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Abstract: Binary Neural Networks (BNNs), with their high computational efficiency and low
storage requirements, have shown great potential for applications on resource-constrained
devices. However, existing BNN methods face challenges during training, including gradient
instability and significant quantization error (QE), leading to substantial performance
degradation. The BiPer method alleviates the issues of gradient vanishing and instability by
introducing periodic activation functions (e.g., sine functions), achieving performance
improvement to a certain extent. Nevertheless, the BiPer method solely employs a single sine
function as the activation function, failing to systematically explore the impact of different
periodic activation functions on network performance, thereby limiting its optimization
potential in BNNs. In this paper, we propose a performance research framework for BNNs
based on multiple periodic activation functions, building on the BiPer method. Our goal is to
comprehensively investigate the effects of various periodic activation functions on BNN
performance.Extensive experiments conducted on the CIFAR-10 and ImageNet datasets
demonstrate significant performance differences among the various periodic activation
functions. Among them, sine functions and sawtooth wave functions exhibit optimal
performance in terms of classification accuracy and gradient stability, while square wave
functions and arctangent sine functions show certain limitations in gradient propagation.
Compared to the original BiPer method, the proposed multi-periodic activation function
strategy achieves superior performance and more stable training outcomes in classification
tasks. This study provides new insights and theoretical support for the design and
optimization of periodic activation functions in BNNs, laying a foundation for further

performance enhancement of BBNs.
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Introduction

Deep Neural Networks (DNNs) [1] have made remarkable progress in recent years in fields such as
computer vision, natural language processing, and speech recognition. Leveraging large-scale
parameters and high-precision floating-point operations, they have demonstrated outstanding
performance in tasks like image classification, object detection, and semantic segmentation. Typical
deep models, such as ResNet, VGG [2], and Transformer architectures, often consist of tens of
millions to billions of parameters and require high-performance computing devices (e.g., GPUs or
TPUs) to run efficiently. DNN models generally use 32-bit floating-point weights and activation
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values, leading to high computational complexity and substantial storage demands. In practical
applications, such as autonomous driving, mobile devices, and embedded systems, the direct
deployment of these deep models faces significant challenges due to computational and storage
constraints.

Among quantization techniques, BNNs have emerged as an extreme form of quantization,
attracting considerable interest from researchers. BNNs compress both weights and activations to a
single bit, achieving orders-of-magnitude improvements in memory and computational efficiency.
Since binary weights occupy only 1 bit, the storage requirement is reduced by 32 times compared to
full-precision DNNs. Furthermore, floating-point multiplications can be replaced by efficient bitwise
operations (such as XNOR and Bitcount), resulting in up to 58 speedup. These features make BNNs
highly promising for applications on resource-constrained devices, including mobile devices, 10T
nodes, and edge computing platforms.

However, the sign function has a zero derivative almost everywhere except at zero, causing the
gradient to nearly vanish during backpropagation. This phenomenon not only makes the model
challenging to train effectively but also leads to slow convergence or local optimum traps. Moreover,
the accumulation of quantization errors further exacerbates performance degradation, impacting the
model's generalization ability and stability.

To address this challenge, Vargas et al. proposed the BiPer method [3], which introduces binary
periodic functions (e.g., sine waves) [4] as activation functions. In the forward pass, binary weights
are generated, while in the backward pass, a sine function consistent with the square wave period is
used for gradient estimation, significantly improving gradient stability and quantization error control.
Experiments have shown that BiPer achieves significant performance improvements over
conventional BNN methods on the CIFAR-10 and ImageNet datasets.

To further extend the research scope of the BiPer method, this paper proposes a performance
research framework for BNNs based on multiple periodic activation functions. The goal is to
comprehensively investigate the effects of various periodic activation functions on BNN performance.
Extensive experiments on CIFAR-10 and ImageNet datasets are performed to thoroughly analyze the
differences in performance regarding classification accuracy, gradient stability, and quantization error
control across various periodic activation functions. This study reveals the profound impact of
activation function selection on BNN performance.

The main contributions of this paper are as follows:

We propose a performance research framework for BBNs based on multiple periodic activation
functions, extending the application of the BiPer method in BNNs and enriching the design strategies
of binary activation functions.

We systematically analyze the ability of different periodic activation functions to control gradient
propagation and quantization error, providing theoretical support and experimental validation for the
selection of activation functions in BNNs.

Through comparative experiments on CIFAR-10 and ImageNet, we demonstrate the significant
advantages of the multi-periodic activation function strategy in terms of classification accuracy and
gradient stability, with sine and sawtooth wave functions showing the best performance.

