

BERT+BiLSTM: Boosting Performance in Movie Review
Sentiment Classification

Rongjun Gao

Shanghai Jiao Tong University, Shanghai, China

grj040803@sjtu.edu.cn

Abstract: The demand for movie reviews sentiment analysis is growing rapidly nowadays.

This study focuses on the development of advanced text classifiers to address complex

classification tasks and proposes three models. The first model utilizes 6 encoder layers to

capture information from texts and the second analyzes data using pretrained parameters of

bidirectional encoder representations from transformers (BERT) with 12 encoder layers. The

third one combines contextual embeddings of BERT with bi-directional long short-term

memory’s (BiLSTM) sequential modeling capabilities. Specifically, it leverages BERT to

extract deep contextual features, which are then fed into a BiLSTM layer followed by a

classification head for prediction. Experiments are conducted on a Kaggle Internet Movie

Database (IMDB) and the analysis displays a trade-off between classification accuracy and

total training time as well as memory consumption. The BERT+BiLSTM model ends up with

an accuracy of around 65% but the longest training time per epoch and high memory usage.

These results show the model’s ability to effectively capture contextual and sequential

patterns in text, making it highly suitable for real-world textual sentiment analysis

applications.

Keywords: BERT, BiLSTM, Sentiment Analysis, IMDB, Text Classification.

1. Introduction

Sentiment analysis is a field of Natural Language Processing (NLP) that focuses on identifying

emotions within a given text. In the modern world, sentiment analysis on movie reviews is playing

an increasingly significant role in recommender systems, opinion mining, movie performance

evaluation and audience satisfaction analysis [1-3]. In recent years, large amounts of literature are

discussing methods to do sentiment analysis on movie reviews using machines and algorithms. With

the rising of deep learning, extracting key information among textual data for emotion classification

becomes possible.

In fact, this field can be traced back to the beginning of the 21st century, in which collocational

clues were used to identify subjectivity from texts [4]. Later, machine learning algorithms came into

use, including naive bayes classifiers, maximum entropy, support vector machines for text

categorization, and the pointwise mutual information and information retrieval algorithm for

measuring semantic orientations of various phrases [5, 6]. In 2004, subjectivity detection was applied

to discard objective sentences in movie reviews, and phrase-level analysis was made to disambiguate

contextual polarity of different phrases [7, 8]. With the development of deep learning, the Recursive

Neural Tensor Networks (RNTNs) were proposed to tackle compositionality of long phrases in

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

108

semantic vector spaces [9]. Meanwhile, the Continuous Bag-of-Words Model and the Continuous

Skip-gram Model were constructed to provide powerful word embedding tools and decrease

computational complexity [10]. In 2017, the multi-head attention mechanism and transformer

architecture were designed to solve the gradient explosion problem of RNTNs and better capture

dependencies between phrases among long sentences [11]. After 2019, Bidirectional Encoder

Representations from Transformers (BERT) achieved multiple breakthroughs among various NLP

tasks and unleashed the potential of fine-tuning pre-trained models for classification tasks [12]. Graph

Neural Networks (GNNs) are also efficient in analyzing textual information due to their flexibility

and interpretability [13].

The main objective of this study is to compare the performance of three different models (the

Encoder model, the BERT model and the BERT+ bi-directional long short-term memory (BiLSTM)

model) in terms of classification accuracy, training time, computation complexity and stability. First,

this paper will introduce the details of three models, including hyperparameters setting, architecture,

the loss function and the dataset used. Second, the performance of the three models will be compared.

The experimental results demonstrate a trade-off between classification accuracy and training time as

well as memory resources. The classification accuracy increases from the Encoder Model to the

BERT+BiLSTM model, but a longer training time per epoch is inevitable with a more complicated

structure. In this paper, the best training accuracy reached is around 65% using around 60 million

parameters.

2. Methodology

2.1. Dataset description and preprocessing

The dataset used in this paper from Kaggle contains 32745 samples for training and 2681 samples for

testing in tab-separated value format [14]. All samples in the dataset come from the Internet Movie

Database (IMDB) website. Each sample consists of two parts. The first part is a comment on a movie

of various lengths. The second part is the category this comment belongs to, where 0 represents

negative emotions, 1 represents neutral emotions and 2 represents positive emotions.

Each comment will be transformed into a sequence of word identifiers using tokenizers. The

tokenizer used in the encoder model is a word level tokenizer where a whitespace separates each word.

