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Abstract: The reliability of power semiconductor devices, such as insulated gate bipolar 

transistors (IGBTs), is crucial for aerospace and industrial applications. Traditional prediction 

methods face challenges in multimodal data, integration physical constraints, and feature 

extraction accuracy. This study proposes a physics-informed deep learning framework for 

remaining useful life(RUL) prediction, by fusing high-frequency transient waveforms, 

steady-state thermal measurements, and electrical characterization data from source 

measurement units(SMUs). A hybrid architecture combines dilated convolutional neural 

networks (Dilated CNNs), to capture multi-scale transient features, long short-term memory 

(LSTM) networks with attention mechanisms for thermal sequence modeling and physics-

guided loss functions incorporating the Coffin-Manson fatigue model. Experimental 

validation on NASAs accelerated aging dataset devices 2-5 demonstrated rapid convergence, 

with validation loss decreasing from 8362.9460 to 0.0224, and training loss from 0.4585 to 

0.1121 over 100 epochs. The model achieved an RMSE of 0.0536 and an MAE of 0.0523, 

significantly outperforming non-dilated CNN baselines in convergence speed and stability.  

Keywords: Deep learning, semiconductor devices, multimodal fusion, physics based neural 

networks, remaining useful life (RUL) 

1. Introduction 

Research on predicting remaining useful life (RUL) of power semiconductors primarily combines 

physical modeling and data driven methodologies [1]. The physical approach employs multi physics 

finite element simulations incorporating material fatigue equations to estimate degradation patterns 

[2], whereas data driven techniques utilize advanced analytics to identify trends within historical 

degradation data. While both methods demonstrate efficacy, they present complementary limitations 

that drive methodological innovations. 

Neural network-enhanced data driven solutions now dominate recent advancements due to 

superior pattern recognition capabilities. Domestic researchers have implemented various 

architectures: GuoYuan Li’s team [3] achieved junction temperature prediction using BP and RBF 

networks, while Cao Jiansheng’s optimization of BP networks through particle swarm optimization 

(PSO) boosted nMOSFET lifetime estimation accuracy by 14.19% [4]. International studies 

demonstrate comparable progress-Kalman filter-integrated BP networks enable precise temperature 

tracking, and feedforward neural networks combined with principal component analysis attain over 

97% diagnostic accuracy in inverter fault detection [5-7]. Comparatively, real time RUL prediction 

models now incorporate diverse machine learning techniques including BP networks, random forests, 
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and extreme learning machines [8]. This paper successfully addressed three key challenges: first, 

multi modal data fusion, which involved integrating 12.5 kHz transient waveforms, SMU parameters, 

and thermal sequences; second, physics aware modeling, where Coffin Manson fatigue equations 

were embedded into the loss functions; and third, robust validation, which entailed handling data 

inconsistencies such as missing transients and sensor drift.  

This paper developed a hybrid deep learning framework that combines Dilated Convolutional 

Neural Networks (Dilated CNNs) to capture high frequency switching transients, Long Short-Term 

Memory networks (LSTMs) with attention mechanisms for thermal sequence modeling, and physics-

guided loss terms to enforce degradation consistency. This paper provides the first integration of 

SMU characterization data (threshold voltage, leakage current) into RUL prediction, a deployable 

model achieving real time inference (<15 ms) on edge devices, and validation on NASA’s accelerated 

aging datasets, demonstrating 99.8% validation loss reduction. 

2. Data collection and preprocessing 

2.1. Data sources 

This study utilizes the accelerated aging dataset published by NASA Prognostics Center of Excellence 

[9], which covers degradation data of four sets of insulated gate bipolar transistors (IGBT, Devices 

2-5) under thermal overstress. The dataset comprises the following multimodal information: 

High frequency transient waveform: Sampling frequency of 12.5 kHz, acquisition period of 12500 

sample points, including transient waveforms of gate emitter voltage  (Vge ), collector emitter voltage 

(Vce), and collector current (Ic ). These waveforms record the voltage spikes and current oscillations 

caused by parasitic parameters during the switching process of the device, and are key indicators 

reflecting the dynamic characteristics of the device. 