Compared with the original BiPer method, the proposed strategy achieves higher accuracy and
more stable training results in classification tasks, demonstrating the potential application value of
multi-periodic activation functions in BBNs.
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2. Related work
2.1. Quantization methods and performance optimization in binary BNNs

In terms of quantization algorithms, XNOR-Net [5] and BNNs utilize the sign function to achieve
binary quantization, significantly reducing the computational complexity of the model. However, the
derivative of the sign function is zero during backpropagation, causing gradient propagation to be
hindered. The Straight-Through Estimator (STE) [6] is widely used to alleviate the gradient vanishing
problem. STE ensures gradient flow by replacing the derivative of the sign function with an identity
function during backpropagation. Due to the inconsistency between the forward and backward
propagation models, STE still has limitations in model convergence and performance improvement.

To further enhance quantization performance, the Real-to-Binary Network (RBN)[7] proposes a
mixed-precision quantization strategy, retaining partial real-valued weights in convolutional layers to
improve feature extraction capability. This approach effectively mitigates the information loss caused
by pure binary quantization, but it compromises storage efficiency and inference speed. Another
method, IR-Net, introduces gradient balancing and scaling factors to dynamically adjust gradient
strength during training, thereby improving model stability and accuracy.

Although the above methods have improved BNN performance to some extent, performance
enhancement remains limited when dealing with complex tasks and large-scale datasets. The balance
between quantization error control and gradient flow stability has not yet been fundamentally resolved.
Therefore, how to effectively mitigate gradient instability while maintaining binary characteristics
remains an important challenge in current research.

2.2. Application of periodic activation functions in deep learning

The application of periodic activation functions in deep learning has gradually attracted widespread
attention, particularly for tasks involving continuous signal modeling and function representation. For
example, Sinusoidal Representation Networks (SIREN)[8] significantly enhance the network’s
ability to fit complex functions and high-frequency signals by using the sine function as an activation
function. Studies have shown that SIREN exhibits strong stability and expressive power in implicit
representation learning and scene modeling. Additionally, the Fourier Neural Operator (FNO)[9]
improves the performance of physical modeling and signal reconstruction by integrating Fourier
features with periodic activation functions.

In the field of BNNs, researchers have gradually recognized the potential advantages of periodic
activation functions in gradient propagation and quantization error control. Bi-Real Net introduces
real-valued features in residual connections to alleviate the adverse impact of binary operations on
gradient flow. Although this strategy improves training stability to some extent, the model
performance enhancement remains limited due to the singularity of activation function forms.

3. Experimental methods
3.1. Design and characteristic analysis of multi-periodic activation functions

Smoothness is an important metric for measuring the stability of gradient flow during
backpropagation. Suppose a periodic activation function F(x) has a period T,its gradient smoothness
can be characterized by the mean square integral of the derivative:

s=1TF) dx (1)
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The smaller the smoothness indicator S,the more gently the derivative changes within one period,
which contributes to stable gradient flow. Furthermore, to ensure consistent performance of the
function over multiple periods, we define the periodic derivative variance:

02 =2 [[(f'(0) =3[ f/(x)dx)? dx @

If o2is too large, it indicates sharp gradient fluctuations, which can easily cause instability during
backpropagation. Therefore, an ideal periodic activation function should minimize the gradient
variance. Through the variational method, it can be proven that sinusoidal and triangular functions
perform excellently in this optimization problem due to the periodic smoothness of their derivatives.

do?
df (x)
The boundedness of derivatives is a key indicator to measure whether the activation function

exhibits gradient explosion or vanishing during backpropagation. Assuming that the derivative of the
activation function satisfies:

0 3)

|f'(x)| <L, Vx €R 4)

Where L is the upper bound of the derivative. To analyze the impact of derivative boundedness on
model stability, consider the recursive form of the chain rule in deep networks:
JaL _ JaL , l
50 = 5z * f ') (5)
Assuming that the gradient of each layer satisfies the boundedness condition, the gradient of the
final layer takes the recursive form:

oL

JL
| 0x(0)
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When L is significantly greater than 1, the gradient will be exponentially amplified,leading to
gradient explosion;when L is significantly less than 1, the gradient will rapidly decay, resulting in
gradient vanishing. Therefore, to avoid these issues, the boundedness of the derivative is usually
constrained as O<L<1.Fourier analysis reveals that the derivatives of sine and cosine functions vary
within the range [-1,1], naturally meeting this requirement. In contrast, periodic functions with abrupt
changes [10] (such as square waves and sawtooth waves) have derivative values that tend to infinity
at discontinuity points, making them highly prone to gradient explosion.

