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Abstract: Traditional Action Chunking with Transformers (ACT) exhibit limitations in multi-

step precision manipulation tasks (e.g., battery insertion, nylon cable tie threading). Their 

single-stage attention mechanism struggles to capture cross-temporal dependencies, leading 

to significant deterioration of action coherence during critical phases in later task stages. 

Concurrently, the static fusion approach for multimodal features restricts adaptability in 

dynamic contact scenarios. To address these challenges, this paper proposes a dual-stage 

attention mechanism: A global self-attention layer establishes long-term dependencies in 

action sequences, while a conditional cross-attention layer dynamically filters critical 

contextual features (including latent variables and visual cues). These cascaded operations 

enable closed-loop optimization from global planning to local calibration. The hierarchical 

architecture integrates three functional modules: enhanced initial action sequence modeling 

at the encoder side, adaptive multimodal fusion through cross-module interfaces, and 

optimized end-effector control at the decoder side. Experimental results demonstrate that the 

improved model achieves 8% higher success rate in Cube Transfer tasks and 14% 

improvement in bimanual insertion tasks, with notable robustness in high-precision scenarios. 

Ablation studies confirm the necessity of hierarchical components: Removing encoder 

attention induces cumulative planning errors, disabling cross-module attention causes 

multimodal feature misalignment, and eliminating decoder attention exacerbates control 

instability. This research provides an extensible sequence modeling paradigm for complex 

manipulation tasks. 

Keywords: Multi-step precision tasks, Dual-stage, Hierarchical architecture, Attention 

mechanisms 

1. Introduction 

Fine manipulation tasks such as battery insertion, cable threading, and precision assembly constitute 

the backbone of industrial automation and service robotics. While imitation learning has emerged as 

a powerful paradigm for acquiring manipulation skills from human demonstrations [1], existing 

methods still face persistent challenges in long-horizon task planning and dynamic multimodal 

perception during contact-rich operations. The Action Chunking with Transformers (ACT) approach 

[2], which addresses compounding errors through sequence prediction, reveals two critical limitations: 

First, its single-stage attention mechanism struggles to model long-term dependencies across action 

sequences. This deficiency becomes particularly pronounced in tasks requiring multi-phase 

coordination, such as bimanual nylon cable tie threading, where the initial grasping posture must align 
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with the final insertion trajectory [3]. Second, the static fusion strategy for multimodal inputs (e.g., 

vision, force-torque) fails to adapt to environmental perturbations like sensor noise or occlusion, 

leading to cascading errors where millimeter-level deviations in early stages ultimately escalate into 

task failure [4]. 

Recent advancements in Transformer-based architectures, including RT-1 and BeT [5], have 

improved multi-task generalization but remain constrained by rigid attention patterns and fixed fusion 

strategies. For instance, ACT’s homogeneous self-attention layers overly emphasize local temporal 

correlations at the expense of global task logic, while conventional multimodal fusion methods rely 

on simplistic concatenation [6] or static weighting. These limitations prove particularly detrimental 

in precision tasks like micro-assembly, where success hinges on both centimeter-level trajectory 

planning and real-time integration of force feedback. 

To address these challenges, we propose a Hierarchical Dual-Stage Attention Mechanism for 

Complex Tasks (HiT-ACT), a novel architecture incorporating three key innovations: a task-

conditioned dual-stage attention mechanism that models long-term dependencies through global self-

attention while dynamically filtering critical features via conditional cross-attention; a hierarchical 

feature enhancement framework that iteratively refines action planning through encoder-decoder 

attention alignment; and latent variable-driven multimodal fusion, which extends the Conditional 

Variational Autoencoder (CVAE) framework [7] to dynamically adjust the weighting of visual and 

force-control signals. 

Experimental validation in simulated and real-world tasks demonstrates that HiT-ACT 

significantly outperforms existing methods in both precision and robustness. In high-precision 

manipulation scenarios, our approach effectively mitigates error propagation through hierarchical 

attention, while dynamic multimodal fusion enables adaptive responses to environmental variations 

[8]. Ablation studies further confirm the necessity of each architectural component. Detailed 

quantitative comparisons and task-specific analyses are presented in Section IV. 

2. Related works 

2.1. Action chunking and sequence modeling 

Action chunking techniques address long-horizon task planning by decomposing continuous 

operations into executable sub-sequences. Early studies employed sequence modeling methods based 

on Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [9] to 

maintain temporal coherence in action sequences. For instance, end-to-end policy optimization 

methods optimized motion planning through temporal difference learning. However, due to gradient 

vanishing issues in long-term sequence modeling, such approaches struggle to capture distant 

dependencies effectively. The Action Chunking with Transformers (ACT) model [2] first introduced 

the Transformer architecture into action chunking, leveraging self-attention mechanisms to capture 

local temporal correlations and achieving notable progress in tabletop manipulation tasks. 

