
 

 

Underwater Vision Technologies for Smart Fisheries: A 
Comprehensive Review of OpenCV-Based Optimization and 

Edge Computing Applications 

Huijin Lv 

Dundee International Institute, Central South University, Changsha, China 

2617308@dundee.ac.uk 

Abstract: With the deepening exploration of marine resources and the global emphasis on 

sustainable development, intelligent fishery has emerged as a critical domain for advancing 

ecological conservation and operational efficiency. Underwater vision technology, a 

cornerstone of intelligent fishery systems, encounters substantial challenges due to complex 

underwater environments—such as light attenuation, turbidity, biofouling, and dynamic 

currents—which degrade image quality and impede real-time decision-making. To address 

these limitations, this paper systematically reviews the integration of OpenCV-based image 

processing techniques with edge computing frameworks, which collectively enhance the 

robustness and adaptability of underwater visual systems. OpenCV’s advanced algorithms, 

including Contrast-Limited Adaptive Histogram Equalization for low-light enhancement, 

geometric transformations for distortion correction, and YOLO-based object detection, have 

been shown to significantly improve image clarity and target recognition accuracy. 

Simultaneously, edge computing alleviates latency and bandwidth constraints by enabling 

real-time data processing on embedded devices, achieving sub-200 ms response times for 

critical tasks such as dissolved oxygen monitoring and fish behavior analysis. Field 

validations underscore performance improvements, such as 92% recognition accuracy in 

coral reef monitoring and 85% mean Average Precision for aquatic species detection using 

MobileNet-SSD models. Despite these advancements, challenges remain in extreme 

conditions, computational resource optimization for edge devices, and the need for 

interdisciplinary collaboration to integrate marine biology insights into algorithmic design. 

Future research directions highlight hybrid architectures combining physics-based restoration 

with quantized deep learning, bio-inspired optical sensors, and socio-technical frameworks 

to ensure equitable technology adoption.  

Keywords: OpenCV, edge computing, intelligent fishery, underwater vision, image 

processing technology 

1. Introduction 

In the context of global climate change and heightened environmental awareness, intelligent fishery 

management has drawn increasing attention from the international community as a sustainable 

solution. By integrating advanced technologies such as computer vision, edge computing, and 

artificial intelligence, intelligent fishery aims to optimize resource utilization, enhance operational 
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efficiency, and minimize ecological impacts in aquatic ecosystems. A key enabler of intelligent 

fishery is underwater visual technology, which plays a critical role in improving resource 

management, mitigating environmental effects, and promoting sustainability. 

The development of intelligent fishery relies on multiple critical resources. Technologically, it 

leverages tools like OpenCV for real-time image processing, edge computing frameworks for 

decentralized data analysis, and deep learning models for species recognition. Environmentally, it 

reduces reliance on manual labor and combats overfishing through precision monitoring, thereby 

minimizing habitat disruption and fostering biodiversity conservation. For instance, automated 

systems can detect anomalies in fish density or disease outbreaks early, enabling targeted 

interventions that reduce chemical usage and waste discharge. 

Despite its potentials, the application of this technology faces significant challenges due to 

complex underwater environments, limited lighting conditions, and high computational requirements. 

Underwater vision systems must address dynamic factors including light attenuation, turbidity, and 

biofouling, which degrade image quality and hinder real-time decision-making. Additionally, reliance 

on cloud-based architectures introduces latency and bandwidth limitations, especially in remote 

marine areas with constrained connectivity. To address these issues, this study focuses on OpenCV-

based image processing techniques and edge computing applications, both of which are essential for 

enhancing the performance of underwater visual systems. 

From a technical perspective, OpenCV provides a versatile toolkit for addressing underwater 

imaging challenges. Its algorithms, such as CLAHE (Contrast-Limited Adaptive Histogram 

Equalization) for contrast enhancement and YOLO-based models for object detection, play a pivotal 

role in resolving issues like color distortion and motion blur. Meanwhile, edge computing 

decentralizes computational tasks to local devices (e.g., NVIDIA Jetson modules), enabling real-time 

sensor data processing and reducing dependence on centralized cloud infrastructure. This synergy not 

only improves response times but also enhances energy efficiency—a crucial factor for solar-powered 

deployments in offshore environments. 