It is trained with a set of predefined special tokens. The [UNK] represents unknown tokens, the [PAD]

is for sequence padding and the [SOS] and [EOS] mark the start and end of a sentence respectively.

It filters out infrequent words (minimum frequency of 2). During the training and inferencing mode,

only the first 149 words in a sample will be transformed into word identifiers, and all the rest will be

discarded. The tokenizer used in the BERT model and the BERT+BiLSTM model will use the official

PyTorch library, which includes special tokens [CLS], [SEP], [PAD] and [MASK].

2.2. Proposed approach

The primary goal of this study is to construct a movie review classification model with the highest

possible accuracy. Following the process displayed in Figure 1, the input movie reviews will first be

transformed into a sequence of word identifiers with a class token prepended and then be embedded

into word vectors. After being positionally encoded, the entire sequence of vectors as well as

corresponding masks will be given as the input to the model. The output of the model are logits which

will be provided to the SoftMax function to make the final prediction and the SoftMax function output

together with the true labels will be given to the loss function for gradient descent in the training

process.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

109

Figure 1: Process for classification and training (picture credit: original)

2.2.1. The encoder model

In the encoder model, one movie review will first be truncated and tokenized into a sequence of word

identifiers with a [SOS] token prepended. Each of them is embedded into a word vector of 256

dimensions. Then these vectors will be positionally encoded according to the following formula.

 𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

) (1)

 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠(
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

) (2)

where 𝑝𝑜𝑠 represents the which word vector it refers to, and 2𝑖 denotes the specific dimension in this

word vector, 𝑑𝑚𝑜𝑑 𝑒𝑙 = 256 in this paper [11].

These vectors will be provided to an encoder. The encoder consists of 6 encoder layers, as

displayed in Figure 2. In each encoder layer, 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙𝑒𝑛) denote the input matrix to the

encoder where each 𝑥𝑖 is a word vector, 𝑙𝑒𝑛 = 150, ℎ = 8 denote the number of heads, 𝑑𝑘 =
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ

be the dimension of each head, 𝑄,𝐾, 𝑉denote the query, key and value. In self-attention, the encoder

will first apply linear transforms on them to construct another three matrices and then all three

matrices will be separated into ℎ heads. The attention score for each head will be calculated as

follows:

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖, 𝑘𝑖, 𝑣𝑖) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(𝑚𝑎𝑠𝑘(
𝑞𝑖𝑘𝑖

𝑇

√𝑑𝑘
))𝑣𝑖 (3)

where mask is used to set the output of padding tokens to be −∞ and these attention scores will be

concatenated back to construct a new matrix of shape 𝑙𝑒𝑛 × 𝑑𝑚𝑜𝑑 𝑒𝑙 where linear transforms are

applied again. After an add and norm layer, the output will be fed into a feed-forward network and

be normalized. The output of the [SOS] token will be further linearly transformed into a vector of 3

dimensions, which is the output logits of this model. The dropout rate is set to be 0.1. In this paper,

the Encoder Model will be trained for 100 epochs.

Labels

Tokenization

+

Embedding

Input Movie

Reviews

Positional

Encoding

+

CLS Token

Model
Softmax

Function

Loss

Function

MasksPrediction

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

110

Figure 2: The encoder model (picture credit: original)

2.2.2. BERT

In BERT, the first 148 words of each movie review will be tokenized into word identifiers [12]. A

[CLS] token will be prepended and a [SEP] token will be appended. If the length of the movie

comment is smaller than 148, [PAD] tokens will be appended after the [SEP] token. In the word

embedding layer of BERT, each word identifier will be transformed into word vectors of 768

dimensions. Then positional embeddings and segment embeddings will be applied on the word

vectors. Both of two embeddings are learnable parameters for pretraining. Then a normalization and

dropout layer will be applied. The entire embedding computation process is given below:

 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑊𝑜𝑟𝑑𝐸𝑚𝑏 + 𝑃𝑜𝑠𝐸𝑚𝑏 + 𝑆𝑒𝑔𝐸𝑚𝑏)) (4)

where the dropout rate is set to be 0.2. The output of the embedding layer will be provided to 12

encoder layers. In the encoder layer, the dropout rate is set to be 0.3 in the attention mechanism and

0.2 in the feedforward network. Different from traditional feedforward network, the one in a BERT

encoder layer is computed using the function instead of the traditional function, where the formula

is given as:

 𝐺𝑒𝐿𝑈(𝑥) =
𝑥

2
(1 + 𝑒𝑟𝑓(

𝑥

√2
)) (5)

For the encoder, only the output of the [CLS] token 𝑥𝐶𝐿𝑆 will be fed into a pooling layer computed

using the formula.