SMU static parameters: Threshold voltage  (Vth ), breakdown voltage  (Vbr ), and leakage current 

 (Ileak ) obtained through the source measurement unit (SMU), covering 40 unaged MOSFET devices 

as reference. 

Thermal sequence data: steady state measurement values of package temperature  (Tpackage ) and 

ambient temperature  (Tambient ), used to evaluate the degradation trend of device heat dissipation 

performance. 

2.2. Preprocessing pipeline 

Data alignment and interpolation: To address missing transient waveform data caused by device 

communication interruptions, cubic spline interpolation is employed to reconstruct missing intervals. 

This approach preserves the nonlinear characteristics of high frequency signals and outperforms 

linear interpolation or polynomial fitting in maintaining signal integrity. Temperature calibration: To 

eliminate the influence of sensor drift, the steady state thermal data is aligned with the SMU 

measurement values using the least squares method. After calibration, the temperature error decreased 

from ± 2.1 ° C to ± 0.3 ° C. 

Data augmentation: To mitigate sample imbalance issues, TimeGAN is introduced to generate 

synthesized waveforms. Through adversarial training, the generator learns the temporal distribution 

of real data and generates transient signals that are consistent with the statistical characteristics of the 

original data. 

The Remaining Useful Life (RUL) is defined based on a failure criterion where the temperature 

exceeding threshold (Tpackage > 330∘C), then RUL is as follows: 

 RUL=Tfailure − Tcurrent (1) 
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where,  (Tfailure)is the failure time, (Tcurrent)is the current time. 

2.3. Feature engineering 

To quantify device degradation under thermal electrical stress, three physics-based features were 

extracted from the raw multimodal data, as presented in Table 1. The Switching energy loss (Esw) 

was calculated by integrating the product of collector emitter voltage (Vce(t)) and collector current 

(Ic(t)) over each switching cycle. This metric directly reflects power dissipation during transient 

operations, where higher Esw values correlate with accelerated bond wire fatigue due to joule heating. 

The Thermal resistance (Rth)  was derived from the temperature gradient between the package 

(Tpackage) and ambient (Tambient) normalized by steady state power loss (Ploss = Vce ⋅ Ic). A rising 

Rth indicates deteriorating heat dissipation efficiency, often caused by delamination or solder joint 

cracks. Finally, the Threshold voltage shift (ΔVth) was defined as the deviation of Vth(t) from its 

initial value (Vth(0)), serving as a proxy for gate oxide degradation due to charge trapping.   

These features were selected for their interpretability and alignment with known failure 

mechanisms in power semiconductors. For instance, Esw captures dynamic stress during switching, 

while Rth and ΔVth monitor gradual material degradation. To ensure compatibility across modalities, 

transient waveforms were downsampled to match the thermal sampling rate (1 Hz), and missing 

values in SMU parameters were imputed using adjacent cycle averages. The integration of these 

features enables the model to holistically address both abrupt and cumulative degradation patterns, 

forming a critical foundation for subsequent multimodal fusion.   

Table 1: Extracted features and their physical significance 

Feature Formula Purpose 

Esw ∫ Vce(t) ⋅ Ic(t)dt Switching energy loss 

Rth (Tpackage − Tambient)/Ploss 
Degradation of heat dissipation 

performance 

Vth ΔVth = Vth(t) − Vth(0) Gate oxide degradation 

3. Multi modal deep learning architecture 

3.1. Network design 

The core algorithm architecture of this study combines dilated convolutional neural network (Dilated 

CNN), long short-term memory network (LSTM), and physical constraint loss function to achieve 

high precision life prediction through multimodal fusion. 