This paper aims to comprehensively assess the potential applications of OpenCV-based image 

processing and edge computing in underwater visual technology for intelligent fisheries. It explores 

how these technologies can drive technological innovation and sustainable development. By 

analyzing existing research, the findings offer researchers and practitioners with a clear understanding 

of the current technical landscape and future directions while identifying existing limitations and 

potential areas for further investigation. 

2. Edge computing and OpenCV in intelligent fisheries 

2.1. The development of edge computing in smart fishery 

In initial research, Zhao highlighted the efficacy of the K-means clustering algorithm in enhancing 

edge detection accuracy in underwater imagery [1]. This work established a crucial foundation for 

subsequent advancements, particularly in tackling common issues like image blurring and color 

distortion prevalent in underwater settings. Subsequently, Zhu et al. utilized edge computing to 

streamline data transmission for remote island observations [2]. By delegating data processing tasks 

to edge nodes within the network, the data processing efficiency was significantly boosted and the 

communication delays were minimized. This research emphasized the practical benefits of edge 

computing in marine environmental monitoring. Moreover, Zhang et al. explored the application of 

edge computing in intelligent aquaculture systems [3]. Through real-time monitoring and 

sophisticated data analysis, they achieved precise control and management of the aquaculture 

environment, demonstrating the profound integration of edge computing technology in smart 

agriculture.  
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In conclusion, from early image processing methods to advanced environmental monitoring 

applications, the principles of edge computing have demonstrated substantial potential in improving 

efficiency, reducing costs, and enhancing decision support capabilities in underwater vision 

technology for intelligent fisheries. As technology evolves and its applications broaden, edge 

computing is expected to play an increasingly vital role in the future development of intelligent 

fisheries. 

2.2. The application of edge computing in underwater 

Edge computing plays a crucial role in improving underwater target recognition through real-time 

processing capabilities and decreased dependence on cloud infrastructure. Notable advancements 

involve the implementation of lightweight deep learning models, such as MobileNet-SSD, on edge 

devices, enabling instantaneous detection of marine species and underwater obstacles. For example, 

MobileNet-SSD has shown a mean Average Precision (mAP) of 85% in identifying common aquatic 

life [4]. Furthermore, edge computing significantly enhances the applicability of -SSD, which has 

demonstrated a mean Average Precision (mAP) of 85% in identifying common aquatic life [4]. 

Additionally, feature extraction algorithms such as SIFT (Scale-Invariant Feature Transform) and 

SURF (Speeded-Up Robust Features) from OpenCV are integrated, enabling the system to process 

turbid underwater imagery more effectively [5]. 

The use of NVIDIA Jetson Xavier for local processing results in a response time reduction to less 

than 0.5 seconds, providing a key benefit for dynamic underwater tasks like real-time tracking of fish 

schools in submerged settings. This functionality is powered by its integrated tensor cores, which 

enhance parallel computing for detection algorithms while ensuring consistent performance under 

hydrostatic pressures up to 100 meters [6]. Moreover, transmitting metadata (e.g., object coordinates) 

rather than raw video streams cuts down data transmission by as much as 80%, greatly boosting 

bandwidth efficiency—an essential enhancement for underwater acoustic communication systems 

that usually operate below 50 kbps. The sustained throughput limit of 100 Mbps guarantees 

dependable data exchange even in murky waters with suspended particles [7]. In coral reef monitoring 

initiatives, edge computing architectures have attained 92% accuracy in identifying endangered 

marine species in low-visibility conditions, thanks to adaptive algorithms that address turbidity 

changes and hydrodynamic disturbances. These features allow conservation teams to execute 

protective actions within 15 minutes of detection through automated pipelines from data to action, 

which is vital for time-critical underwater ecological responses [8]. The observed performance gains 

are due to edge-based preprocessing methods that include dual noise reduction: spatial filtering 

removes interference from sediments typically found in benthic areas, while temporal filtering 

eliminates temporary lighting distortions caused by surface wave refraction. Furthermore, 

biologically significant characteristics such as scale patterns and fin outlines are emphasized using 

feature saliency weighting, increasing the reliability of ecological assessments by 37% compared to 

cloud-based systems—a critical edge for remote underwater deployments with sporadic connectivity 

[8]. 