 𝑃𝑜𝑜𝑙𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑝𝑜𝑜𝑙𝑥𝐶𝐿𝑆 + 𝑏𝑝𝑜𝑜𝑙) (6)

W149···W2W1SOS

Source

Embedding

+

SOS

Prepended

Positional

Encoding

Multi-head

Attention

Add & Norm

FFN

Add & Norm

6×

FFN

Output

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

111

and then another dropout layer with dropout rate set to be 0.2 will be applied on the result. In the end,

the output of the dropout layer will be linearly transformed into the prediction logits of three

dimensions. In this paper, official pretrained parameters for the BERT model will be used (see in

Figure 3). The model will be trained for 20 epochs.

Figure 3: The BERT model (picture credit: original)

2.2.3. BERT+BiLSTM

One of the main drawbacks of the BERT model is that only information from the output of the [CLS]

token is used. To solve this problem, in the BERT+BiLSTM model, the first 200 words of one movie

review will be tokenized and embedded, and later be fed into the BERT model. The output of the

BERT model will be provided to the BiLSTM model, which has only one hidden layer.

The input to the BiLSTM model is a sequence 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙𝑒𝑛) where length (len) = 200 in

this model and 𝑥𝑖 ∈ 𝑅768. The BiLSTM produces two sets of hidden states. The first set is the forward

hidden states ℎ𝑡
⃗⃗ ⃗ , which is computed as the sequence progresses from 𝑡 = 1 to 𝑡 = 𝑙𝑒𝑛. The second

set is the backward hidden states ℎ𝑡
⃖⃗ ⃗⃗ computed as the sequence progresses from 𝑡 = 𝑙𝑒𝑛 to 𝑡 = 1.

During the computation, the forget gate determines what information to discard from the previous

cell state, the input gate controls what new information to add to the cell state, and the cell combines

the old state with new information using the tanh function and decides what to output based on the

updated cell state. With the updated cell state, the output gate decides what to output with a sigmoid

function and the hidden state can be updated accordingly.

The dimension of each hidden vector is 128. The final output at each time step t is the

concatenation of the two vectors [ℎ𝑡
⃗⃗ ⃗, ℎ𝑡

⃖⃗ ⃗⃗] and the last output [ℎ𝑙𝑒𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑙𝑒𝑛

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗] will first be provided to a

dropout layer with the dropout rate set to be 0.2 and then a fully connected layer to produce the output

logits. The label smoothing rate is 0.1.

SEPW148···W1CLS

Source

Embedding

+

SOS

Prepended

Positional

Encoding

12×

Output

SEP

Appended

Segment

Embedding

Transformer

Encoder

Layer

Pooling & Dropout

Mask

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

112

Figure 4: The BERT+BiLSTM model (picture credit: original)

In this paper, official pretrained parameters for the BERT and BiSLTM will be used (see in Figure

4).

2.3. Loss function

The output of the model is a logit vector of three dimensions since there’re three classification

categories, denoted 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3] for each sample i. This vector will first be given to the

SoftMax function to compute the final probability for each category.

 𝑦𝑖,𝑗 =
𝑒

𝑥𝑖,𝑗

𝑒𝑥1+𝑒𝑥2+𝑒𝑥3
 (7)

where j=1, 2, 3. Then the cross-entropy loss will be calculated based on the following formula.

 𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ (𝑦𝑘, 𝑙𝑎𝑏𝑒𝑙𝑘)

𝑁
𝑘=1 (8)

where 𝑙𝑎𝑏𝑒𝑙𝑘 is the ground-truth label of the training data and 𝑁 is the batch size.

2.4. Implementation details

In this paper, the AdamW optimizer will be used with the learning rate set to be 10−4 in the Encoder

model, 10−5 in the BERT model and 3 × 10−5 in the BERT+BiLSTM model. The RTX 4060 laptop

GPU will be used for training. The batch size is 64 and models are trained for 10 epochs. A scheduler

is also used, with the total steps set to be the product of the number of total training samples and the

number of epochs. During the training, the test loss, the training loss, the test accuracy and the training

accuracy will be recorded every epoch. The total training time will be recorded at the end of the

training.

