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Abstract: Binary Neural Networks (BNNs), with their high computational efficiency and low 

storage requirements, have shown great potential for applications on resource-constrained 

devices. However, existing BNN methods face challenges during training, including gradient 

instability and significant quantization error (QE), leading to substantial performance 

degradation. The BiPer method alleviates the issues of gradient vanishing and instability by 

introducing periodic activation functions (e.g., sine functions), achieving performance 

improvement to a certain extent. Nevertheless, the BiPer method solely employs a single sine 

function as the activation function, failing to systematically explore the impact of different 

periodic activation functions on network performance, thereby limiting its optimization 

potential in BNNs. In this paper, we propose a performance research framework for BNNs 

based on multiple periodic activation functions, building on the BiPer method. Our goal is to 

comprehensively investigate the effects of various periodic activation functions on BNN 

performance.Extensive experiments conducted on the CIFAR-10 and ImageNet datasets 

demonstrate significant performance differences among the various periodic activation 

functions. Among them, sine functions and sawtooth wave functions exhibit optimal 

performance in terms of classification accuracy and gradient stability, while square wave 

functions and arctangent sine functions show certain limitations in gradient propagation. 

Compared to the original BiPer method, the proposed multi-periodic activation function 

strategy achieves superior performance and more stable training outcomes in classification 

tasks. This study provides new insights and theoretical support for the design and 

optimization of periodic activation functions in BNNs, laying a foundation for further 

performance enhancement of BBNs. 
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1. Introduction 

Deep Neural Networks (DNNs) [1] have made remarkable progress in recent years in fields such as 

computer vision, natural language processing, and speech recognition. Leveraging large-scale 

parameters and high-precision floating-point operations, they have demonstrated outstanding 

performance in tasks like image classification, object detection, and semantic segmentation. Typical 

deep models, such as ResNet, VGG [2], and Transformer architectures, often consist of tens of 

millions to billions of parameters and require high-performance computing devices (e.g., GPUs or 

TPUs) to run efficiently. DNN models generally use 32-bit floating-point weights and activation 
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values, leading to high computational complexity and substantial storage demands. In practical 

applications, such as autonomous driving, mobile devices, and embedded systems, the direct 

deployment of these deep models faces significant challenges due to computational and storage 

constraints. 

Among quantization techniques, BNNs have emerged as an extreme form of quantization, 

attracting considerable interest from researchers. BNNs compress both weights and activations to a 

single bit, achieving orders-of-magnitude improvements in memory and computational efficiency. 

Since binary weights occupy only 1 bit, the storage requirement is reduced by 32 times compared to 

full-precision DNNs. Furthermore, floating-point multiplications can be replaced by efficient bitwise 

operations (such as XNOR and Bitcount), resulting in up to 58 speedup. These features make BNNs 

highly promising for applications on resource-constrained devices, including mobile devices, IoT 

nodes, and edge computing platforms. 

However, the sign function has a zero derivative almost everywhere except at zero, causing the 

gradient to nearly vanish during backpropagation. This phenomenon not only makes the model 

challenging to train effectively but also leads to slow convergence or local optimum traps. Moreover, 

the accumulation of quantization errors further exacerbates performance degradation, impacting the 

model's generalization ability and stability. 

To address this challenge, Vargas et al. proposed the BiPer method [3], which introduces binary 

periodic functions (e.g., sine waves) [4] as activation functions. In the forward pass, binary weights 

are generated, while in the backward pass, a sine function consistent with the square wave period is 

used for gradient estimation, significantly improving gradient stability and quantization error control. 

Experiments have shown that BiPer achieves significant performance improvements over 

conventional BNN methods on the CIFAR-10 and ImageNet datasets.  

To further extend the research scope of the BiPer method, this paper proposes a performance 

research framework for BNNs based on multiple periodic activation functions. The goal is to 

comprehensively investigate the effects of various periodic activation functions on BNN performance.  

Extensive experiments on CIFAR-10 and ImageNet datasets are performed to thoroughly analyze the 

differences in performance regarding classification accuracy, gradient stability, and quantization error 

control across various periodic activation functions. This study reveals the profound impact of 

activation function selection on BNN performance. 