2.3. The research advances of image enhancement technology 

The development of image enhancement techniques utilizing OpenCV within the domain of 

intelligent fishery underwater vision technology Is essential for improving the performance of 

underwater robotic vision systems. Chen and Zhang introduced an enhanced adaptive histogram 

equalization algorithm (CLAHE), which is specifically designed to meet the requirements of 

underwater bionic fish robot vision systems, tackling issues like image degradation and distortion[9]. 

The results of a series of experiments conducted by randomly designated ight black circular regions 
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on the surface of the white-water pipe located at the bottom of the blue laboratory pool as oil leakage 

points revealed that the bionic fish achieved a detection rate of 73.75% for identifying these oil 

leakage points [9]. These experimental results confirmed the effectiveness of this approach and 

improves the adaptability and stability of the platform in complex underwater 

environments.establishing a robust foundation for future research. The improvements not only 

expanded the platform's functionality but also provided substantial technical support for practical 

image processing tasks. Additionally, Yang and Sun developed an intelligent tracking and recognition 

system for underwater fish targets using TensorFlow 2.0 and YOLO V4 [10]. This system adeptly 

manages common distortions and noise in underwater video footage while maintaining high accuracy 

and efficient tracking. Their findings underscore the potential benefits of combining deep learning 

with image enhancement techniques to enhance underwater vision system performance. Recently, 

Zhou proposed a deep learning-based image enhancement method to address the challenges of 

recognizing underwater cultural relics [11]. By creating a specialized dataset and refining the image 

enhancement algorithm, this approach markedly improved the recognition accuracy of underwater 

objects. 

In summary, the integration of traditional image enhancement algorithms (e.g., CLAHE) based on 

OpenCV with deep learning techniques (e.g., YOLO V4 and customized datasets) has significantly 

enhanced the performance of underwater vision systems. These approaches effectively address 

challenges such as image degradation, noise interference, and low target recognition accuracy, 

providing robust technical support for applications like intelligent fishery monitoring, underwater 

robot navigation, and cultural heritage preservation. Moving forward, further integration of traditional 

image processing methods and deep learning frameworks is expected to advance underwater vision 

technologies toward greater adaptability, intelligence, and generalization across diverse scenarios. 

2.4. OpenCV vs conventional image recognition 

OpenCV surpasses traditional image recognition methods across multiple dimensions. OpenCV's 

2500+ pre-built optimized functions (e.g., Haar cascades for object detection [12]) demonstrate its 

algorithm diversity advantage over traditional image recognition methods. Seamless machine 

learning integration with frameworks like TensorFlow/PyTorch enables hybrid pipelines to achieve 

95% accuracy in fish disease detection [13]. Computational efficiency can be further boosted through 

GPU/NPU hardware acceleration (10–20x faster processing via CUDA/OpenVINO) and memory-

optimized algorithms like ORB (40% reduced memory usage) [14-15], and community-driven 

adaptability. Community-driven adaptability mainly include an open-source ecosystem that is 

constantly updated for challenges like underwater distortion correction, and cross-platform 

compatibility from embedded systems (Raspberry Pi) to cloud servers [16-17]. As indicated in Table 

1, the results robustly substantiate that OpenCV exhibits shorter construction time, higher accuracy 

of underwater recognition, and lower hardware costs compared with traditional methods. It surpasses 

traditional methods in the above respects and is more compatible with the configuration of smart 

agriculture. 

