾𝑖2, 𝐾𝑑2, 𝐾g]  represents the vector of control parameters to be 

optimized. The actual end-effector trajectories 𝑥(𝑡, 𝜃) and 𝑦(𝑡, 𝜃) are derived from the system's 

nonlinear dynamics as functions of the parameter vector 𝜃. The optimization problem is constrained 

only by the lower and upper bounds for each parameter, as summarized in Table 3. 

Table 3: Parameter optimization range 

Parameter 𝑲𝒑𝟏 𝑲𝒊𝟏 𝑲𝒅𝟏 𝑲𝒑𝟐 𝑲𝒊𝟐 𝑲𝒅𝟐 𝑲𝐠 

Lower Bound 2000 0 150 4000 200 150 0 

Upper Bound 3000 10 250 5000 300 250 2 

 

Given the nonlinear nature of the objective function 𝐽(𝜃) and the presence of multiple local 

minima, a two-stage hybrid optimization strategy is adopted. This strategy combines the global search 

capability of the Genetic Algorithm (GA) [16] with the local refinement efficiency of the Sequential 

Quadratic Programming (SQP) algorithm [17]. This hybrid approach effectively mitigates the 

limitations associated with using a single optimization method. Figure 4 illustrates the overall 

trajectory tracking process, covering key stages from trajectory design to parameter optimization. 
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Figure 4: Overall trajectory tracking process 
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The first stage employs GA to explore the global solution space. A population of 100 individuals 

is initialized, each represented by a 7-dimensional vector 𝜃 subject to the constraints 𝑙𝑏 ≤ 𝜃 ≤ 𝑢𝑏. 

The evolutionary process proceeds through selection, crossover (with a probability of 0.8), mutation 

(with a probability of 0.1), and elitism for 200 generations, ultimately producing the best-performing 

individual 𝜃𝑔𝑎 with the corresponding objective value 𝐽(𝜃𝑔𝑎). 

In the second stage, the GA result is refined using the SQP algorithm through MATLAB's fmincon 

function. Starting from 𝜃𝑔𝑎  as the initial guess, SQP performs constrained local optimization by 

iteratively updating 𝜃 based on numerically computed gradients. The maximum number of iterations 

is set to 200. Upon convergence, the final optimized parameters 𝜃∗ and the minimized objective 

value 𝐽(𝜃∗) are obtained. 

4.2. Trajectory tracking performance and control effect analysis 

The controller parameters obtained through the GA-SQP hybrid optimization are as follows: For Joint 

1, 𝐾𝑝1 =2500, 𝐾𝑖1 =10, 𝐾𝑑1 =200; for Joint 2, 𝐾𝑝2 =4363.91, 𝐾𝑖2 =249.92, 𝐾𝑑2 =200; and the 

feedforward control gain 𝐾g =1.02. 

The end-effector trajectory tracking performance for the Archimedean spiral is shown in Figure 5. 

As illustrated in Figure 5(a), the actual trajectory closely follows the desired path, with a maximum 

pointwise error of only 2.74mm. The Root Mean Square Error (RMSE) over the entire trajectory 

duration is 0.48mm, indicating high tracking precision. To further evaluate the controller's 

perforamnce, robot configurations were captured at four characteristic time instances: 𝑇 = 3.6s, 𝑇 =
5.0s, 𝑇 = 8.0s, and 𝑇 = 10.0s. These configurations are overlaid on Figure 5(a), demonstrating 

consistent adherence to the planned path. 

Figure 5(b) shows the tracking error in the Cartesian 𝑥  and 𝑦  directions. A brief transient 

adjustment phase occurs at the beginning, followed by stabilized error behavior. The error magnitude 

exhibits periodic growth, which is positively correlated with the increasing radius of the spiral 

trajectory. This trend aligns with the expected geometric and dynamic characteristics of the spiral. 
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(a) (b) 

Figure 5: Archimedean spiral trajectory tracking results (a) desired vs. actual end-effector trajectory 

with robot snapshots (b) cartesian tracking error in the 𝑥 and 𝑦⁡directions 

The joint angle tracking performance is detailed in Figure 6. Figure 6(a) displays the tracking 

results for Joint 1, where the desired angle increases approximately linearly from 90° to 780°. An 

initial maximum tracking error of approximately 1.2° is observed, which stabilizes to within 0.04° 

after 0.4 seconds. Similarly, Figure 6(b) illustrates the tracking results for Joint 2, with its desired 

angle rising from -180° to -122°. The initial maximum error is approximately 0.158°, which stabilizes 

to within 0.007° after 0.3 seconds. These results confirm that Joint 2 achieves higher tracking 

precision than Joint 1, consistent with the previously reported end-effector error characteristics. 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/147/2025.22552 

95 



 

 

0 2 4 6 8 10
Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
 E

r
ro

r
 (°

)

0

100

200

300

400

500

600

700

800
Desired Angle

Actual Angle

Error

 A
n

g
le

 (°)

 0 2 4 6 8 10
Time (s)

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

-180

-120
 A

n
g

le
 (°)

-120

E
r
ro

r
 (°

)

Desired Angle

Actual Angle

Error

-170

-160

-150

-140

-130

 

(a) (b) 

Figure 6: Archimedean spiral joint angle tracking results (a) Joint 1: desired vs. actual angle and 

tracking error (b) Joint 2: desired vs. actual angle and tracking error 

To gain deeper insight into the operational mechanism and advantages of the feedforward–PID 

control strategy, a detailed analysis of the torque components and control performance was conducted. 

