
Proceedings	of	SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ22705

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

215

Research on Image Classification Based on Deep Learning 

Yiming Gou 

School of Computer and Network Security, Chengdu University of Technology, Chengdu, China 

gouyiming_email@163.com 

Abstract: This study aims to validate the performance differences between Convolutional 

Neural Networks and Transformer architectures in image classification. Based on their 

distinct feature extraction mechanisms, three algorithms—Resnet101, Resnet152, and Vision 

Transformer (ViT)—were trained and tested on the mini-Imagenet dataset. The results show 

that ViT achieved a top-1 accuracy of 92.79%, surpassing Resnet101's 90.98% and 

Resnet152's 91.71%. This largely demonstrates ViT's superiority over traditional 

convolutional neural networks in classification accuracy, as its unique Transformer 

architecture can more effectively capture global features and contextual information. 

Compared to the limitations of conventional CNN algorithms, ViT evidently exhibits 

enhanced performance in complex image classification tasks through its self-attention 

mechanism. 
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1. Introduction 

In the evolution of computer vision, image classification tasks have been closely intertwined with 

artificial intelligence algorithms. Traditional machine learning algorithms once dominated this field, 

but with rapid technological advancements, the emergence of deep learning algorithms has opened a 

more efficient path for image classification research. Compared to conventional machine learning 

approaches, deep learning algorithms exhibit significantly enhanced performance and potential, 

driving unprecedented breakthroughs in image classification tasks. 

The development of image classification algorithms has undergone continuous adjustments, 

transitioning from traditional machine learning to deep learning. In traditional machine learning, 

feature extraction and manual feature design were critical steps. Commonly used handcrafted features 

include Haar-like features (Haar)[1], Histogram of Oriented Gradients (HOG)[2], Scale-Invariant 

Feature Transform (SIFT)[3], and Local Binary Patterns (LBP)[4]. These features capture texture, 

shape, and edge information for subsequent classification tasks. For instance, Haar features, adept at 

capturing edges and linear patterns, were widely applied in face detection. HOG features, computed 

as histograms of oriented gradients over local image regions, effectively describe shape and texture 

characteristics and achieved notable success in pedestrian detection. After extracting handcrafted 

features, classifiers such as Support Vector Machines (SVM)[5], k-Nearest Neighbors (k-NN)[6], 

Decision Trees[7], and Random Forests [8] were typically employed for final category determination. 

However, with the rise of deep learning, Convolutional Neural Networks (CNNs)[9]and their 

improved variants have become mainstream in image classification. CNNs, based on multi-layered 
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neural architectures, automatically extract image features through convolutional layers, pooling 

layers, and fully connected layers. Unlike traditional approaches, CNNs eliminate manual feature 

engineering, significantly enhancing generalization and performing better on large datasets. 

Throughout CNN's evolution, architectures such as VGGNet (Visual Geometry Group Network)[10] 

and Residual Networks (ResNet)[11] have demonstrated exceptional efficacy. VGGNet improves 

performance by increasing network depth, utilizing small 3×3 convolutional kernels and strides to 

stack convolutional and pooling layers. ResNet addresses deep network degradation through residual 

learning and shortcut connections, enabling more effective training of deeper networks. 

As deep learning advances and researchers worldwide explore new methodologies, the Vision 

Transformer (ViT)[12] has introduced novel paradigms for image classification. ViT applies the 

Transformer architecture to image tasks by dividing images into fixed-size patches, treating them as 

sequential inputs. Leveraging its self-attention mechanism, ViT globally processes image information, 

enabling efficient feature extraction and scalability to large datasets. To further enhance 

generalization and performance, the Semantic Cluster Vision Transformer (SCViT)[13] was 

proposed. SCViT integrates convolutional operations with Transformers, employing conditional 

positional encoding and semantic fairness-clustered self-attention modules to improve local detail 

and semantic information capture, achieving more comprehensive and effective feature extraction 

than ViT. This study focuses on exploring the application of deep learning in image classification. 

2. Methodology 

2.1. Convolutional neural network 

A Convolutional Neural Network (CNN) is a deep learning model specifically designed for 

processing grid-structured data (e.g., images, audio), inspired by biological visual systems. The 

concept originated from Hubel[14] and Wiesel's studies in the late 1950s and early 1960s on cat visual 

cortex cells, which identified simple and complex cells responsive to localized regions (receptive 

fields) of visual stimuli. This discovery laid the foundation for the notions of local receptive fields 

and hierarchical feature extraction in CNNs. The core principle of CNNs involves automatically 

extracting features through convolutional operations, reducing data dimensionality via pooling, and 

ultimately performing classification or other tasks through fully connected layers. The foundational 

architecture is illustrated in Figure 1. 