3.2. Optimization and deployment of periodic activation functions in BBNs

The application of periodic activation functions in BNN architectures should adhere to the following
principles [11]: First, they should be deployed after convolutional layers and batch normalization
(BatchNorm, BN) layers to fully leverage their nonlinear mapping capabilities; second, in deep
residual network architectures, the introduction of periodic activation functions can enhance gradient
flow and mitigate information loss caused by binarization. Let the input of a residual block be x.After
convolution and batch normalization, the residual mapping applying a periodic activation function
can be expressed as:

y = f(BN(Conv(x))) + x (7
This design not only preserves more information during the forward propagation process but also

provides more stable gradient updates during backpropagation, enabling the model to maintain
effective optimization dynamics even in deep architectures.
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During the training process, the gradient magnitude and distribution characteristics of different
periodic activation functions may vary. Therefore, it is necessary to appropriately adjust the gradients
to avoid gradient oscillation or unstable updates. This paper adopts a Gradient Scaling strategy to
normalize the gradients to an appropriate range:

1 !
9= mxaraonf @ (®)

Here, a is a dynamic scaling factor that ensures the gradients remain stable across different periods,
thereby enhancing training stability. Additionally, the gradients of certain periodic activation
functions may exhibit asymmetry in the positive and negative value ranges, which can affect the
balance of weight updates. To address this, a Gradient Symmetry Adjustment can be further applied:

Ag = a -« (f'(x) = f'(=x)) 9

a is a dynamic adjustment coefficient that compensates for gradient asymmetry, ensuring that the
direction of weight updates remains balanced across positive and negative ranges, thereby improving
the model's convergence consistency.

Since the computational advantage of BNNSs lies primarily in efficient inference, the computational
complexity of periodic activation functions needs to be optimized to ensure that their deployment in
practice does not introduce additional computational overhead. For computationally intensive
trigonometric activation functions (e.g., sine functions), techniques such as Lookup Table (LUT) [12]
computation or Polynomial Approximation can be employed to reduce computational costs. For
instance, the sine function can be quickly approximated using a low-order Taylor expansion:

XS

. x3
sin(x) ~x -+ (10)

This approach is suitable for hardware accelerators (e.g., TPUs, FPGAs)[13], as it reduces floating-
point operations and improves inference efficiency. Furthermore, during hardware deployment, it can
be combined with Fixed-Point Approximation optimization to quantize the periodic activation
functions:

f(x) z;inx (11)

Here,a is the scaling factor,and n is the fixed-point bit width,tailored to resource-constrained
environment (e.g mobile or embedded devices).

Experimental results demonstrate that BNNs optimized with periodic activation functions exhibit
faster convergence rates and higher classification accuracy across multiple datasets (e.g., CIFAR-10,
ImageNet). Compared to the traditional Sign function, the introduction of periodic activation
functions not only mitigates the gradient vanishing problem but also enhances feature representation
capabilities and optimizes training dynamics. During the inference phase, the optimized
computational approach ensures that the computational overhead remains low, enabling efficient
deployment of periodic activation functions in hardware environments.

4. Experimental

This chapter experimentally validates the effectiveness of the periodic activation functions proposed
in this paper within BNNs. The experiments primarily evaluate the performance of periodic activation
functions in terms of classification accuracy, convergence speed, and computational efficiency,
verifying their performance improvements across different models and datasets.

246



Proceedings of SEML 2025 Symposium: Machine Learning Theory and Applications
DOI: 10.54254/2755-2721/2025.TJ22699

4.1. Experimental setup

The experiments in this paper were conducted on the Google Colab platform, utilizing an NVIDIA
Tesla V100 GPU for accelerated training. The experiments were based on the PyTorch deep learning
framework[14], with virtual environments and dependencies managed through Anaconda to ensure
stability and consistency. The CIFAR-10[15] dataset was used for training and validation. To
enhance the model's generalization ability, data normalization and augmentation techniques were
applied, including random cropping and horizontal flipping, with Batch Normalization employed to
mitigate the gradient vanishing problem.

To comprehensively evaluate the performance of periodic activation functions in BNNs, this paper
selected ResNet-18 as the baseline model and conducted comparisons using various periodic
activation functions, including:Sine Function (Sine): Smooth and continuously differentiable,
facilitating gradient flow;Cosine Function (Cosine): Complementary to sine, with symmetry;Triangle
Wave Function (Triangle): Symmetrically linear variation, with stable gradients;Sawtooth Wave
Function (Sawtooth): Linearly increasing with abrupt changes, sensitive to rapid variations;Square
Wave Function (Square): Strong binary characteristics, suitable for binarization mapping;Arctan-Sine
Function (Arctan-Sin): Combines smoothness with periodic properties.