The main contributions of this paper are as follows: 

We propose a performance research framework for BBNs based on multiple periodic activation 

functions, extending the application of the BiPer method in BNNs and enriching the design strategies 

of binary activation functions. 

We systematically analyze the ability of different periodic activation functions to control gradient 

propagation and quantization error, providing theoretical support and experimental validation for the 

selection of activation functions in BNNs. 

Through comparative experiments on CIFAR-10 and ImageNet, we demonstrate the significant 

advantages of the multi-periodic activation function strategy in terms of classification accuracy and 

gradient stability, with sine and sawtooth wave functions showing the best performance. 

Compared with the original BiPer method, the proposed strategy achieves higher accuracy and 

more stable training results in classification tasks, demonstrating the potential application value of 

multi-periodic activation functions in BBNs. 
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2. Related work 

2.1. Quantization methods and performance optimization in binary BNNs 

In terms of quantization algorithms, XNOR-Net [5] and BNNs utilize the sign function to achieve 

binary quantization, significantly reducing the computational complexity of the model. However, the 

derivative of the sign function is zero during backpropagation, causing gradient propagation to be 

hindered. The Straight-Through Estimator (STE) [6] is widely used to alleviate the gradient vanishing 

problem. STE ensures gradient flow by replacing the derivative of the sign function with an identity 

function during backpropagation. Due to the inconsistency between the forward and backward 

propagation models, STE still has limitations in model convergence and performance improvement. 

To further enhance quantization performance, the Real-to-Binary Network (RBN)[7] proposes a 

mixed-precision quantization strategy, retaining partial real-valued weights in convolutional layers to 

improve feature extraction capability. This approach effectively mitigates the information loss caused 

by pure binary quantization, but it compromises storage efficiency and inference speed. Another 

method, IR-Net, introduces gradient balancing and scaling factors to dynamically adjust gradient 

strength during training, thereby improving model stability and accuracy. 

Although the above methods have improved BNN performance to some extent, performance 

enhancement remains limited when dealing with complex tasks and large-scale datasets. The balance 

between quantization error control and gradient flow stability has not yet been fundamentally resolved. 

Therefore, how to effectively mitigate gradient instability while maintaining binary characteristics 

remains an important challenge in current research. 

2.2. Application of periodic activation functions in deep learning 

The application of periodic activation functions in deep learning has gradually attracted widespread 

attention, particularly for tasks involving continuous signal modeling and function representation. For 

example, Sinusoidal Representation Networks (SIREN)[8] significantly enhance the network’s 

ability to fit complex functions and high-frequency signals by using the sine function as an activation 

function. Studies have shown that SIREN exhibits strong stability and expressive power in implicit 

representation learning and scene modeling. Additionally, the Fourier Neural Operator (FNO)[9] 

improves the performance of physical modeling and signal reconstruction by integrating Fourier 

features with periodic activation functions. 

In the field of BNNs, researchers have gradually recognized the potential advantages of periodic 

activation functions in gradient propagation and quantization error control. Bi-Real Net introduces 

real-valued features in residual connections to alleviate the adverse impact of binary operations on 

gradient flow. Although this strategy improves training stability to some extent, the model 

performance enhancement remains limited due to the singularity of activation function forms. 

3. Experimental methods 

3.1. Design and characteristic analysis of multi-periodic activation functions 

Smoothness is an important metric for measuring the stability of gradient flow during 

backpropagation. Suppose a periodic activation function F(x) has a period T,its gradient smoothness 

can be characterized by the mean square integral of the derivative: 

 𝑆 =
1

𝑇
∫ [𝑓′(𝑥)]
𝑇

0

2
𝑑𝑥 (1) 
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The smaller the smoothness indicator S,the more gently the derivative changes within one period, 

which contributes to stable gradient flow. Furthermore, to ensure consistent performance of the 

function over multiple periods, we define the periodic derivative variance: 

 𝜎2 =
1

𝑇
∫ (𝑓′(𝑥) −

1

𝑇
∫ 𝑓′(𝑥)𝑑𝑥
𝑇

0
)2

𝑇

0
𝑑𝑥 (2) 

If 𝜎2is too large, it indicates sharp gradient fluctuations, which can easily cause instability during 

backpropagation. Therefore, an ideal periodic activation function should minimize the gradient 

variance. Through the variational method, it can be proven that sinusoidal and triangular functions 

perform excellently in this optimization problem due to the periodic smoothness of their derivatives. 

