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Abstract: Decentralized Finance (DeFi) has revolutionized financial transactions by enabling 

open, permissionless access to financial services. However, its lack of centralized oversight 

and pseudonymous architecture have also brought by fraudulent activities. This study 

presents a novel framework for fraud detection in DeFi that integrates graph neural networks 

(GNNs) with multi-agent reinforcement learning (MARL). Leveraging a directed transaction 

graph comprising 50,000 Ethereum addresses and over 120,000 token transfers, this paper 

evaluates four detection pipelines: extreme gradient-boosted decision trees (XGBoost), a 

GNN-only model (GCN), a standalone reinforcement learning agent (PPO), and a proposed 

GNN+RL hybrid model. The hybrid system combines graph-based embeddings with 

adversarial policy learning, where a fraudster and a detector co-evolve through a multi-agent 

PPO setup using PettingZoo’s ParallelEnv. Synthetic fraud strategies are generated using a 

GAN and projected into the GCN embedding space to simulate adaptive threats. 

Experimental results show that while GCNs outperform flat-feature models, the GNN+RL 

hybrid achieves superior balance across accuracy (84.58%), AUC (0.8176), and F1 score 

(0.7493), capturing both structural and behavioral fraud signals. Reward convergence curves 

further illustrate emergent adversarial dynamics. The proposed framework demonstrates the 

effectiveness of combining relational inductive biases, dynamic decision-making, and 

adversarial augmentation for resilient fraud detection. Future work includes extending to 

cross-chain analytics and enriching contextual understanding through integration with large 

language models. 

Keywords: Decentralized Finance, Fraud Detection, Graph Neural Networks, Reinforcement 

Learning. 

1. Introduction 

Fraud detection is a major challenge in decentralized finance (DeFi), where the lack of centralized 

oversight and the complexity of transactions have enabled sophisticated scams. Since 2011, DeFi-

related hacks and frauds have caused over $12 billion in losses. In 2021 alone, rug pulls accounted 

for $2.8 billion—37% of all crypto scam revenue, up from just 1% the year before [1]. High-profile 

incidents like cross-chain bridge hacks and protocol exploits highlight the urgent need for more 

effective fraud detection systems to safeguard trust and assets in DeFi. 

Detecting fraud in decentralized finance (DeFi) poses unique challenges due to pseudonymity, 

high transaction velocity, and the lack of central oversight. Early detection systems relied on static 

rule-based heuristics—predefined thresholds or address blacklists—to flag suspicious activity [2]. 
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However, such systems are brittle: fraudsters rapidly adapt by fragmenting behaviors across multiple 

wallets or embedding activity in complex transaction chains [2,3]. These evasion tactics diminish the 

utility of single-point anomaly detection. 

Supervised machine learning (ML) methods such as logistic regression, random forests, and 

XGBoost improved upon manual rules by learning patterns from historical labels [4,5]. While these 

approaches yield higher accuracy in structured settings, they often treat transactions as i.i.d. samples, 

neglecting the relational structure underlying fraudulent coordination. As a result, they fail to detect 

subtle schemes like multi-hop laundering or collusive scams that span multiple accounts [6]. 

Graph Neural Networks (GNNs) offer a powerful alternative by modeling transactions as graphs 

where nodes represent user wallets and edges denote transfers [7,8]. GNNs such as GCN and GAT 

aggregate node features across neighborhoods to reveal local and global fraud signals—e.g., fraud 

rings, hub exploitation, or flash loan attacks. These models outperform flat-feature ML in both 

precision and recall on fraud datasets [9]. However, GNNs are typically trained in a static fashion and 

are vulnerable to over-smoothing and class imbalance, especially in DeFi where fraud is rare but 

highly dynamic [10]. 

To address the limitations of static models, reinforcement learning (RL) has been applied to fraud 

detection as a means of dynamically adapting to evolving adversarial strategies [11]. Proximal Policy 

Optimization (PPO) enables agents to learn through reward feedback in simulated environments. 

Recent work combines Graph Neural Networks (GNNs) with RL by using GNN embeddings as input 

states, allowing agents to leverage relational features while learning adaptive fraud detection policies 

[12]. Some frameworks further incorporate Generative Adversarial Networks (GANs) to generate 

challenging synthetic fraud samples, though stability issues like mode collapse remain an open 

problem [13]. 

