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Abstract: Nowadays, AI's development, especially the emergence of large models, has 

given it a depth of thinking and generalization ability it never had before, and this ability 

can be applied across the board. As a field that has long intersected with AI technology, 

intelligent robots have shifted from past modes of thought and technical routes to today's 

large models. This paper comprehensively traces the technical evolution of intelligent 

robots from their inception to now, focusing on their path of integration with AI. Using 

literature research, comparative analysis, and trend analysis, combined with in - depth 

technical analysis, it identifies key moments in the evolution of intelligent robot technology 

and the internal logic of its integration with AI. The research indicates that the convergence 

of artificial intelligence and robotics has progressed from mere perception to cognitive 

capabilities, transitioning from specialized to general-purpose applications. Moving forward, 

this integration is expected to become increasingly prevalent as technological advancements 

steer towards broader applications. 

Keywords: AI Robot, Multimodality, Artificial Intelligence, Reinforcement Learning, large 

language model 

1. Introduction 

The integration of artificial intelligence (AI) and robotics have undergone a transformative 

evolution, propelled by advancements in machine learning paradigms. Historically, robots relied on 

model-based controllers and hand-coded rules, which proved inadequate for dynamic environments 

and high-dimensional perceptual-motor tasks. Early breakthroughs in reinforcement learning (RL) 

demonstrated its potential for adaptive decision-making, yet limitations remained in training 

efficiency and generalization to real-world scenarios. Subsequently, the development of deep 

reinforcement learning (DRL) and multimodal perception filled these gaps, enabling robots to 

process visual, tactile, and language inputs in a coordinated manner. 

The advent of large language models (LLMs and VLMs) has transformed the trajectory of AI 

and robotics, enhancing cross-modal reasoning and task generalization. This study examines the 

integration of AI and robotic technologies, highlighting the transition from reinforcement learning 

to multimodal frameworks and large-scale model-driven embodied intelligence, which redefines 

robot autonomy. By analyzing the developmental continuum, this review systematically addresses 

the relationship between AI and robotics, focusing on the convergence of ideas and the rise of 

general embodied intelligence in the context of large models. Key components of this evolution 

include scalable parallel reinforcement training, cross-modal knowledge transfer, integrated 
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representation learning, and end-to-end models. The integration of these technologies has led to a 

new paradigm of large language models, enhancing the adaptability of general-purpose robots in 

open environments. This underscores the need for standardized benchmark testing to assess 

emerging capabilities like zero-shot task transfer. Theoretically, a reexamination of embodiment in 

AI systems is warranted, viewing large-scale models as a universal prior for physical interaction. 

The advanced comprehension and generalization abilities of large models should be leveraged in 

robotics to further investigate general intelligence. 

2. Early stage-application of reinforcement learning in robotic decision-making 

2.1. Reinforcement learning and robotic decision-making 

Initially, the intersection of robot control and artificial intelligence were limited, with controllers 

relying heavily on precise models and manual design. However, as the complexity of task scenarios 

and interactions increased, the limitations of traditional control methods gradually became apparent 

[1]. Model-based control struggles to cope with real-world complex scenarios, and the high 

dimensionality of sensor data and continuous actions can lead to the curse of dimensionality. 

Traditional tasks such as navigation and grasping often have sparse reward signals, necessitating 

long-term planning. Reinforcement learning, on the other hand, can optimize control strategies 

through a trial-and-error mechanism and possesses adaptability, reactivity, and self-supervision 

characteristics. Compared with traditional manually designed models, reinforcement learning 

architectures leverage neural networks to significantly enhance learning speed and generalization 

ability [1]. 

Reinforcement learning (RL) provides a method for learning optimal policies through trial and 

error. By leveraging neural networks as powerful function approximators, it can handle high-

dimensional data inputs and learn complex nonlinear mappings, thus addressing the challenges 

faced by traditional RL in high-dimensional state and action spaces [1]. This breakthrough deviates 

from the conventional approach of manually designing controllers. It demonstrates the potential of 

combining neural networks with reinforcement learning in robotic control, offering new insights for 

adaptive learning in robots. 