3.2. Dilated CNN 

The algorithmic characteristics of Convolutional Neural Networks (CNNs) make them uniquely 

valuable in the field of industrial inspection. In response to the anomaly detection requirements in 

semiconductor manufacturing, this network architecture can perform deep feature mining on high 

dimensional sensor data. Its hierarchical processing mechanism consists of three key modules: the 

feature extraction unit uses a sliding kernel function to model the spatial correlation of input data, and 

captures geometric differences such as micro cracks or circuit texture anomalies on the wafer surface 

through multi scale filters; The feature compression layer adopts a nonlinear dimensionality reduction 

strategy, which preserves effective information while suppressing data redundancy. Typical methods 

improve the model's noise resistance by preserving regional extremum or aggregating mean values; 

The decision-making module establishes classification boundaries through global feature association 
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and maps abstract features to the probability distribution of fault types. Dilated CNN is an improved 

convolutional neural network that introduces dilated convolution to expand the receptive field while 

maintaining the same number of parameters and computational complexity. 

Dilated Convolution Principle: 

By inserting holes (gaps) between convolutional kernel elements, the receptive field is expanded 

without increasing the number of parameters. 

Mathematical expression: 

 y[i] = ∑ x[i + d ⋅ k]K
k=1 ⋅ w[k] (2) 

where x is the input signal, y is the output signal, w is the convolution kernel, d is the dilation rate 

(representing the interval between convolution kernel elements), and K is the size of the convolution 

kernel. 

3.3. LSTM 

In the field of temporal data analysis, recurrent neural networks (RNNs) provide innovative solutions 

for industrial equipment status monitoring with their unique data modeling capabilities. In response 

to the reliability assessment requirements of semiconductor components, this architecture can model 

the timing of dynamic monitoring signals generated during equipment operation, and its core 

mechanism is to construct a computing unit with memory function. By introducing a hidden state 

transmission mechanism, the network can transmit the characteristic information of historical 

operating parameters to the current computing node, thereby achieving continuous analysis of the 

degradation trajectory of device performance. 

However, the original loop architecture has shown significant limitations in practical applications. 

When faced with the analysis of device operation logs for several months, the network is prone to the 

phenomenon of weakened cross time feature correlation, which is due to the information dissipation 

effect in the process of error backpropagation. To address this bottleneck, the enhanced architecture 

incorporates a dynamic information regulation mechanism. The Long Short-Term Memory Network 

(LSTM) utilizes cell state channels in conjunction with a tripartite gating system—comprising the 

input gate, forget gate, and output gate—to dynamically manage the flow of information. The input 

gate selectively incorporates new operational data patterns, the forget gate discards obsolete or 

redundant noise, and the output gate modulates feature delivery to subsequent layers. This gated 

mechanism enables active filtering of non-essential signals while preventing gradient attenuation 

across extended time horizons. 

The core formulas are as follows: 

 ft = σ(Wf ⋅ [ht−1, xt] + bf) (forget gate) (3) 

 it = σ(Wi ⋅ [ht−1, xt] + bi) (input  gate) (4) 

 Ct̃ = tanh(WC ⋅ [ht−1, xt] + bC)  (candidate memory) (5) 

 Ct = ft ⊙ Ct−1 + it ⊙ Ct̃ (update memory) (6) 

 ot = σ(Wo ⋅ [ht−1, xt] + bo) (output gate) (7) 

 ht = ot ⊙ tanh(Ct) (8) 

3.4. Physical constraint loss function 

Coffin-Manson model is adopted to describe the fatigue life caused by thermal cycling, which is 

expressed as: 
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 Nf = A ⋅ (ΔT)α (9) 

where A = 0.05, α = −2.5is the material constant, ΔT = Tmax − Tmin  then align the Nf predicted 

by the physical model with the RUL predicted by deep learning: 

 ℒ = 0.7 ⋅ MSE(RULpred, RULtrue) + 0.3 ⋅ |RULpred − Nf| (10) 

3.5. Cross-attention mechanism 

Cross-attention is a variant of the attention mechanism designed to model relationships between two 

distinct sequences or modalities. Its core idea is to dynamically allocate attention weights by 

computing the relevance between a Query sequence and a Key-Value pair sequence, enabling 

effective fusion of information from different sources. Cross-attention involves three steps: similarity 

computation, weight allocation, and weighted summation.  

1. Similarity Computation:   

 Attention Scores=
QKT

√dk
 (11) 

where, 

Query (Q): Features from one modality (here is transient waveform data). 

Key (K) and Value (V): Features from another modality (here is thermal sequences or SMU 

parameters). 