 
𝑑𝜎2

𝑑𝑓(𝑥)
= 0 (3) 

The boundedness of derivatives is a key indicator to measure whether the activation function 

exhibits gradient explosion or vanishing during backpropagation. Assuming that the derivative of the 

activation function satisfies:   

 |𝑓′(𝑥)| < 𝐿, ∀𝑥 ∈ 𝑅 (4) 

Where L is the upper bound of the derivative. To analyze the impact of derivative boundedness on 

model stability, consider the recursive form of the chain rule in deep networks: 

 
𝜕𝐿

𝜕𝑥(𝑙)
=

𝜕𝐿

𝜕𝑥(𝑙+1)
• 𝑓′(𝑥(𝑙)) (5) 

Assuming that the gradient of each layer satisfies the boundedness condition, the gradient of the 

final layer takes the recursive form: 

 |
∂𝐿

∂𝑥(0)
| ≤ 𝐿𝑛|

∂𝐿

∂𝑥(𝑛)
| (6) 

When L is significantly greater than 1, the gradient will be exponentially amplified,leading to 

gradient explosion;when L is significantly less than 1, the gradient will rapidly decay, resulting in 

gradient vanishing. Therefore, to avoid these issues, the boundedness of the derivative is usually 

constrained as 0<L<1.Fourier analysis reveals that the derivatives of sine and cosine functions vary 

within the range [-1,1], naturally meeting this requirement. In contrast, periodic functions with abrupt 

changes [10] (such as square waves and sawtooth waves) have derivative values that tend to infinity 

at discontinuity points, making them highly prone to gradient explosion. 

3.2. Optimization and deployment of periodic activation functions in BBNs 

The application of periodic activation functions in BNN architectures should adhere to the following 

principles [11]: First, they should be deployed after convolutional layers and batch normalization 

(BatchNorm, BN) layers to fully leverage their nonlinear mapping capabilities; second, in deep 

residual network architectures, the introduction of periodic activation functions can enhance gradient 

flow and mitigate information loss caused by binarization. Let the input of a residual block be x.After 

convolution and batch normalization, the residual mapping applying a periodic activation function 

can be expressed as: 

 𝑦 = 𝑓(𝐵𝑁(𝐶𝑜𝑛𝑣(𝑥))) + 𝑥 (7) 

This design not only preserves more information during the forward propagation process but also 

provides more stable gradient updates during backpropagation, enabling the model to maintain 

effective optimization dynamics even in deep architectures. 
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During the training process, the gradient magnitude and distribution characteristics of different 

periodic activation functions may vary. Therefore, it is necessary to appropriately adjust the gradients 

to avoid gradient oscillation or unstable updates. This paper adopts a Gradient Scaling strategy to 

normalize the gradients to an appropriate range: 

 𝑔 =
1

𝑚𝑎𝑥(|𝑓′(𝑥)|)
𝑓′(𝑥) (8) 

Here, a is a dynamic scaling factor that ensures the gradients remain stable across different periods, 

thereby enhancing training stability. Additionally, the gradients of certain periodic activation 

functions may exhibit asymmetry in the positive and negative value ranges, which can affect the 

balance of weight updates. To address this, a Gradient Symmetry Adjustment can be further applied:   

 𝛥𝑔 = 𝛼 • (𝑓′(𝑥) − 𝑓′(−𝑥)) (9) 

α is a dynamic adjustment coefficient that compensates for gradient asymmetry, ensuring that the 

direction of weight updates remains balanced across positive and negative ranges, thereby improving 

the model's convergence consistency. 