2.2. Further development of reinforcement learning-based decision-making 

With the idea of integrating reinforcement learning frameworks into robot decision-making control, 

the convergence of artificial intelligence and robotics technologies has become increasingly tight.  

Deep reinforcement learning has achieved remarkable success in many robot decision-making 

tasks [1], but the training process typically requires substantial time and computational resources. 

Moreover, traditional deep reinforcement learning methods (such as DQN and A3C) rely on 

synchronous updates, which leads to low overall training efficiency. The subsequent emergence of 

asynchronous reinforcement learning frameworks, combined with distributed computing and 

parallelization techniques, has significantly accelerated the training process and enhanced algorithm 

performance [2]. Asynchronous reinforcement learning showcases the potential for parallelization 

in deep reinforcement learning, establishing a basis for large-scale distributed approaches. The A3C 

algorithm has emerged as a seminal method, catalyzing extensive subsequent research. 

Although improvements have been made in algorithm speed and resource efficiency, for robotic 

manipulation tasks such as grasping, placing, and assembly, high-precision control and complex 

decision-making capabilities are usually required. Deep reinforcement learning has demonstrated 

the potential of artificial intelligence in robotic manipulation control tasks [2]. It has proposed a 

deep reinforcement learning framework suitable for high-dimensional sensor data and continuous 

action spaces, essentially addressing the limitations of traditional methods. 
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3. Mid-stage-from deep reinforcement learning to multimodality 

3.1. The rapid development and new limitations of deep reinforcement learning 

Deep learning has also achieved unprecedented results [3] in core decision-making challenges such 

as autonomous navigation. Autonomous navigation is a fundamental challenge in robotics, 

particularly in complex and dynamic environments. Conventional methods depend on accurate 

maps and predefined rules, but they struggle with dynamic obstacles and uncertainties [4]. Deep 

reinforcement learning (Deep RL) provides a method for learning optimal strategies through trial 

and error, enabling the direct learning of navigation strategies from sensor data. 

Mirowski, P. proposed a navigation framework based on deep reinforcement learning, which 

directly learns navigation policies from raw sensor data, such as LiDAR and cameras. By 

integrating Deep Q-Networks (DQN) and the Actor-Critic architecture, he designed a reinforcement 

learning algorithm suitable for complex environments [4]. The remarkable performance of this 

framework demonstrates the potential of deep reinforcement learning in navigation within complex 

environments, offering new insights for autonomous navigation. 

It can be observed that the adaptation and integration of reinforcement learning at the decision-

making layer of robots have revealed the potential of artificial intelligence in decision-making. 

However, artificial intelligence can be applied not only at the decision-making layer of robots. The 

integration of artificial intelligence into the original sensor perception layer of robots can also bring 

performance improvements that are different from those of the past, and can complement the 

decision-making layer based on reinforcement learning. This paves the way for the transition from 

deep reinforcement learning technology to multimodal technology. 

Traditional computer vision methods depend on extensive labeled datasets for model training, 

which presents significant challenges, including high costs and time demands. In contrast, humans 

acquire visual information through observation and interaction without explicit labeling. This 

suggests the potential for a self-supervised learning framework utilizing inter-frame motion data in 

video sequences, such as camera motion, as a supervisory signal. By predicting camera motion (e.g., 

rotation and translation), the model can learn meaningful visual representations [5]. This approach 

reduces the dependence on external labeled data and demonstrates the potential of motion signals in 

visual representation learning. 

3.2. Simulation training and real-world interaction 

Before the development of multimodal thinking, researchers had already observed that as the 

requirements for task design and machine data volume increased, the training of robot models 

became a significant issue. The emergence of the Sim-to-Real concept addressed this problem that 

spans model training and interaction with the physical world. 