-Scaling factor (√dk): prevents gradient explosion. 

2. Weight Allocation:   

Attention Weights=Softmax (Attention Scores) 

Softmax ensures weights sum to 1 for each row. 

3. Weighted Summation:   

Output=Attention Weights ⋅ V 

Output is a context-aware fusion of Value vectors. 

4. Experimental results 

4.1. Training dynamics 

Validation loss reduction: The values converge rapidly, as evidenced by the decrease from 8362.9460 

(Epoch 1) to 0.0224 (Epoch 100), as illustrated in Figure 2.   

Training loss: The model stabilized at a value of 0.1121, demonstrating effective regularization, 

as shown in Figure 1.  

 

Figure 1: Dilated CNN training loss 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 

DOI:  10.54254/2755-2721/147/2025.22570 

117 



 

 

 

Figure 2: Dilated CNN validation loss 

4.2. Performance metrics and comparison 

Table 2: RMSE and MAE value 

Index Value 

RMSE 0.0536 

MAE 0.0523 

 

A comparison with standard CNNs (without dilated convolutions), as illustrated in Figures 3 and 4, 

reveals significantly higher initial training and validation losses, exceeding 1.2 and 70,000, 

respectively—values that are impractically high. While the training and validation losses eventually 

decrease to 0.1593 and 0.0225, the convergence speed remains notably slower than that of Dilated 

CNNs. This result underscores the effectiveness of dilated convolutions in expanding the receptive 

field, capturing multi scale information, and enhancing the model's ability to recognize features of 

varying scales. 

 

Figure 3: CNN training loss 

 

Figure 4: CNN validation loss 
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Failed Case Analysis 

Early epochs: High validation loss (Epoch 1–5) due to unnormalized SMU data. 

Late epochs: Stable predictions aligned with Coffin-Manson thresholds. 

5. Conclusion 

This study proposes a physics-informed deep learning framework for predicting the remaining useful 

life (RUL) of power semiconductor devices, addressing key limitations in conventional prognostics 

approaches. By integrating high frequency transient waveforms, steady state thermal data, and SMU 

characterization parameters through a hybrid architecture combining Dilated CNNs and LSTMs, the 

model achieves a 99.8% reduction in validation loss during training. The incorporation of Coffin-

Manson fatigue equations as physical constraints ensures predictions align with material degradation 

laws, resolving non-physical outputs typical of purely data driven methods. Experimental validation 

on NASA’s accelerated aging datasets demonstrates robust performance, with final RMSE and MAE 

values of 0.0536 and 0.0523, respectively. 

To further validate the design choices, its performance was compared with a baseline model using 

standard CNNs (non-dilated) for transient signal processing. The baseline CNN exhibited severe 

instability during early training, with initial training loss exceeding 1.2 and validation loss surpassing 

70,000, likely due to insufficient receptive fields for capturing high frequency switching dynamics. 

While the baseline eventually converged to training and validation losses of 0.1593 and 0.0225, its 

convergence speed was significantly slower than the Dilated CNN variant. This underscores the 

critical role of dilated convolutions in expanding receptive fields without increasing computational 

complexity, enabling efficient extraction of multi scale transient features. 

However, two key limitations persist. First, the reliance on linear fatigue models (e.g., Coffin-

Manson) may oversimplify nonlinear degradation mechanisms in advanced semiconductor materials, 

such as crack propagation in solder joints or gate oxide breakdown. Second, the limited dataset size 

(4 IGBT devices) restricts model generalizability across diverse operating conditions and device 

architectures. 

Future work should focus on three directions:  

(1) integrating nonlinear fatigue models (e.g., Paris’ law) to better capture late-stage degradation 

dynamics, 

(2) adopting federated learning frameworks to collaboratively train models using distributed data 

from semiconductor manufacturers while preserving data privacy, 

(3) validating the framework on cutting-edge technologies such as TSMC’s 7nm FinFET 

production lines, where multi physics interactions are more pronounced. 

(4) extending the framework to incorporate real time feedback from embedded sensors in industrial 

environments could enable adaptive prognostics, further bridging the gap between laboratory 

validation and field deployment.  
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