Table 1: Comparative analysis of OpenCV versus conventional techniques 

Aspect Conventional Methods OpenCV 

Development Time Weeks for custom algorithm coding Hours via pre-built functions [12] 

Accuracy 70–80% for basic thresholding 90–95% with ML integration [13] 

Hardware Cost High (dedicated FPGA setups) 
Low (runs on $35 Raspberry Pi) 

[17] 
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3. The application prospects of OpenCV and edge computing in intelligent fisheries 

3.1. The construction of an intelligent breeding monitoring and supervision system 

The integration of OpenCV and edge computing enables the development of intelligent breeding 

monitoring systems that enhance precision and sustainability in fisheries. This system comprises three 

key components: real-time environmental perception, edge-AI decision-making and centralized 

supervision platform. 

OpenCV-based vision analysis integrated with multi-sensor fusion systems enhances underwater 

aquaculture monitoring through real-time environmental sensing to detect fish density, and behavioral 

anomalies (e.g., disease-indicating erratic swimming), and combines with YOLOv4 to estimate 

biomass (over 90% accuracy in clear water [18]).  

In the context of aquaculture systems, edge computing frameworks based on Edge-AI Decision-

Making improve localized control and priority-driven data processing. These frameworks integrate 

optimized OpenCV models on edge devices like the NVIDIA Jetson Nano to enable swift responses. 

For instance, aerators are activated when dissolved oxygen levels fall below critical thresholds (e.g., 

4 mg/L) [19], and feeding schedules are adjusted based on real-time fish behavior analysis [19-20]. 

In addition, the multi-tiered processing architecture in Hierarchical Data Management enhances 

operational efficiency. Time-sensitive alerts, such as the occurrence of pH irregularities or oxygen 

shortages, achieve sub-200 ms latency for immediate local resolution. Non-critical data, including 

growth metrics, are asynchronously aggregated and stored in cloud storage [21]. This dual-mode 

approach ensures a balance between immediate responsiveness and efficient resource management, 

aligning with the scalability needs of smart aquaculture infrastructure. 

Integrated aquaculture management platforms combine a cloud-based visual dashboard that 

aggregates multi-node edge data—The system provides real-time farm status visualization through 

water quality heatmaps and behavior-annotated video streams [22]. Additionally, blockchain-

integrated traceability systems securely archive operational logs and compliance records on 

Hyperledger Fabric chains, ensuring auditable transparency for certification procedures [23]. 

As demonstrated in Table 2, the combination of OpenCV with edge computing clearly surpasses 

conventional methods by providing enhanced real-time responsiveness, improved recognition 

precision, reduced construction expenses, and increased adaptability for future expansions. 

Table 2: The advantages of the combination of OpenCV and edge computing 

Aspect Traditional Monitoring OpenCV + Edge Computing 

Real-Time 

Response 

Delayed (5–10 min for manual data 

entry) 

Immediate (<1 s for edge-based 

triggers) 

Accuracy 
Subjective human judgment (~75% 

accuracy) 

Algorithm-driven (>90% accuracy) 

[18] 

Cost Efficiency 
High labor costs ($15k/year per 

farm) 

Reduced OPEX via automation 

(ROI 140% [24]) 

Scalability Limited to small-scale operations 
Supports 100+ nodes per gateway 

[21] 

3.2. The superiority of the novel underwater visual system 

As illustrated in Table 3, the integration of OpenCV and edge computing achieves superior accuracy 

in underwater recognition compared to conventional techniques. This approach demonstrates a 

significant performance advantage and is better aligned with the development needs of smart 

aquaculture systems. The enhanced precision offered by this combined methodology not only 
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outpaces traditional methods but also provides greater support for the advancement and optimization 

of intelligent aquatic farming technologies. 

Table 3: Comparative study of underwater recognition accuracy 

Condition Accuracy (OpenCV + Edge) Accuracy (Traditional) 

Clear water 92% [18] 78% [25] 

Turbid water (NTU >10) 65% [26] 42% [25] 

 

Underwater vision systems addressing operational challenges implement OpenCV's CLAHE 

algorithm for low-light adaptation (effective above 1 lux environments) while investigating hybrid 

infrared-RetinaNet solutions for extreme darkness [27], coupled with graphene oxide nanocoating on 

camera lenses that extends biofouling-resistant operation from 7 to 45 days in saline conditions [28], 

enabling reliable long-term aquatic monitoring. 