The results are presented in Figure 7. 
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Figure 7: Feedforward–PID torque component analysis and control performance (a) Joint 1: torque 

decomposition and tracking error(b) Joint 2: torque decomposition and tracking error 

Figures 7(a) and 7(b) illustrate the decomposition of the control torque into feedforward (𝜏𝑓𝑓(𝑡)) 

and PID feedback (𝜏𝑖(𝑡)) components for Joints 1 and 2, respectively. The feedforward torque rapidly 

approaches the desired torque profile, reflecting its ability to anticipate the system's dynamic demands. 

However, due to model uncertainties and external disturbances, perfect tracking with feedforward 

control alone is not achievable, highlighting its limitations in complex, nonlinear environments. 

The PID torque component, although smaller in magnitude, provides essential real-time correction 

by minimizing the output error through closed-loop feedback. This compensatory role is particularly 

critical in the presence of time-varying or unforeseen disturbances, demonstrating the complementary 

nature of the hybrid control scheme. 

Figures 7(a) and 7(b) also show the torque tracking error for Joints 1 and 2. After a brief transient 

phase (approximately 0.3 seconds), the torque error stabilizes at 0.026N·m for Joint 1 and 0.008N·m 

for Joint 2. These results confirm the synergistic effect of the feedforward–PID structure, where the 

predictive capability of the feedforward term is reinforced by the precision of PID feedback correction. 

To further assess the robustness and generalization capability of the proposed control scheme, a 

sine-like trajectory tracking experiment was conducted. The controller parameters used were as 

follows: for Joint 1, 𝐾𝑝1 = 2477.14, 𝐾𝑖1 = 9.92, 𝐾𝑑1 = 200.37; for Joint 2, 𝐾𝑝2 = 5424.23, 

𝐾𝑖2 =222.44, 𝐾𝑑2 =200.38; and the feedforward control gain 𝐾g =1.00. The results are shown in 

Figure 8. 
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As depicted in Figure 8(a), the actual trajectory closely follows the desired path, with a maximum 

pointwise error of just 0.04mm and an RMSE of 0.01mm over the full trajectory duration. Robot 

configurations were recorded at four representative time instances: 𝑇 = 3.6s, 𝑇 = 5.0s, 𝑇 = 8.0s, 
and 𝑇 = 10.0s. These configurations are overlaid on the plot to demonstrate accurate real-time 

trajectory execution. 

Figure 8(b) presents the Cartesian tracking errors in the x and y directions. The error magnitudes 

remain consistently low throughout the test, emphasizing the controller's robustness against trajectory 

variation and its strong adaptability across different motion scenarios. 

-1 -0.5 0 0.5X(m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y
(m

)

T=3.6s

T=5.0s

T=8.0s

T=10.0s
Desired Trajectory

Actual Trajectory

 0 2 4 6 8 10Time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

 E
r
ro

r
 (m

m
)

Total  Error

X-Error

Y-Error

 

(a) (b) 

Figure 8: Sine-like trajectory tracking results (a) desired vs. actual end-effector trajectory with robot 

snapshots (b) cartesian tracking error in the 𝑥 and 𝑦 directions 

5. Conclusion 

This study presents a hybrid feedforward–PID control strategy optimized via Genetic Algorithm–

Sequential Quadratic Programming (GA–SQP) for high-precision trajectory tracking in a two-link 

robotic system. By combining the predictive capabilities of feedforward control with the real-time 

error correction of PID feedback, the proposed method effectively addresses the challenges posed by 

nonlinear dynamics and strong joint coupling in multi-link manipulators. Experimental results 

demonstrate the superiority of the proposed approach over traditional PID control. For Joint 1, the 

root mean square error (RMSE) is reduced by approximately 39.61%. In the Archimedean spiral 

trajectory tracking task, the optimized controller achieves a maximum point error of just 2.74mm and 

an RMSE of 0.48mm. Furthermore, in a sine-like trajectory test with dynamic variations, the 

controller shows even greater precision, with a maximum point error of only 0.04mm and an RMSE 

of 0.01mm. These results highlight the controller's robustness and adaptability across diverse 

trajectory profiles. Torque component analysis reveals the complementary roles of the feedforward 

and PID control terms. The feedforward term approximates the required torque based on dynamic 

modeling, while the PID feedback compensates for real-time disturbances and model mismatches. 

This collaboration creates an effective "coarse-to-fine" control structure, overcoming the limitations 

of standalone PID controllers in nonlinear environments. In conclusion, the GA–SQP optimized 

feedforward–PID strategy offers an efficient and robust solution for precision trajectory tracking in 

robotic systems. Future work will explore its adaptability to more complex operational conditions, 

including varying payloads, external disturbances, and parameter uncertainties. Additionally, the 

framework will be extended to multi-degree-of-freedom manipulators to provide scalable and reliable 

control solutions for advanced industrial automation. 
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