Nevertheless, its experimental validation was limited to single-arm short-cycle tasks (e.g., block 

pushing, door opening) and did not address bimanual coordination or precision contact scenarios. 

Recent extensions, such as Temporal Ensemble methods, improved long-term consistency by 

expanding historical action windows, but their fixed-length attention mechanisms still face 

computational efficiency bottlenecks in high-dimensional operational spaces. 

2.2. Multimodal feature fusion 

Multimodal perception plays a critical role in robotic fine manipulation tasks, and researchers have 

proposed various fusion methods to enhance environmental understanding and task adaptability. 

Traditional approaches often adopt static fusion strategies. For example, Levine et al. [10] 
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implemented visual-force signal concatenation via end-to-end policy learning to optimize robotic 

control. However, such methods fail to adapt to sensor noise or dynamic environmental changes. To 

improve adaptive fusion, Lee et al. [11] proposed attention-based modality weighting adjustment, 

enabling dynamic allocation of importance between visual and tactile signals. Yet, this method still 

suffers from response latency under real-time contact variations. Recent advances, such as self-

supervised learning frameworks proposed by Gao et al. [12], employ latent variable modeling to align 

multimodal representations, significantly enhancing fusion robustness. Notably, the Conditional 

Variational Autoencoder (CVAE) framework demonstrates unique advantages in latent space fusion. 

Zhao et al. achieved visual-tactile representation alignment through variational inference, but their 

decoding process lacks task-specific conditional constraints. Additionally, recent studies like the 

Multimodal Transformer [13] utilize cross-modal attention to improve feature interaction, yet their 

high computational complexity limits applicability in high-frequency control tasks. In contrast, our 

work adopts a task-conditioned dynamic fusion strategy combined with hierarchical attention 

mechanisms, achieving a better balance between computational efficiency and environmental 

adaptability. 

2.3. Attention-based manipulation policies 

The application of Transformer architectures in robotic control has diversified rapidly. RT-1 achieves 

multi-task generalization through large-scale pretraining, but its dense attention mechanism results in 

quadratic computational cost growth with task complexity. Behavior Transformer (BeT) [5] enhances 

trajectory prediction accuracy via bidirectional attention but tends to generate physically infeasible 

solutions in tasks involving contact force constraints. The Dual-Attention method [14] decouples 

spatial and temporal attention for assembly tasks but fails to address feature propagation decay in 

multi-stage tasks. Recent studies like the Hierarchical Transformer employ a two-level architecture 

to separately handle macro task decomposition and micro-action generation, yet their rigid inter-layer 

interfaces struggle to adapt to dynamic environmental perturbations. In contrast, our proposed dual-

stage attention mechanism achieves superior balance between computational efficiency and task 

adaptability through global-local closed-loop optimization. 

3. Method 

3.1. Action chunking transformer framework overview 

The original ACT framework leverages transformers to learn human behaviors by utilizing their 

sequential data processing capabilities and long-range dependency modeling for imitation learning. 

Its core components include a visual encoder, action sequence encoder, and conditional decoder. The 

action sequence encoder encodes demonstrated action sequences and joint positions into a style 

variable z, capturing the distribution patterns of actions. The visual encoder extracts static visual 

features, while the conditional decoder synthesizes the style variable, static visual features, and joint 

positions to predict future action sequences. However, its single-stage attention mechanism struggles 

to model cross-timestep dependencies and dynamically adjust attention weights based on task 

conditions, which may reduce action coherence and limit performance in complex tasks. 

3.2. Dual-stage attention mechanism 

To address these limitations, HiT-ACT introduces a dual-stage attention mechanism, as illustrated in 

Figure 2, comprising two stages: a global planning layer and a local calibration layer. 

Global Self-Attention Layer: This sequence modeling module captures long-term dependencies 

between input elements. By computing attention weights between every pair of elements in the 
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sequence, it dynamically generates global contextual features. Formally, given an input sequence X

∈RL×D(where L is sequence length and D is the embedding dimension), the multi-head self-

attention mechanism produces the output: 

 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑡𝑡𝑛(𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑊𝑄𝑋)(𝑊𝐾𝑋)

𝑇

√𝐷
)𝑊𝑉𝑋 (1) 

Where WQ,WK,WV ∈  RD×D are learnable projection matrices. The global attention layer 

effectively associates distant elements (e.g., initial and terminal states), ensuring current decisions 

account for future behaviors. This prevents the encoder from being dominated by local features and 

neglecting long-term dependencies. In HiT-ACT, this layer is deployed in the initial stages of both 

the encoder and decoder to encode global task logic. 