To address these challenges, this paper proposes a hybrid framework that combines GNN-based 

representation learning with RL-based policy optimization. RL is particularly well-suited for 

adversarial domains due to its interactive learning paradigm, which enables agents to adaptively 

refine detection policies in response to feedback signals. By unifying relational structure modeling 

with sequential decision-making, the GNN+RL approach aims to detect fraud not only as a static 

classification task, but as a dynamic adversarial process. 

The proposed system also incorporates a multi-agent simulation layer, mimicking real-world 

attacker-defender dynamics in DeFi. Through extensive experimentation, this study compares this 

hybrid model against three baselines—XGBoost, GCN-only, and RL-only—and demonstrates its 

superiority in precision, adaptability, and resilience to fraud concept drift. The findings suggest a 

promising direction for scalable, intelligent fraud mitigation in decentralized financial ecosystems. 

2. Methods 

2.1. Data collection and preprocessing 

This study uses real-world Ethereum blockchain data drawn from Google BigQuery’s public 

Ethereum dataset. A total of 50,000 transaction records were extracted to represent a broad sample of 

DeFi activity on the Ethereum mainnet. Each record contains wallet addresses of both sender and 

receiver, transaction value in ether, gas gauge, gas price in wei, a timestamp, and the block number. 

These attributes serve as the primary temporal and structural signals for detecting abnormal 

transaction behavior indicative of fraud. 

Wallet addresses were converted into integer indices using LabelEncoder to facilitate efficient 

graph construction while preserving identity uniqueness. Transactional features were scaled into the 

[0, 1] range using MinMaxScaler, and the timestamp field was first converted into UNIX time before 
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normalization to maintain consistency across time-based models. This normalization pipeline ensured 

that features remained comparable and numerically stable for both GNN and RL agents. 

Each node, corresponding to a unique wallet address, was enriched with a feature vector computed 

from its transaction history. The following node-level statistics were aggregated from the sender-side 

activity: average transaction amount, average gas consumption, average inter-transaction time, and 

total transaction count. These node attributes capture essential behavioral patterns and serve as the 

input feature set for downstream learning algorithms. Edges in the graph represent directed 

transactions between wallets, with edge weights proportional to the normalized ETH amount 

transferred. 

To establish a binary fraud ground truth, each wallet address was screened using authenticated 

access to the Chainabuse API. This API provides community-verified and expert-reviewed reports of 

malicious activity, including phishing, contract exploits, impersonation schemes, and rug pulls. A 

transaction was marked as fraudulent if either the sender or the receiver appeared in the Chainabuse 

report set; otherwise, it was considered legitimate. This API-driven approach ensures that fraud 

annotations reflect real-world detection efforts and adversarial tactics. 

The transaction graph was constructed using NetworkX as a directed graph. Each node retained 

its engineered attributes and binary label, while edges preserved transaction-specific metadata. The 

full graph was serialized in gpickle format for compatibility with PyTorch Geometric, and node 

features were also exported in .csv format to allow integration with non-graph-based learning 

pipelines. 

Visualization of the graph sampling 1000 nodes, shown in Figure 1, was made. Nodes were color-

coded by label and scaled by transaction volume. The resulting layout shows that fraudulent nodes 

are scattered across the network rather than forming isolated clusters. While many appear as low-

degree outliers, several are highly connected, suggesting repeated malicious activity. These recidivist 

nodes blend into legitimate regions, highlighting the need for models that capture both structural and 

behavioral cues. 

 

Figure 1: Ethereum transaction subgraph (picture credit: original) 
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2.2. Overall framework 

 

Figure 2: Overall framework flowchart (picture credit: original) 

Following preprocessing and graph construction, the core methodological framework shown in 

Figure 2 advances through a multi-stage architecture integrating representation learning, adversarial 

augmentation, policy optimization and comparative benchmarking. The design of this system reflects 

the epistemic challenges inherent to fraud detection: structural sparsity, behavioral adaptation, and 

adversarial evasion. 

The first stage involves learning node-level embeddings using a supervised Graph Convolutional 

Network (GCNConv). Each node, representing a unique Ethereum wallet, is initialized with 

engineered features—average transaction value, gas usage, inter-transaction time, and transaction 

count. These features are propagated through the transaction graph to capture localized behavior and 

higher-order structural dependencies. The GCN is trained to classify nodes by fraud label, and the 

intermediate embeddings extracted from its hidden layer serve as semantically enriched input for 

downstream decision agents. 