Traditional methods of decision-making and control relied on precise dynamic modeling or 

domain adaptation, but these approaches faced limitations in complex real-world environments. The 

Sim-to-Real concept aims to facilitate robot control transfer from simulation to reality through 

dynamic randomization. This allows for simulation training of specific real-world scenarios. 

However, due to inherent dynamic discrepancies, strategies developed in simulation often do not 

transfer effectively to real robots. However, the outcome is entirely different if dynamic 

randomization is introduced by incorporating randomized dynamic parameters in the simulation [6].  

Such an operation not only enhances the robustness of the strategies but also enables them to adapt 

to the dynamic changes in the real world. 

The augmentation of dynamics randomization has demonstrated the potential for policies trained 

in simulation to be directly applied to real-world robots [6], thereby reducing the cost and risk 
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associated with physical robot experiments. This advancement has propelled the development of 

subsequent robot models that require larger datasets, face more complex scenarios, and encounter 

increased training difficulties. 

3.3. The concept of multimodal fusion 

In robotic manipulation tasks like grasping, placing, and assembling, precise object perception and 

localization are essential. While deep reinforcement learning enables autonomous decision-making, 

a robust perception system is crucial for effective manipulation. Traditional perception methods, 

which depend on hand-crafted features or geometry-based models, often struggle with complex 

shapes, textures, and deformable objects. Dense Object Nets (DON) is a method for robotic 

manipulation tasks that achieves this by learning dense visual object descriptors [7]. Dense visual 

descriptors provide semantic information for every pixel on the object's surface, offering a richer 

perception capability for robotic manipulation tasks. The integration of this enriched perception 

capability with deep reinforcement learning demonstrates the potential of combining perceptual 

data with self-supervised learning [7]. This, in turn, has inspired subsequent multimodal approaches. 

The concept of multimodal perception originated in grasping tasks. Robotic grasping tasks 

require precise sensing and control capabilities, especially when dealing with complex shapes, 

fragile objects, or dynamic environments. Conventional approaches predominantly depend on visual 

data; however, upon making contact with an object, visual feedback alone may prove inadequate for 

conveying essential information. In contrast, tactile data can yield critical insights, including contact 

force, object slippage, and surface properties, thereby introducing an additional perceptual 

dimension crucial for grasping and regripping activities. 

A multimodal perception framework that integrates vision and touch is employed for robotic 

grasping and regripping tasks [8]. This framework utilizes deep neural networks to process visual 

information (such as images) and incorporates tactile sensor data (such as force and pressure 

distribution) as supplementary inputs. A multimodal fusion strategy has been designed to combine 

visual and tactile information, thereby enhancing the success rate and stability of grasping [8]. 

The excellent performance achieved by the integration of multimodalities [8] demonstrates the 

potential of combining vision and touch in robotic grasping tasks, offering new insights for 

multimodal perception. Moreover, a multimodal fusion framework suitable for high-dimensional 

sensor data and complex tasks has been proposed, addressing the limitations of traditional methods. 

4. Modern stage-empowerment by large language models and embodied intelligence 

4.1. The general capabilities of large language models 

Mirchandani et al. pointed out that large language models (LLMs) possess the ability for cross-

modal pattern recognition [9]. The cross-modal interaction, control, and decision-making 

capabilities of large language models, like GPT-3 and BERT, enhance their compatibility with 

robotic decision-making. Their robust reasoning and generalization abilities enable powerful pattern 

recognition and generation across various domains, including natural language processing, image 

processing, time-series analysis, and symbolic reasoning. Exploring large language models as 

universal pattern machines may yield integrated solutions for cross-domain applications [9]. 