SEPW198···W1CLS

Source

Embedding

+

SOS

Prepended

Positional

Encoding

12×

SEP

Appended

Segment

Embedding

Transformer

Encoder

Layer

BiLSTM

Mask

FFN & Dropout

Output

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

113

3. Results and discussion

3.1. Results analysis

3.1.1. The encoder model

The results of the Encoder Model are displayed in Figure 5. The training loss declines sharply at the

beginning of the training and stays fixed around 0.62. The testing loss continues growing slowly and

then becomes stable after 30 epochs, which shows the potential overfitting problem of the Encoder

Model. On the other hand, this can also be verified in the testing accuracy. As displayed in the Figure

5, the training accuracy increases sharply in the initial stage of training and stabilizes after 20 epochs.

On the other hand, the testing accuracy does not grow significantly even in the initial stage. It ends

up with 50%, lower than expectation. The huge gap between the testing and training accuracy

indicates the fact that this model lacks the ability to generalize to testing cases. The reason behind is

that this model does not utilize any pretrained parameters and only 6 encoder layers are used, which

leads to failure in capturing more generalizable features between the texts.

Figure 5: The training results for the encoder model (picture credit: original)

However, the total training time is only 1842.54 seconds, which is satisfying for the cases where

the model needs to be trained in a short time without the demand for high identifying accuracy. The

total number of parameters is 12419331, which is also acceptable.

3.1.2. BERT

As shown in Figure 6, the training loss continues to decline slowly, but the testing loss also grows

slowly after 20 epochs of training. This also indicates the overfitting problem of this model. The

training accuracy increases drastically in terms of the overall performance of the model, but the testing

accuracy shows a tendency to decline slowly and then becomes around 63% in the end. However,

this is far better than the performance of the Encoder model. The reason for this is that this model

manages to utilize pretrained parameters and fine-tune the model for the data. Moreover, 12 encoder

layers offers a more elaborate architecture for capturing key features between textual data.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

114

Figure 6: The training results for the BERT (picture credit: original)

Nevertheless, the total training time is 8437.04 seconds, far longer than the one of the Encoder

Model. This results from the fact that more encoder layers take more time for forward and back

propagation. The total number of parameters is 109484547, far more than the one of the Encoder

Model.

3.1.3. BERT+BiLSTM

As displayed in Figure 7, this model performs slightly better than the BERT model, with around 65%

of testing accuracy. Very similar to the BERT model, the training loss decreases gradually throughout

the entire training process and reaches around 0.4 in the end. The testing loss keeps growing slowly.

It is notable that the training accuracy ends up with around 95%, indicating that almost all key features

in the training samples are successfully captured in the model. The testing accuracy hovers around

65%, which possibly benefits from the longer input word sequences (len = 200) than the length of the

BERT model. Furthermore, the BiLSTM model appended after the BERT model manages to capture

information not only from the output of the [CLS] token but from all outputs and integrates

information more comprehensively. In addition, the label smoothing technique helps the model to

generalize slightly better by making the model less certain about its classification decision. However,

there still exists a huge gap between the testing accuracy and the training accuracy. The potential

reason for this is that analyzing only the first 200 words in the movie review is not sufficient for the

model to infer more precise conclusions.

Figure 7: The training results for the BERT+BiLSTM (picture credit: original)

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

115

The total training time is 5180.92 seconds, fewer than the BERT model. However, it takes 518.09

seconds per epoch, but the BERT model only takes 421.85 seconds per epoch. This results from the

extra computation time and resources needed for the forward and back propagation of BiLSTM. The

total number of parameters is 67875331, which is also fewer than the BERT model.

3.2. Results analysis

So far, analysis has been made on the performance of each model in terms of the losses, accuracy,

number of parameters and training time. To sum it up, the Encoder Model reaches the lowest accuracy

of classification (around 50%) but takes the shortest time for training and consumes the least of

memory. This results from its simple architecture since there are only 6 encoder layers in the model.

The BERT model achieves better classification accuracy but spends much longer time for training

(8437.04 seconds) and consumes the most of memory. In fact, fewer training epochs are needed for

this model, and it’s estimated from Figure 6 that only ten epochs are needed, which indicates that this

model needs around 4000 seconds to finish the training process. The BERT+BiLSTM model reaches

the best classification accuracy (around 65%). Nonetheless, it spends the longest training time per

epoch and takes a massive amount of memory (12 encoder layers) to offer a more resilient architecture.