To simulate adversarial behavior and expand the training distribution, a Generative Adversarial 

Network (GAN) is trained on real transaction features. The generator produces synthetic fraud-like 

vectors which are passed through the GCN encoder to obtain structurally consistent embeddings. 

These augmented samples regularize the detector’s policy by increasing exposure to unseen fraud 

variations. 

Decision-making is framed as a multi-agent reinforcement learning (MARL) problem using the 

PettingZoo parallel interface. Two agents—detector and fraudster—interact within a shared 

environment and observe the same GCN-derived embeddings. The detector is rewarded for correctly 

identifying fraudulent nodes, while the fraudster seeks to evade detection. Both agents are trained 

concurrently using Proximal Policy Optimization (PPO), fostering adversarial co-adaptation and 

behavioral generalization. 

The final stage of the study involves a comprehensive comparative evaluation across four distinct 

configurations. The first configuration utilizes Extreme Gradient Boosting (XGBoost), trained solely 
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on tabular transaction data to establish a traditional machine learning baseline. The second 

configuration employs a Graph Convolutional Network (GCNConv) model trained on graph-

structured features, allowing for relational patterns between entities to be captured. The third 

configuration applies Proximal Policy Optimization (PPO), a reinforcement learning algorithm, to 

learn detection strategies directly from tabular features. Finally, the proposed hybrid framework 

integrates GNN-based feature learning with PPO-based decision-making, further enhanced by GAN-

based adversarial augmentation to improve generalization under dynamic and deceptive fraud 

scenarios. 

Each model is assessed using accuracy, F1 score, AUC-ROC, and class-specific performance 

metrics under consistent label distribution. This multi-stage pipeline thus offers a scalable, resilient, 

and behaviorally grounded solution for decentralized fraud detection, with implications for broader 

domains such as DeFi compliance, financial intelligence, and transaction monitoring. 

2.3. GNN + RL architecture design 

To model the decentralized and adversarial nature of fraud in DeFi, this study implements a hybrid 

detection architecture that integrates GNN for relational representation learning with a policy-based 

MARL framework for adaptive decision-making. 

2.3.1. GNN module 

Let the transaction system be modeled as a directed graph 𝒢 = (𝒱, ℰ) , where each node 𝑣 ∈
𝒱 corresponds to a unique wallet address and each directed edge 𝑒 = (𝑢 → 𝑣) ∈ ℰ   represents a 

financial transaction from address 𝑢 to 𝑣. Each node is associated with a feature vector 𝐱𝑣 ∈ ℝ𝐹 , 

encoding normalized statistical features with respect to the original graph. Edge weights encode the 

normalized ETH transfer amounts.  

To learn expressive node embeddings that encode both local and global transaction behavior, a 

two-layer GCN is employed. The GCN applies layer-wise propagation defined as Equation (1). 

 𝐇(𝑙+1) = 𝜎 (�̃�−
1

2�̃��̃�−
1

2𝐇(𝑙)𝐖(𝑙)) (1) 

Where �̃� = 𝐴 + 𝐼 is the adjacency matrix with self-loops, �̃� is the corresponding degree matrix, 

𝐖(𝑙) is a learnable weight matrix at layer 𝑙, and 𝜎 is a non-linear activation function (ReLU). The 

input layer 𝐇(0) =  𝐗 ∈ ℝ𝑁×𝐹 , and the output embedding matrix 𝐇 ∈ ℝ𝑁×𝑑  captures structural 

regularities for downstream tasks.  

Alternative architectures such as Graph Attention Networks (GAT) were explored, enabling 

attention-weighted aggregation over neighbors—advantageous for capturing variable fraud influence 

across heterogeneous transaction partners. 

The resulting embeddings were visualized using t-distributed Stochastic Neighbor Embedding (t-

SNE), confirming that nodes associated with fraud tend to form separable yet scattered substructures, 

with some instances of recidivist nodes exhibiting dense local connectivity (see Figure 3). 
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Figure 3: t-SNE visualization of GNN nodes (picture credit: original) 

2.3.2. RL module 

Building upon the GNN embeddings, a PettingZoo-compatible multi-agent environment is 

constructed to simulate strategic interactions between two agents. The first is the Fraudster Agent 

(𝜋𝑓), which attempts to evade detection by mimicking the behavior of legitimate transactions, thereby 

introducing adversarial dynamics into the learning environment. The second is the Detector Agent 

(𝜋𝑑), which learns a classification policy aimed at accurately identifying and flagging fraudulent 

transactions. This interactive setup enables the modeling of evolving adversarial behavior and 

promotes the development of more robust fraud detection strategies. 