For robots, large language models can serve as a universal pattern, offering a unified solution for 

the acquisition of multimodal information, decision-making, and control processes required by 

robots. 
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4.2. Large language models and general-purpose intelligent robots 

Brohan et al.'s RT-1 represents a pioneering application of the Transformer architecture in real-

world robotic control, adeptly processing multimodal inputs, including images and states, to 

generate low-level control commands. This model is engineered to facilitate efficient learning and 

execution of extensive real-world robotic tasks. In addition, RT-2 enhances this framework by 

incorporating visual-language pre-trained models, such as CLIP, to facilitate the transfer of internet-

derived knowledge into robotic control applications. Both RT-1 and RT-2 operate within the 

Visual-Language-Action (VLA) model framework for robotic control. RT-2 advances the 

capabilities of RT-1 by utilizing large-scale visual-language pre-trained models, including CLIP and 

Florence, as a foundational element, thereby enabling the fine-tuning process to effectively transfer 

internet knowledge to robotic control tasks [11]. The model is capable of directly generating robot 

control commands from visual inputs and language instructions, achieving end-to-end learning and 

execution [11]. 

It is not only the RT-2 based on the Transformer architecture that can be utilized, but also the 

text-generation capability of large language models (LLMs) themselves as a direct channel for 

generating control instructions. Liang et al. proposed using LLMs to generate executable code to 

control robots [12]. Code as Policies (CaP), a framework that employs code generated by language 

models as control policies, is used to implement embodied control tasks. By leveraging the code 

generated by language models as control policies, it achieves an end-to-end mapping from natural 

language instructions to robot actions [12]. 

Ahn et al. introduced the concept of Affordances. Robot control tasks typically require the 

translation of natural language instructions into concrete actions. However, language instructions 

often fail to fully capture the actual capabilities of robots (Affordances) [13]. Traditional methods 

rely on precise language understanding and action mapping, but they perform poorly when facing 

complex tasks and dynamic environments. By integrating language instructions with the functional 

capabilities of robots, more natural and efficient control can be achieved [13]. This is enabled by 

leveraging the general capabilities of large models, combined with multimodal perception, to create 

end-to-end intelligent decision-making robots. 

4.3. Embodied intelligence 

Original embodied intelligence has gained developmental insights through large models. Gupta et al. 

proposed optimizing embodied agents by integrating reinforcement learning with evolutionary 

algorithms. This approach highlights that agents learn and evolve via environmental interaction, 

rather than relying on fixed rules. Traditional methods often apply learning (e.g., reinforcement 

learning) or evolution (e.g., genetic algorithms) in isolation, which is inadequate for complex, 

dynamic environments. Combining these strategies harnesses their strengths, leading to more 

efficient adaptive behaviors [14]. 

PaLM-E, an embodied multimodal language model, aims to integrate vision, language, and robot 

control into a unified framework to create more intelligent embodied agents. It combines 

multimodal capabilities, large language models, and embodied intelligence [15]. PaLM-E integrates 

vision, language, and robot control into a unified framework, using a pre-trained large language 

model (such as PaLM) as the foundation and extending its capabilities to handle multimodal inputs 

(such as images and sensor data). A multimodal fusion mechanism is designed to combine visual 

and linguistic information to generate robot control commands [15]. 
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5. Conclusion 

The integration of AI and robotics has progressed from isolated perceptual modules to cohesive 

embodied intelligent systems. Early reinforcement learning frameworks established a basis for 

adaptive decision-making but encountered computational limitations. The advent of deep 

reinforcement learning and asynchronous training architectures, such as A3C, mitigated these 

challenges, allowing robots to manage high-dimensional states in manipulation and navigation tasks. 

Nonetheless, dependence on curated datasets and rigid simulation environments constrains real-

world applicability. The simulation-to-reality paradigm, bolstered by dynamic randomization, has 

emerged as a crucial solution, enhancing policy robustness across various domains. 

Multimodal learning represents a significant advancement. Frameworks like Dense Object Nets 

(DON) and visual-tactile fusion illustrate that cross-sensory integration markedly improves task 

success rates, paving the way for large-scale models. The rise of large language models 

subsequently redefines general-purpose robots through three main strategies: cross-modal 

knowledge transfer (e.g., RT-2 utilizing Vision-Language Models to align internet-scale data with 

control policies), code generation as executable plans (e.g., "code as policy"), and a unified 

representation space (e.g., PaLM-E's joint embedding of language, vision, and kinematics). 
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