The adoption of edge computing in aquaculture systems demonstrates cost-effectiveness through 

modular edge vision nodes with 800 initial investment vs. 1,200 for cloud-dependent architectures 

[24], achieving 140% 3-year ROI through bandwidth/labor savings, while concurrently reducing 

energy demands via solar-powered operation (8-12 W consumption vs. 20-30 W for full-cloud 

systems [29]). 

4. The challenges and prospect 

4.1. The limitations of the present research 

Image degradation in underwater environments remains a critical challenge, primarily caused by the 

interplay of light attenuation, scattering effects, and suspended particulate matter. Water selectively 

absorbs longer wavelengths (e.g., red and orange light), leading to color distortion and reduced 

contrast, while scattering from suspended particles or microorganisms further degrades image clarity 

by introducing haze-like artifacts. 

Additionally, dynamic lighting conditions and biofouling on optical sensors exacerbate these 

issues, resulting in blurred edges and noisy imagery that hinder accurate feature extraction and object 

recognition [28]. Although existing image enhancement techniques, such as CLAHE and deep 

learning-based methods, mitigate these effects to some extent, their performance varies significantly 

under extreme conditions (e.g., turbid waters with NTU >10 or near-total darkness), necessitating 

further empirical validation and scenario-specific optimization [26]. 

Underwater robotic vision systems also require precise geometric transformations to correct 

distortions caused by refraction at water-air interfaces and irregular camera angles. Current 

algorithms, while effective in controlled settings, struggle to maintain robustness in dynamic 

underwater environments characterized by fluctuating currents, uneven terrain, or rapid target 

movements. For instance, real-time geometric corrections for fish school tracking demand 

computationally intensive calculations, which strain the limited resources of embedded edge devices 

like the NVIDIA Jetson Nano [17]. Although lightweight models such as MobileNet-SSD improve 

efficiency, their accuracy declines in cluttered scenes, highlighting a trade-off between computational 

efficiency and algorithmic precision [16,26]. 

Moreover, the current research predominantly relies on theoretical analyses and laboratory-based 

validations, with a notable lack of empirical studies in real-world fishery environments. For example, 

while edge computing frameworks and OpenCV-based systems are reported to achieve high accuracy 

in controlled experiments (e.g., 92% in coral reef monitoring [8]), their long-term reliability and 

scalability in operational aquaculture settings remain under-documented. Field trials addressing 
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practical challenges, such as biofouling-induced sensor degradation or power constraints in remote 

marine areas, are scarce, limiting the generalizability of proposed solutions [29]. 

Furthermore, critical non-technical dimensions essential for holistic technology adoption are often 

overlooked. Economic feasibility analyses—such as cost-benefit comparisons between edge 

computing and cloud-dependent architectures, remain underexplored despite claims of reduced 

operational expenses (ROI 140% [24]). Similarly, socio-environmental factors, including the impact 

of automated systems on small-scale fisheries or compliance with regional sustainability guidelines 

(e.g., FAO Technical Paper No. 638 [29]), are absent from the discourse. 

Additionally, current research frameworks demonstrate constrained generalization capabilities, 

predominantly validated in controlled environments like aquaculture tanks or coral reefs [8,18], with 

limited adaptation to heterogeneous marine ecosystems. While hybrid methodologies merging 

OpenCV techniques and deep learning exhibit potential for scenario-specific tasks, the absence of 

unified evaluation standards for cross-environment adaptability impedes their scalability in complex 

fishery operations. This gap is further compounded by the literature’s disproportionate emphasis on 

computational advancements, overlooking critical interdisciplinary dimensions such as marine 

species’ behavioral adaptations for algorithm refinement or oceanographic turbidity modeling to 

improve ecological validity. Addressing these limitations necessitates collaborative efforts across 

optical physics, marine ecology, and embedded systems engineering to develop adaptive solutions 

that reconcile technical innovation with biological and environmental realities. Additionally, recent 

advancements in bio-inspired optical sensors or hybrid edge-cloud architectures are underrepresented, 

potentially limiting the innovation trajectory of future research [28]. 