Conditional Cross-Attention Layer: A dynamic feature filtering module that adaptively weights 

the input sequence X using external conditional signals C: 

 𝐺𝑜𝑛𝑑𝐴𝑡𝑡𝑛(𝑋, 𝐶) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
(𝑊𝐶𝐶)(𝑊𝐾𝑋)

𝑇

√𝐷
)𝑊𝑉𝑋 (2) 

where WC∈𝑅𝐷𝐶×D is a conditional projection matrix. This layer dynamically adjusts element-wise 

weights in X based on task conditions C , enabling closed-loop optimization from global planning to 

local calibration. 

By hierarchically combining global self-attention and conditional cross-attention layers, HiT-ACT 

enhances adaptability to complex manipulation tasks. The dual-stage mechanism is deployed at 

multiple positions, forming a multi-level feature refinement system. 

3.3. HiT-ACT hierarchical architecture design 

HiT-ACT’s hierarchical architecture, shown in Figure 1, achieves closed-loop optimization from 

global planning to local calibration through synergistic encoder, cross-module interface, and decoder 

designs. 

Encoder Global Planning Module: The encoder input includes action sequences, joint positions, 

and a CLS token. Zero-initialized latent variables serve as task conditions, aligned via linear 

projection layers. Global dependency modeling is performed through dual-stage attention processing. 

During early training stages, zero initialization avoids prior bias in latent variables, ensuring the 

encoder learns critical features directly from input sequences. This effectively associates sequence 

elements and enriches global context for subsequent encoding. 

Cross-Module Interface: Acts as a bridge between encoder and decoder, facilitating information 

transfer and interaction. It processes encoder outputs and latent variables generated from encoder 

outputs, incorporating dual-stage attention layers. Unlike traditional ACT models that merely pass 

latent variables, HiT-ACT’s interface fuses multi-level features and dynamically adjusts encoder 

output weights based on latent dependencies, improving generalization across tasks. 

Decoder Local Calibration Module: Refines preliminary decoding results from the transformer 

module. A dynamic weight generator produces time-varying weights based on the mean of decoder 

outputs, reflecting their importance at each timestep. These weights adjust the significance of latent 

variables, providing multi-level information to the decoder. The weighted latent variables and 

decoder outputs are fed into dual-stage attention layers. Since latent variables encapsulate action 

distribution patterns, they help the model contextualize current actions within the broader distribution, 

optimizing predictions to align with real-world action sequences. 

Through enhanced encoder modeling, adaptive cross-module fusion, and decoder optimization, 

HiT-ACT achieves closed-loop optimization from global planning to local calibration, addressing 

challenges in complex manipulation tasks while improving performance and robustness. 
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Figure 1: HiT-ACT splitting architecture 

4. Experiments 

4.1.  Experimental setup 

To validate the effectiveness of our proposed HiT-ACT model in bimanual fine manipulation tasks, 

we constructed two challenging simulation tasks in the MuJoCo environment: (1) Transfer Cube and 

(2) Bimanual Insertion. Both tasks involve dual-arm coordination and require high precision to 

evaluate the model’s adaptability and stability in complex operations. 

The simulation environment provides precise state feedback while incorporating real-world 

uncertainties. The initial positions of objects are randomized within a defined range to enhance the 

model’s adaptability to varying conditions. Additionally, uniform random perturbations are applied 

during experiments to test robustness against environmental changes. 

4.1.1.  Transfer cube 

In this task, the right arm must pick up a red cube from a tabletop and precisely place it into the 

gripper of the left arm. The clearance between the cube and the left gripper is approximately 1 cm, 

where minor errors may cause collisions or failure. This task evaluates fine motion planning and dual-

arm coordination. We measure the success rates of different methods across subtasks (picking, 

transferring, placing) to analyze robustness. 

4.1.2.  Bimanual insertion 

Here, the left and right arms grasp a socket and plug, respectively, and align them mid-air to complete 

the insertion. The clearance between the plug and socket is 5 mm, requiring high-precision alignment 

and force control to avoid failure or component damage. This task evaluates HiT-ACT’s execution 

capability in precision alignment scenarios. Small perturbations are applied to the initial positions of 

the socket and plug to simulate real-world randomness and test adaptability to environmental 

variations. 
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4.2. Baseline comparison 

To systematically analyze the core differences between HiT-ACT and prior imitation learning 

methods, we compare its architectural features with five baseline approaches. BC-ConvMLP, a 

widely used baseline, employs a convolutional neural network to process current image observations 

and directly concatenates visual features with joint position information for action prediction. BeT 

(Behavior Transformer), another Transformer-based architecture, differs from ACT in several key 

aspects: it does not utilize action chunking and instead predicts single-step actions directly from 

historical observations. Notably, BeT’s visual encoder is pretrained independently from the control 

network, resulting in unoptimized integration between perception and control modules. Furthermore, 