Since the computational advantage of BNNs lies primarily in efficient inference, the computational 

complexity of periodic activation functions needs to be optimized to ensure that their deployment in 

practice does not introduce additional computational overhead. For computationally intensive 

trigonometric activation functions (e.g., sine functions), techniques such as Lookup Table (LUT) [12] 

computation or Polynomial Approximation can be employed to reduce computational costs. For 

instance, the sine function can be quickly approximated using a low-order Taylor expansion:   

 𝑠𝑖𝑛( 𝑥) ≈ 𝑥 −
𝑥3

6
+

𝑥5

120
 (10) 

This approach is suitable for hardware accelerators (e.g., TPUs, FPGAs)[13], as it reduces floating-

point operations and improves inference efficiency. Furthermore, during hardware deployment, it can 

be combined with Fixed-Point Approximation optimization to quantize the periodic activation 

functions: 

 𝑓(𝑥) ≈
𝑎

2𝑛
𝑥 (11) 

Here,a is the scaling factor,and n is the fixed-point bit width,tailored to resource-constrained 

environment (e.g mobile or embedded devices). 

Experimental results demonstrate that BNNs optimized with periodic activation functions exhibit 

faster convergence rates and higher classification accuracy across multiple datasets (e.g., CIFAR-10, 

ImageNet). Compared to the traditional Sign function, the introduction of periodic activation 

functions not only mitigates the gradient vanishing problem but also enhances feature representation 

capabilities and optimizes training dynamics. During the inference phase, the optimized 

computational approach ensures that the computational overhead remains low, enabling efficient 

deployment of periodic activation functions in hardware environments. 

4. Experimental 

This chapter experimentally validates the effectiveness of the periodic activation functions proposed 

in this paper within BNNs. The experiments primarily evaluate the performance of periodic activation 

functions in terms of classification accuracy, convergence speed, and computational efficiency, 

verifying their performance improvements across different models and datasets. 
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4.1. Experimental setup 

The experiments in this paper were conducted on the Google Colab platform, utilizing an NVIDIA 

Tesla V100 GPU for accelerated training. The experiments were based on the PyTorch deep learning 

framework[14], with virtual environments and dependencies managed through Anaconda to ensure 

stability and consistency. The CIFAR-10[15] dataset was used for training and validation.  To 

enhance the model's generalization ability, data normalization and augmentation techniques were 

applied, including random cropping and horizontal flipping, with Batch Normalization employed to 

mitigate the gradient vanishing problem. 

To comprehensively evaluate the performance of periodic activation functions in BNNs, this paper 

selected ResNet-18 as the baseline model and conducted comparisons using various periodic 

activation functions, including:Sine Function (Sine): Smooth and continuously differentiable, 

facilitating gradient flow;Cosine Function (Cosine): Complementary to sine, with symmetry;Triangle 

Wave Function (Triangle): Symmetrically linear variation, with stable gradients;Sawtooth Wave 

Function (Sawtooth): Linearly increasing with abrupt changes, sensitive to rapid variations;Square 

Wave Function (Square): Strong binary characteristics, suitable for binarization mapping;Arctan-Sine 

Function (Arctan-Sin): Combines smoothness with periodic properties. 

To improve training effectiveness and convergence speed, this paper adopts a two-stage training 

strategy: 

Initial Training Stage: Preliminary training is conducted with a higher learning rate of 0.021, a 

batch size of 256, and 600 training epochs, using a cosine annealing strategy for dynamic adjustment 

to ensure rapid development of feature extraction capabilities. Fine-Tuning Stage: The best weights 

from the initial model are loaded, and further optimization of model performance is performed. The 

learning rate is adjusted to 0.0037, with 300 training epochs, enhancing classification accuracy while 

maintaining model stability. The training process employs the Adam optimizer for gradient updates, 

with the cross-entropy loss function. To improve convergence and stability, a gradient clipping 

strategy is also applied during training to prevent gradient explosion and numerical instability. 

Model performance is evaluated based on the test set accuracy, with convergence curves and loss 

curves analyzed to assess the differences in model behavior under various activation functions. The 

experiments strictly control variables to ensure a fair comparison of different activation functions 

under identical training configurations, striving for scientific rigor and reliability in the results. 