Each observation 𝑠𝑡 presented to an agent is a node-level embedding 𝐳𝑣 extracted from the GCN 

encoder. The action space is binary: 𝑎𝑡 ∈ {flag, pass}. 

The agents are trained using PPO, optimizing the clipped surrogate objective (Equation (2)): 

 𝐿CLIP(𝜃) = 𝔼𝑡[min(𝑟𝑡(𝜃)�̂�𝑡, clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)] (2) 

where 𝑟𝑡(𝜃) is the probability ratio and �̂�𝑡 is the advantage estimate. 

PPO offers sample efficiency and policy stability, which is critical in the co-evolutionary training 

of adversarial agents. A domain-specific reward function is defined to bias the detector toward fraud 

sensitivity (Equation (3)). 

 (𝑠𝑡, 𝑎𝑡) = {

+1.0 (𝑇𝑃)
−2.0 (𝐹𝑁)
−0.5 (𝐹𝑃)
+0.1 (𝑇𝑁)

 (3) 

2.3.3. GAN-based adversarial augmentation 

To enhance policy robustness, a Generative Adversarial Network (GAN) is incorporated to simulate 

evolving attack strategies. The GAN is trained on real transaction vectors 𝐱 ∈ ℝ𝐹 , generating 

synthetic fraud-like samples �̃� ∈ 𝐺(𝐳), where 𝐺 is the generator and 𝐳 is a latent noise vector. These 

generated samples are projected into the G  ’s embedding space and introduced into training 

episodes. 
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The adversarial learning process follows the min-max objective (Equation (4)): 

 min
𝐺

max
𝐷

𝔼𝑥~𝑝data
[log 𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧

[log (1 − 𝐷(𝐺(𝑧)))] (4) 

This data augmentation improves generalization under covariate shift and enforces resilience 

against fraud strategies not observed during initial training. 

Collectively, this dual-module GNN+RL framework with GAN-augmented training captures both 

the structure complexity and behavioral adversariality inherent in real-world DeFi fraud detection. 

3. Experiments and results 

3.1. Experimental setup 

The experiment is conducted on the directed transaction graph of 50,000 Ethereum wallet addresses 

and approximately 122,384 token transfers. 

Four comparative detection pipelines were implemented to evaluate model performance across 

different methodological approaches. The first, XGBoost (Baseline), employed a gradient-boosted 

decision tree using the XGBClassifier from the xgboost 1.7.6 library. It was trained on 4-dimensional 

normalized node features, with a maximum tree depth of 6 and early stopping applied after 30 rounds 

using a 20% validation split. The second pipeline, GNN-Only (GCNConv), utilized a two-layer Graph 

Convolutional Network trained with PyTorch Geometric. The model received 4-dimensional input, 

used a hidden size of 16 and an output size of 2, and incorporated ReLU activation with a dropout 

rate of 0.3. It was trained over 1000 epochs using the Adam optimizer with a learning rate of 0.01 

and a weight decay of 5e-4, optimizing a supervised cross-entropy loss on fraud labels. 

The third pipeline, RL-Only (PPO), involved training a single-agent Proximal Policy Optimization 

(PPO) model on raw node features using Stable-Baselines3. The agent operated in a discrete action 

space of size two, corresponding to the actions {flag, pass}, and was trained for 25,000 steps with 

custom reward shaping. Lastly, the GNN+RL (Hybrid) pipeline implemented the proposed multi-

agent PPO framework using PettingZoo’s ParallelEnv  P .  n this setup  both the detector and 

fraudster agents shared a common 32-dimensional embedding space derived from a GCN encoder. 

Synthetic fraud vectors generated by a trained GAN (with generator architecture 16 → 32 → 7 and 

discriminator 7 → 32 → 1) were projected into the GCN space to simulate adversarial transaction 

patterns. Each PPO agent was trained independently for 25,000 steps, with the fraudster aiming to 

evade detection while the detector optimized for high fraud recall. 