These limitations underscore the need for interdisciplinary collaboration to develop holistic 

solutions that integrate optical physics, marine biology, embedded system design, and socio-

economic considerations. 

4.2. Outlook 

Future research in intelligent fishery underwater vision systems should adopt an integrated approach 

that systematically addresses technical, environmental, and socio-economic challenges. Advancing 

hybrid architectures combining physics-based image restoration (e.g., wavelength compensation) 

with quantized deep learning models could help overcome current limitations in extreme underwater 

conditions. By dynamically adjusting parameters through edge-compatible turbidity sensors, these 

systems could maintain robustness in turbid waters (NTU >10) while leveraging neuromorphic 

processors and spiking neural networks to reduce power consumption below 300mW - a critical 

threshold for solar-powered deployments. Concurrently, large-scale field validation across diverse 

aquaculture environments, from open-ocean cages to mangrove ecosystems, must be accelerated 

through partnerships with fisheries authorities. Such collaborations would enable stress-testing 

against real-world challenges like biofouling and tidal fluctuations while establishing standardized 

metrics balancing computational efficiency (FPS/Watt) with ecological impact. 

Building on these advancements, cross-disciplinary integration with marine biology offers 

transformative potential. Fish schooling pattern datasets could refine motion prediction algorithms, 

while coral symbiosis studies might inform biofouling-resistant hardware designs. The development 

of mantis shrimp-inspired polarization vision sensors demonstrates how biomimicry could enhance 

image clarity in murky waters through multispectral polarization imaging, potentially achieving over 

50% detection accuracy improvements. Meanwhile, sustainable implementation demands parallel 

progress in socio-technical frameworks. Cost-optimized modular systems designed for community 

maintenance, aligned with FAO sustainability guidelines, could democratize access while preventing 

technological displacement in small-scale fisheries. Pilot deployments in Southeast Asian aquaculture 
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hubs should prioritize co-design processes with local fishers, iteratively improving human-machine 

interfaces while collecting longitudinal data on automation’s socio-economic impacts. 

Ultimately, this interconnected strategy - weaving algorithmic innovation with ecological insights 

and community-centric design - requires synchronized development across three axes: adaptive vision 

architectures resilient to environmental variability, biologically informed evaluation protocols, and 

equitable technology dissemination models. By maintaining tight feedback loops between laboratory 

prototypes and real-world deployments through continuous sensor data collection and stakeholder 

engagement, the field could transition from isolated technical achievements to holistic solutions that 

genuinely advance sustainable aquaculture practices. 

5. Conclusion 

This paper systematically explores the integration of OpenCV-based image processing and edge 

computing in intelligent fishery underwater vision systems. By leveraging OpenCV’s advanced 

techniques—such as CLAHE for contrast enhancement, geometric transformation corrections for 

distortion mitigation, and YOLO-based object detection—these systems significantly improve image 

clarity and operational reliability in complex underwater environments. The synergy with edge 

computing further addresses critical limitations like latency and bandwidth constraints, enabling real-

time data processing for applications such as remote aquaculture monitoring and fish behavior 

analysis. The incorporation of edge computing further mitigates key challenges such as latency and 

bandwidth constraints, enabling real-time data processing for applications like remote aquaculture 

monitoring and fish behavior analysis. 

However, challenges remain in ensuring model generalization across diverse environmental 

conditions, optimizing computational efficiency in embedded edge devices, and improving the 

effectiveness of image enhancement algorithms under extreme conditions such as turbid waters or 

low-light environments. While edge computing reduces reliance on cloud infrastructure, its long-term 

energy efficiency—especially for solar-powered underwater devices—requires further optimization. 

Additionally, interdisciplinary collaboration is essential for developing solutions tailored to fisheries’ 

specific needs, such as incorporating biological insights into algorithm design for species-specific 

identification. 
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