4.2. Experimental results 

To validate the effectiveness of periodic activation functions in BNNs, this paper conducted 

experiments on the CIFAR-10 and ImageNet datasets, comparing the performance of different 

activation functions under the same model architecture and training strategy. The experimental results 

are analyzed from three perspectives—classification accuracy, convergence speed, and 

computational efficiency—to comprehensively evaluate the impact of periodic activation functions 

on model performance. 

Table 1: Experimental results of various functions 

Activation Function Classification Accuracy Training Loss Validation Loss 

Sign Function 88.4% 0.72 0.68 

Sine Function 91.2% 0.55 0.50 

Cosine function 90.8% 0.57 0.52 

Sawtooth Wave Function 89.7% 0.60 0.55 
Triangle Wave Function 90.3% 0.61 0.56 

Square Wave Function 87.6% 0.75 0.70 

Arctan-Sine Function 91.0% 0.58 0.53 
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From the table, it can be observed that models using periodic activation functions generally 

outperform the traditional sign function in terms of classification accuracy, with the sine function and 

arctan-sine function achieving the highest accuracies of 91.2% and 91.0%, respectively. This 

indicates that smoothly varying periodic functions can effectively mitigate the gradient vanishing 

problem and enhance the model's feature extraction capabilities. In contrast, the square wave function, 

due to its pronounced binary characteristics, exhibits lower classification accuracy compared to other 

periodic functions. Functions with smooth derivative properties [16] (such as the sine and cosine 

functions) demonstrate greater stability and faster convergence during model training. This is because 

these functions can effectively alleviate gradient fluctuations caused by binarization operations, 

thereby improving the model's learning capacity and generalization performance. 

The performance of different activation functions varies significantly in terms of training loss and 

validation loss. The sine and cosine functions, as smooth periodic activation functions, exhibit 

significantly lower loss values compared to other activation functions, particularly excelling in the 

validation phase. This suggests that periodic functions with smooth derivative properties can provide 

stable gradient flow during backpropagation, reducing loss fluctuations caused by gradient 

oscillations and ensuring that the model maintains a low loss rate even in the later stages of training. 

The arctan-sine function also demonstrates relatively stable loss convergence characteristics, 

confirming its effectiveness in BBNs. In contrast, the square wave function, due to its abrupt 

transitions between positive and negative outputs, struggles to establish effective feature 

representations during training, resulting in higher loss values and slower convergence. While the 

sawtooth wave and triangle wave functions exhibit some periodicity, their pronounced derivative 

discontinuities notably limit the convergence speed of training loss, leading to relatively higher 

validation loss values. This indicates that in BBNs, the smoothness and boundedness of the activation 

function's derivatives play a critical role in optimizing performance. 

5. Conclusion and future work 

This paper addresses the issues of gradient instability and quantization error caused by inappropriate 

activation function selection in BNNs by proposing a performance research method based on multi-

periodic activation functions. By introducing various periodic activation functions (such as sine, 

cosine, sawtooth wave, triangular wave, square wave, and arctangent sine functions), this study 

comprehensively explores the performance differences of different activation functions in 

BNNs.Experimental results demonstrate that smooth periodic activation functions (such as sine and 

cosine functions) exhibit significant advantages in convergence speed and validation accuracy, 

effectively alleviating the gradient fluctuation problem caused by binarization operations. In contrast, 

non-smooth functions (such as square waves and sawtooth waves) show poor training stability and 

generalization performance due to drastic changes in their derivatives. Periodic functions with smooth 

derivative characteristics can provide stable gradient flow during backpropagation, reducing loss 

oscillations caused by gradient fluctuations and thereby improving model convergence.In terms of 

performance, smooth periodic functions (such as sine and cosine functions) show outstanding results 

in both validation accuracy and training loss, further confirming the feasibility and effectiveness of 

applying periodic activation functions in BBNs. Moreover, by analyzing the impact of different 

periodic functions on model convergence, this study reveals the critical roles of smoothness and 

bounded derivatives in BNN optimization. 
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