 

Figure 1: Basic model of convolutional neural network 

The convolutional neural network comprises four critical steps: convolutional layer, activation 

function, pooling layer, and fully connected layer. 

First, a convolution operation is applied to the input image (using a 3-channel example). The 

formula is as follows: 

Output(i, j, c) = ∑ ∑ ∑ Kernel(m, n, k, c)K−1
n=0

K−1
m=0

3
k=1 × Input(iS + m − P, jS + n − P, k) + Bias(c) 

  (1) 
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Output(i,j,k) denotes the pixel value at position (i,j) in channel k of the output image. 

Kernel(m,n,k,c) represents the weight value of convolution kernel c at position (m,n) in channel k. 

Bias(c) is the bias term for convolution kernel c. S indicates the stride, and P denotes the padding.｡ 

Next, an activation function introduces nonlinearity to determine whether data is propagated to 

subsequent layers. Four common activation functions are: ReLU(Rectified Linear Unit, 

ReLU);Sigmoid;Tanh(Hyperbolic Tangent, Tanh); Softmax (converts outputs into probability 

distributions, often used for classification). 

A pooling operation (including max pooling and average pooling) is then applied, aiming to reduce 

data volume and enhance computational efficiency. Finally, the fully connected layer maps features 

to the output space for classification. The functional process is: 

 𝑦 = σ(𝑊𝑇𝑥 + 𝑏) (2) 

Here:x is the input vector with a dimension of n. W is the weight matrix with dimensions n×m. b 

is the bias vector with a dimension of m. σ denotes the activation function for introducing nonlinearity. 

y is the output vector with a dimension of m. 

2.2. ResNet (residual neural network) 

After introducing the fundamental convolutional neural network (CNN) architecture, researchers 

Kaiming He et al. from Microsoft Research proposed a novel deep neural network architecture in 

2015: the Residual Neural Network (ResNet). Building upon CNNs, ResNet innovatively introduces 

residual learning and shortcut connections to mitigate the vanishing gradient problem. A structural 

comparison between ResNet and the traditional VGG network is illustrated in Figure 2. 

 

Figure 2: Comparison of partial architectures: ResNet vs VGG 

The figure clearly demonstrates that ResNet incorporates residual learning blocks to alleviate 

gradient vanishing, enabling training of significantly deeper networks compared to traditional VGG. 

The core idea of residual learning is to train ultra-deep networks (e.g., ResNet-152) using skip 

connections. The implementation workflow is shown in Figure 3. 

 

Figure 3: Basic workflow of ResNet 

Similar to traditional CNNs, the ResNet model follows the basic forward propagation sequence: 

input → convolutional layers → activation functions → pooling → fully connected layers → 
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output. Here, "Stacked Layers" represent repeated sequences of convolutional layers, activation 

functions, and pooling layers, with the number of layers determined by training objectives. The 

innovation of ResNet lies in introducing residual mapping between input and output, rather than direct 

mapping, by incorporating skip connections at each stage. For a single residual block, the output can 

be expressed as: 

 𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙,𝑊𝑙) (3) 

where xl is the input to the l layer, F(xl,Wl) denotes the residual mapping (typically composed of 

convolutional layers, batch normalization layers, and activation functions), and xl+1 represents the 

output of the l+1 layer.  

For multiple residual blocks, this can be generalized as: 

 𝑥𝐿 = 𝑥𝑙 + ∑ 𝐹(𝑥𝑖,𝑊𝑖)
𝐿−1
𝑖=𝑙  (4) 

The ResNet algorithm excels in image recognition and classification, enabling the learning of 

complex, high-level features from input images. Its depth allows the model to extract highly abstract 

and nuanced features. However, ResNet's convolutional operations primarily focus on local feature 

extraction, with relatively limited capability to capture global features. This limitation motivated the 

development of the Vision Transformer (ViT) algorithm. 

2.3. Vision transformer (ViT) algorithm 

As previously mentioned, convolutional neural networks (CNNs) have achieved significant practical 

success in computer vision. However, their inherent focus on local features imposes limitations in 

image recognition and classification. Concurrently, the Transformer architecture (Figure 4) achieved 

groundbreaking advancements in natural language processing (NLP), prompting researchers to 

explore its application in computer vision. In 2020, the Vision Transformer (ViT) was introduced, 

breathing new life into image classification tasks. 