All the three models suffer from the problem of overfitting, resulting from the fact that the

truncated length of movie reviews is too short for the model to extract key information from the

training samples. Thus, a longer truncated length is preferred if a higher classification accuracy is

pursued. Alternatively, a new architecture that enables the transformer encoder to read input

sequences like an Recurrent Neural Network (RNN) network may be a better option in terms of

memory usage efficiency and training time. In fact, there are already some SOTA architectures

including the eXtreme Language Modeling (XLNet) that allows encoders to tackle an input sequence

of an infinite length. In addition, transformers with sparse attention mechanisms such as Longformer

or BigBird that are designed to handle extended contexts more effectively.

Another promising direction is to extend the classifier model beyond text-only inputs by

incorporating multi-modal data, such as images, audio, or metadata associated with the text. For

instance, combining BERT+BiLSTM with vision models including vision transformers, data-

efficient image transformers or audio feature extractors can enable the system to tackle tasks more

comprehensively. However, this may require designing a fusion mechanism to effectively integrate

multi-modal representations and more computational resources.

Moreover, BERT is known for its large parameter size and high computational cost, which result

in long training time, especially when combined with BiLSTM. For resource-constrained

environments, variants of BERT can be applied, such as DistilBERT or ALBERT, to reduce memory

usage and accelerate processing without significantly compromising performance.

4. Conclusion

This study introduces three text classification models based on transformer encoders, BERT and

BiLSTM. In the first model, the only key architecture is 6 layers of encoders and a [SOS] token

prepended. The second model utilized pretrained parameters of BERT and fine-tune the architecture.

The third model is a combination of BERT and BiLSTM for better information extraction. Multiple

experiments are conducted to analyze the performance of these proposed models. The results

demonstrate a trade-off between classification accuracy and training time as well as computational

memory. The classification accuracy increases from the Encoder Model to the BERT+BiLSTM

model, but the training time per epoch increases with the model becoming more complicated. The

best training accuracy achieved is around 65% at the cost of around 60 million parameters used.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

116

In the future, there are two main possible directions. The first one is to propose a novel architecture

that allows the model to incorporate an input sequence of an infinite length. In theory, the model may

need to combine the advantage of transformer encoders and RNN networks, such as the XLNet. The

second one is to extract information not only from textual data but also from visional or audio data.

However, multi-modal data will require a more carefully designed structure to capture information

from multiple sources and balance the trade-off between the training and computational time and

classification accuracy. The third direction is to explore variants of BERT to further compress the

training time and improve the classification accuracy.

References

[1] Dang, C.N., Moreno-García, M.N., & Prieta, F.D.L. (2021). An approach to integrating sentiment analysis into

recommender systems. Sensors, 21(16), 5666.

[2] Nkhata, G., Anjum, U., & Zhan, J. (2025). Sentiment analysis of movie reviews using bert. arXiv preprint

2502.18841.

[3] Yessenov, K., & Misailovic, S. (2009). Sentiment analysis of movie review comments. Methodology, 17(17), 1-7.

[4] Wiebe, J., Wilson, T., & Bell, M. (2001). Identifying collocations for recognizing opinions. In Proceedings of the

ACL-01 Workshop on Collocation: Computational Extraction, Analysis, and Exploitation, 24-31.

[5] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning

techniques. arXiv preprint, 0205070.

[6] Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of

reviews. arXiv preprint, 0212032.

[7] Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on

minimum cuts. arXiv preprint, 0409058.

[8] Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis.

In Proceedings of human language technology conference and conference on empirical methods in natural

language processing, 347-354.

[9] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013). Recursive deep models

for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical

methods in natural language processing, 1631-1642.

[10] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space.

arXiv preprint, 1301.3781.

[11] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention

is all you need. Advances in neural information processing systems, 30.

[12] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019 conference of the North American chapter of the

association for computational linguistics: human language technologies, 1, 4171-4186.

[13] Lu, G., Li, J., & Wei, J. (2022). Aspect sentiment analysis with heterogeneous graph neural networks. Information

Processing & Management, 59(4), 102953.

[14] Nguyen, T. (2024). IMDB Movie Reviews for Sentiment Analysis. Retrieved from https://www.kaggle.com/datasets

/tuannguyen8531/imdb-movie-reviews-for-sentiment-analysis.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/151/2025.22857

117