All experiments were executed on an NVIDIA GeForce RTX 4060 Laptop GPU using Python 

3.13, PyTorch 2.6.0, and PettingZoo/SB3-based MARL tooling. 

3.2. Results analysis 

The comparative performance of the four detection architectures is summarized in Table 1.  

Table 1: Performance comparison across models 

Model Accuracy AUC F1 Score 

XGBoost 0.5535 0.5100 0.5265 

GNN Only 0.8178 0.6232 0.6873 

RL Only 0.7062 0.6000 0.6221 

GNN + RL 0.8458 0.8176 0.7493 
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The GNN-based architecture exhibited the highest standalone accuracy (81.78%) among single-

modality models, validating the utility of relational inductive biases in fraud detection. However, its 

comparatively modest AUC suggests reduced sensitivity to the minority class, consistent with class 

imbalance effects. While the model correctly classified many legitimate nodes, its precision-recall 

dynamics on fraudulent nodes remained suboptimal. 

The XGBoost classifier, representing traditional ML approaches, achieved a baseline accuracy 

with near-random discrimination. Its marginally above-chance performance highlights the 

insufficiency of shallow tabular features in capturing the latent structural and temporal signals 

underpinning fraud behavior. 

The PPO-based reinforcement learning agent, trained directly on raw transactional features, 

achieved a comparable accuracy rate and F1 score to XGBoost. This suggests that while the agent 

adopted a high-recall policy—identifying a substantial number of fraud cases—it did so with limited 

precision, misclassifying legitimate accounts at a higher rate. 

In contrast, the proposed GNN + RL hybrid architecture demonstrated the most balanced and 

superior performance. These results underscore the benefits of integrating graph-derived embeddings 

with policy-based learning. The hybrid system captures both static relational dependencies and 

dynamic adversarial behaviors, allowing for more discriminative and generalizable fraud detection 

policies. 

As is shown in Figure 4, both detector and fraudster agents exhibited stable learning dynamics 

under adversarial training. The detector progressively improved precision in flagging fraudulent 

activity, while the fraudster agent evolved evasive strategies, resulting in oscillatory yet upward-

trending cumulative rewards. These dynamics reflect emergent game-theoretic interplay in the policy 

space. 

 

Figure 4: PPO reward convergence curve (picture credit: original) 

3.3. Key insights 

The experimental findings highlight that structural information embedded in graph representations 

significantly enhances fraud detection performance, with GCNs outperforming traditional flat-feature 

models. The GNN+RL hybrid further improves results by integrating dynamic policy adaptation 

through reinforcement learning, enabling responsive decision-making. Additionally, prior 

experiments suggest that GAN-generated adversarial samples improve model generalization under 

rare or shifting fraud patterns. These results collectively underscore the value of combining graph 

learning, reinforcement learning, and adversarial augmentation in building robust fraud detection 

systems for decentralized finance. 
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4. Conclusion 

This study introduces a unique fraud detection framework that blends RL with GNN, to address the 

evolving threats in the DeFi context. Both structural dependencies and dynamic fraud behaviors are 

captured by the system using policy-based optimization and graph modeling of transactional data. 

The introduction of a multi-agent simulation framework that simulates actual adversarial interactions 

in financial ecosystems—where a fraudster and a detector co-evolve—is a significant addition. When 

compared to standalone models and conventional machine learning, the GNN+RL architecture 

showed better empirical performance in terms of accuracy, recall, and adaptability, confirming the 

synergy between relational reasoning and sequential decision-making. 

Despite its strengths, the framework is limited by its reliance on historical on-chain data, which 

may introduce temporal or systemic bias. Moreover, the resource-intensive nature of RL training 

presents practical challenges for deployment in latency-sensitive or high-throughput environments. 

Looking forward, the architecture can be extended to support cross-chain analysis, enabling fraud 

detection across heterogeneous blockchain networks. Furthermore, integrating large language models 

(LLMs) with GNNs could unlock deeper semantic insights by bridging on-chain and off-chain data. 

This hybridization may lead to more holistic detection mechanisms capable of contextual reasoning 

beyond transactional patterns. 

Ultimately, the proposed framework contributes to the development of trustworthy and scalable 

FinTech infrastructure. It holds potential for adoption by regulators, smart contract developers, and 

DeFi platforms seeking advanced tools for identifying malicious actors while preserving system 

integrity. 
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