 

Figure 4: Basic framework of transformer 

The ViT algorithm primarily comprises four components: patch module, positional encoding, 

multi-head attention structure, and multilayer perceptron (MLP) (Figure 5). These components are 

elaborated below: 
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Figure 5: Workflow of the ViT framework 

2.3.1. Patch module 

In this module, the input image is partitioned into fixed-size image patches, which are linearly 

embedded into a high-dimensional space. The embedding formula is: 

 E = Linear(X) (5) 

where Linear denotes a linear transformation mapping each patch to an embedding dimension D, and 

E represents the sequence of embedded vectors. 

2.3.2. Positional encoding 

This component assigns positional information to each image patch by incorporating it into the 

Embedded Patches, enabling the model to leverage spatial relationships between patches. The 

formula is: 

 𝐸pos = 𝐸 + 𝑃 (6) 

where P is the positional encoding matrix, which can be generated using various encoding methods. 

2.3.3. Multi-head attention 

This module employs a multi-head attention mechanism to project inputs linearly into multiple feature 

subspaces. Parallel processing via independent attention heads (Figure 6) allows the model to attend 

to different positions in the input sequence simultaneously, capturing richer information. The vectors 

are then concatenated and mapped to the final output. 

 

Figure 6: Multi-Head Attention Mechanism 

The entire process can be expressed as: 

 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜 (7) 
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Where Q=XWQ, K=XWK, V=XWV,headi = Attention(QWi
Q, KWi

K, VWi
V) 

 Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾⊤

√𝑑𝑘
)𝑉 (8) 

2.3.4. Multilayer perceptron (MLP) 

The MLP, functionally equivalent to a feedforward neural network (FNN), applies nonlinear 

transformations to the embedded vectors at each position, enhancing the model’s expressive power. 

The process is formulated as: 

 MLP(𝑥) = GELU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (9) 

where W1 and W2 are weight matrices, b1 and b2 are bias vectors, and GELU denotes the Gaussian 

Error Linear Unit activation function. 

3. Experiments 

To validate the performance evaluations of the aforementioned algorithms, experiments were 

conducted on a public dataset. This section details the dataset description and experimental parameter 

settings, followed by a comprehensive comparison between a CNN-based network model and a 

Transformer-based (ViT) neural network. 

3.1. Dataset description 

To evaluate the performance of the two algorithms, the mini-ImageNet dataset was employed. 

Compared to the traditional CIFAR-10 dataset, mini-ImageNet is more complex yet significantly 

smaller than the full ImageNet dataset, making it ideal for model training, evaluation, and 

experimental research. 

The original mini-ImageNet dataset contains 100 classes with 60,000 RGB images, each sized 

84×84. For this experiment, after data filtering and adjustments, the dataset was refined to include 99 

distinct object classes and 60,000 images, each resized to 224×224 pixels. The dataset covers a broad 

range of image contents with diverse categories. 

3.2. Experimental setup 

Prior to experimentation, the dataset was partitioned into training and test sets. 75% of the full dataset 

was allocated for training, and 25% for testing. Within the training set, 60% was used for training and 

15% for validation. During image preprocessing, all images were resized to 224×224 pixels for 

consistency. In the training phase, Total training epochs: 200,Batch size: 32,Optimizer: Momentum 

SGD[15] (initial momentum: 0.9, weight decay: 0.0005),Learning rate: Initialized to 0.01, with a 

minimum learning rate of 0.0001 (1% of the initial rate), following a cosine annealing schedule[16]. 

Checkpoints (including weights, training loss, and accuracy) were saved every 10 epochs. Data 

loading utilized multi-threading with num_workers=4. All experiments were executed on an NVIDIA 

RTX 4090 GPU with CUDA 11.3 and PyTorch 1.1.0. During validation, the evaluteTop1_5 function 

was invoked to compute evaluation metrics: Top-1 accuracy: The proportion of predictions where the 

single most probable class matches the ground truth label. Top-5 accuracy: The proportion of 

predictions where the ground truth label is among the top five most probable classes. Recall and 

precision were also calculated to assess model performance. 
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3.3. Experimental result evaluation and analysis 

To validate the performance of the algorithms discussed in this paper and compare the effectiveness 

of convolutional neural network (CNN) architectures versus Transformer architectures in image 

recognition, ResNet101[17], ResNet152[18], and ViT were employed for image classification tasks 

on the modified mini-ImageNet dataset. 