BeT discretizes the action space by predicting a categorical distribution over discrete bins and 

generates final actions by superimposing continuous offsets. RT-1, also based on the Transformer 

architecture, predicts single-step actions using a fixed-length historical observation window, with a 

similarly discretized action space and output format. In contrast, VINN adopts a non-parametric 

approach that requires real-time access to the demonstration dataset during testing: it extracts visual 

features from new observations using a pretrained ResNet, retrieves the k-nearest historical 

observation samples, and generates actions via a weighted k-nearest neighbors algorithm. While 

VINN’s visual feature extractor is based on a pretrained ResNet, it undergoes unsupervised fine-

tuning on demonstration data. Finally, the original ACT model, serving as the foundational 

framework for this study, employs a single-stage attention mechanism for action prediction, providing 

a critical reference for our design. Quantitative comparisons of success rates across these methods 

are presented in Table 1. 

4.3. Ablation studies 

To investigate the contributions of different components in HiT-ACT, we conduct three ablation 

experiments by removing encoder attention, cross-module attention, and decoder attention, 

respectively, and record their impact on task success rates (Table 2). Analysis reveals that removing 

encoder attention prevents the model from fully extracting global features, leading to degraded long-

term action planning and execution deviations. Removing cross-module attention reduces the fusion 

capability between latent variables and visual information, destabilizing multimodal information 

transmission and impairing adaptability to dynamic environments. Removing decoder attention 

compromises the final optimization of action sequences, weakening error correction in fine operations 

and resulting in unstable control during the late stages of tasks. Overall, the ablation results validate 

the importance of each module in HiT-ACT. Specifically, the three attention mechanisms collectively 

form a hierarchical information processing framework, enabling efficient modeling of long-term 

dependencies, optimized multimodal fusion, and enhanced control precision in complex tasks. These 

results further demonstrate that our method exhibits strong adaptability and robustness in fine 

manipulation tasks, offering new directions for future research in robotic intelligent control. 

Table 1: Comparison of HiT-ACT with baseline algorithms 

Method Cube Transfer Bimanual Insertion 

BC-ConvMLP 1% 1% 

BeT 27% 3% 

RT-1 2% 1% 

VINN 3% 1% 

ACT 86% 32% 

HiT-ACT(Ours) 94% 46% 
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Table 2: Ablation studies 

Method Cube Transfer Bimanual Insertion 

HiT-ACT 94% 46% 

Ours w/o Encoder 91% 40% 

Ours w/o Cross-Module 90% 33% 

Ours w/o Decoder 88% 35% 

5. Conclusions and future work 

This study improves upon the original ACT framework by addressing its limitations in long-horizon 

tasks and proposes HiT-ACT, an optimized architecture based on a dual-stage attention mechanism. 

By integrating global planning with local calibration, we enhance the model’s ability to model action 

sequences, enabling precise capture of long-term dependencies and dynamic adjustment under 

varying task conditions. Additionally, we introduce a cross-module information interaction 

mechanism to strengthen feature fusion capabilities, improving task coherence and generalization. 

Experimental results demonstrate that HiT-ACT achieves superior performance across multiple key 

metrics, not only increasing task success rates but also optimizing computational resource utilization, 

laying a solid foundation for broader applications. 

While this work achieves significant advancements, several directions warrant further exploration. 

Future efforts will focus on refining the algorithm’s architecture to enhance adaptability and 

robustness in complex environments. For instance, we aim to improve the conditional cross-attention 

layer to enable more efficient input sequence weighting and strengthen the model’s responsiveness 

to diverse task conditions. We also plan to optimize the dynamic weight generation mechanism, 

allowing the decoder to better contextualize the role of current actions within the broader task, thereby 

improving the rationality and stability of outputs. 

Furthermore, we will explore richer multimodal fusion strategies to enhance performance across 

diverse scenarios. For example, integrating visual, tactile, and auditory signals could equip the model 

with comprehensive environmental perception, improving its applicability in robotic interaction tasks. 

Additionally, we intend to incorporate self-supervised and transfer learning methods to boost training 

efficiency, enabling rapid adaptation to new tasks with limited data while reducing training costs and 

deployment overhead. 

In practical applications, we envision deploying HiT-ACT to high-dynamic environments such as 

smart manufacturing, autonomous driving, and robotic manipulation. For resource-constrained 

settings, we will further optimize computational efficiency to ensure stable performance with minimal 

overhead. Integrating reinforcement learning techniques could empower the model to autonomously 

adapt to dynamic environments, enhancing long-term decision-making capabilities. To improve 

interpretability, we will investigate visualization methods to transparently illustrate decision-making 

processes, ensuring trustworthiness in real-world deployments. 

In summary, this study not only successfully refines the ACT algorithm but also advances robotic 

imitation learning. As the technology evolves, we anticipate HiT-ACT will demonstrate exceptional 

performance in increasingly complex scenarios, offering novel insights and practical pathways for 

continued progress in related fields. 
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