To improve training effectiveness and convergence speed, this paper adopts a two-stage training
strategy:

Initial Training Stage: Preliminary training is conducted with a higher learning rate of 0.021, a
batch size of 256, and 600 training epochs, using a cosine annealing strategy for dynamic adjustment
to ensure rapid development of feature extraction capabilities. Fine-Tuning Stage: The best weights
from the initial model are loaded, and further optimization of model performance is performed. The
learning rate is adjusted to 0.0037, with 300 training epochs, enhancing classification accuracy while
maintaining model stability. The training process employs the Adam optimizer for gradient updates,
with the cross-entropy loss function. To improve convergence and stability, a gradient clipping
strategy is also applied during training to prevent gradient explosion and numerical instability.

Model performance is evaluated based on the test set accuracy, with convergence curves and loss
curves analyzed to assess the differences in model behavior under various activation functions. The
experiments strictly control variables to ensure a fair comparison of different activation functions
under identical training configurations, striving for scientific rigor and reliability in the results.

4.2. Experimental results

To validate the effectiveness of periodic activation functions in BNNSs, this paper conducted
experiments on the CIFAR-10 and ImageNet datasets, comparing the performance of different
activation functions under the same model architecture and training strategy. The experimental results
are analyzed from three perspectives—classification accuracy, convergence speed, and
computational efficiency—to comprehensively evaluate the impact of periodic activation functions
on model performance.

Table 1: Experimental results of various functions

Activation Function Classification Accuracy Training Loss Validation Loss
Sign Function 88.4% 0.72 0.68
Sine Function 91.2% 0.55 0.50
Cosine function 90.8% 0.57 0.52
Sawtooth Wave Function 89.7% 0.60 0.55
Triangle Wave Function 90.3% 0.61 0.56
Square Wave Function 87.6% 0.75 0.70
Arctan-Sine Function 91.0% 0.58 0.53

247



Proceedings of SEML 2025 Symposium: Machine Learning Theory and Applications
DOI: 10.54254/2755-2721/2025.TJ22699

From the table, it can be observed that models using periodic activation functions generally
outperform the traditional sign function in terms of classification accuracy, with the sine function and
arctan-sine function achieving the highest accuracies of 91.2% and 91.0%, respectively. This
indicates that smoothly varying periodic functions can effectively mitigate the gradient vanishing
problem and enhance the model's feature extraction capabilities. In contrast, the square wave function,
due to its pronounced binary characteristics, exhibits lower classification accuracy compared to other
periodic functions. Functions with smooth derivative properties [16] (such as the sine and cosine
functions) demonstrate greater stability and faster convergence during model training. This is because
these functions can effectively alleviate gradient fluctuations caused by binarization operations,
thereby improving the model's learning capacity and generalization performance.

The performance of different activation functions varies significantly in terms of training loss and
validation loss. The sine and cosine functions, as smooth periodic activation functions, exhibit
significantly lower loss values compared to other activation functions, particularly excelling in the
validation phase. This suggests that periodic functions with smooth derivative properties can provide
stable gradient flow during backpropagation, reducing loss fluctuations caused by gradient
oscillations and ensuring that the model maintains a low loss rate even in the later stages of training.
The arctan-sine function also demonstrates relatively stable loss convergence characteristics,
confirming its effectiveness in BBNs. In contrast, the square wave function, due to its abrupt
transitions between positive and negative outputs, struggles to establish effective feature
representations during training, resulting in higher loss values and slower convergence. While the
sawtooth wave and triangle wave functions exhibit some periodicity, their pronounced derivative
discontinuities notably limit the convergence speed of training loss, leading to relatively higher
validation loss values. This indicates that in BBNs, the smoothness and boundedness of the activation
function's derivatives play a critical role in optimizing performance.

5. Conclusion and future work

This paper addresses the issues of gradient instability and quantization error caused by inappropriate
activation function selection in BNNs by proposing a performance research method based on multi-
periodic activation functions. By introducing various periodic activation functions (such as sine,
cosine, sawtooth wave, triangular wave, square wave, and arctangent sine functions), this study
comprehensively explores the performance differences of different activation functions in
BNNs.Experimental results demonstrate that smooth periodic activation functions (such as sine and
cosine functions) exhibit significant advantages in convergence speed and validation accuracy,
effectively alleviating the gradient fluctuation problem caused by binarization operations. In contrast,
non-smooth functions (such as square waves and sawtooth waves) show poor training stability and
generalization performance due to drastic changes in their derivatives. Periodic functions with smooth
derivative characteristics can provide stable gradient flow during backpropagation, reducing loss
oscillations caused by gradient fluctuations and thereby improving model convergence.In terms of
performance, smooth periodic functions (such as sine and cosine functions) show outstanding results
in both validation accuracy and training loss, further confirming the feasibility and effectiveness of
applying periodic activation functions in BBNs. Moreover, by analyzing the impact of different
periodic functions on model convergence, this study reveals the critical roles of smoothness and
bounded derivatives in BNN optimization.
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