Table 1: Classification results of three methods on the mini-ImageNet dataset 

 Algorithm 
top-1 

accuracy 

top-5 

accuracy 
mean Recall 

mean 

Precision 

CNN 
Resnet101 90.98% 98.00% 90.98% 91.10% 

Resnet152 91.71% 98.07% 91.71% 91.81% 

Transformer ViT 92.79% 98.71% 92.79% 92.89% 

 

When comparing the training-validation accuracies of ResNet101, ResNet152, and ViT, 

ResNet101 achieved a top-1 accuracy of 90.98%, ResNet152 attained 91.71%, and ViT reached 

92.79%, indicating that ViT exhibits the highest classification accuracy among the three algorithms. 

The results demonstrate that both ResNet101 and ResNet152 are deep CNNs based on residual 

networks, differing primarily in layer depth. The former has fewer layers than the latter. While 

residual connections mitigate the vanishing gradient problem in CNNs, extremely deep networks still 

face challenges such as training difficulty and overfitting, which degrade validation performance. 

Additionally, their local feature extraction approach may neglect certain low-level features, leading 

to the loss of effective discriminative information. 

In contrast, ViT leverages the Transformer architecture to better capture global features and 

contextual information in images, resulting in superior classification accuracy. Its unique self-

attention mechanism enables the model to consider relationships between all pixels during processing, 

allowing it to learn richer feature representations. Consequently, ViT achieves the highest accuracy 

among the three algorithms, primarily due to its ability to efficiently capture global features and 

contextual information, as well as its improved data utilization efficiency when trained on large-scale 

datasets. 

The classification accuracies for specific object categories are partially listed below: 

Table 2: Partial classification results by category 

Type 

Resnet 

101 

accuracy 

/ % 

Resnet 

152 

accuracy 

/ % 

ViT 

accuracy 

/ % 

Type 

Resnet 

101 

accuracy 

/ % 

Resnet 

152 

accuracy 

/ % 

ViT 

accuracy 

/ % 

Ant 81 84 82 oboe 81 84 86 

Arctic_fox 89 91 93 orange 97 93 97 

ashcan 79 76 79 organ 94 92 97 

barrel 87 87 87 photocopier 92 91 94 

beer_bottle 88 92 90 poncho 86 90 93 

bolete 94 96 99 reel 86 87 89 

boxer 86 93 94 robin 94 94 98 

cocktailshaker 91 89 94 rock_beauty 94 95 94 

combination_lock 86 90 92 Saluki 92 89 87 

consomme 98 93 97 school_bus 98 95 96 

dome 93 93 98 scoreboard 93 93 96 
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dugong 96 96 98 slot 95 97 100 

Ear 86 87 86 snorkel 97 94 92 

electric_guitar 93 89 92 solar_dish 89 93 93 

golden_retriever 92 89 95 stage 85 87 85 

goose 99 98 99 street_sign 91 92 89 

hair_slide 82 88 86 tile_roof 93 93 91 

holster 94 94 97 toucan 97 99 99 

hotdog 90 90 95 triceratops 99 99 97 

house_finch 94 94 96 trifle 95 96 98 

iPod 89 90 93 unicycle 93 91 96 

komondor 91 97 92 upright 93 92 92 

ladybug 97 95 98 vase 88 92 92 

lipstick 90 94 97 white_wolf 90 92 90 

miniskirt 90 91 96 yawl 98 98 99 

 

Based on the table, most categories exhibit a gradual increase in accuracy across ResNet101, 

ResNet152, and ViT. For instance, in the "slot game" category, ViT achieves 100% accuracy, while 

ResNet101 and ResNet152 attain only 95% and 97%, respectively. This highlights ViT's superior 

performance in classifying images with complex features or high intra-class variability. 

4. Summary 

This paper compares the image classification performance of CNN-based architectures (ResNet101 

and ResNet152) and the Transformer-based architecture (ViT) on the mini-ImageNet dataset, 

validating the effectiveness of different algorithms in image classification tasks. Experimental results 

demonstrate that ViT outperforms traditional CNNs in classification accuracy. While CNN 

algorithms retain significant advantages in image recognition tasks, ViT's Transformer architecture 

excels in capturing global features and contextual information, enabling richer feature learning. 

Although ResNet mitigates vanishing gradients through residual connections, CNN frameworks still 

face challenges such as training complexity and limitations in local feature recognition. In conclusion, 

ViT exhibits superior performance and potential in image classification due to its unique architecture 

and mechanisms. 
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