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Abstract: The Proportional-Integral-Derivative (PID) controller, due to its simple structure 

and strong robustness, is widely used in industrial control systems. However, as industrial 

control environments grow more complex, traditional PID controllers encounter challenges 

like fixed parameters and difficulty adapting to nonlinear systems. In response, various 

improvement strategies have been proposed in recent years, such as optimization algorithms, 

adaptive control, and machine learning methods, all aimed at enhancing the performance and 

adaptability of PID control. The study investigates the limitations of traditional PID 

controllers and analyzes recent advancements in modern improvement techniques through a 

literature review. By reviewing the basic components of PID controllers, parameter tuning 

methods, and their enhancement strategies, this research highlights how these approaches 

effectively improve the response time, stability, and robustness of PID controllers. The results 

indicate that, with the application of improvement strategies like optimization algorithms and 

adaptive control, PID controllers can better cope with dynamically changing environments, 

enhancing control accuracy and system stability. 

Keywords: PID Controller, Industrial Control, Optimization Algorithms, Adaptive PID, 

Machine Learning 

1. Introduction 

The Proportional-Integral-Derivative (PID) controller has long dominated industrial control systems 

due to its simple structure, good stability, and ease of implementation. However, with the increasing 

complexity of industrial control, traditional PID control methods face more challenges. In particular, 

in dynamic and nonlinear systems, the fixed parameters of the PID controller are unable to adapt to 

new environments, causing response delays and high sensitivity to external disturbances. These 

problems limit the applicability of PID controllers in modern, complex control tasks. In recent years, 

various improvement methods like optimization algorithms, adaptive control, and machine learning 

strategies, have been proposed to address the limitations of traditional PID control. However, many 

studies focus on one method or strategy and are often confined to specific experimental conditions, 

lacking a comprehensive evaluation of different optimization strategies. Thus, the paper reviews the 

existing literature, examining the basic principles of PID controllers, parameter tuning methods, and 

recently proposed optimization strategies. Specifically, this paper provides a detailed analysis of the 

research advancements in modern improvement methods, such as optimization algorithms, adaptive 

control, and machine learning, evaluates the effectiveness of these methods in practical applications, 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/147/2025.22912 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

238 



 

 

and discusses how they address the major challenges faced by traditional PID control, including 

difficulties in parameter adjustment, response delays, and sensitivity to disturbances. This review 

aims to provide theoretical support for the further development of PID control technology and offer 

guidance for researchers and engineers in related fields. 

2. Overview of traditional PID controllers 

2.1. Basic components of the PID controller 

The PID controller is one of the most widely used control algorithms in industrial applications due to 

its simple structure, ease of implementation, and strong robustness and stability, which make it a 

popular choice among engineers. The theory behind the PID controller was originally proposed by 

Maxwell in 1868 [1], laying the foundation for its widespread use in control systems.It adjusts the 

control signal based on three error components: proportional (P), integral (I), and derivative (D), each 

contributing to the system response. These components optimize the dynamic performance of  the 

system by adjusting their gain values to meet specific criteria, such as overshoot and settling time. 

The basic structure of the PID controller is shown in Figure 1. 

 

Figure 1: Basic structure of the PID controlle 

The PID controller processes the system’s error signal through three components: proportional, 

integral, and derivative, to generate the control input, driving the system output to gradually reach the 

desired target value. The system error 𝑒(𝑡) is determined by the difference between the input value 

𝑟(𝑡) and the output value 𝑦(𝑡). The general form of the PID controller rule is expressed as: 

 u(t) = Kpe(t) + Ki ∫ e(τ)dτ
t

0
+ Kd

de(t)

dt
 (1) 

ⅇ(t) = r(t) − y(t) 

where Kp is the proportional gain, which adjusts the system’s response speed and is a key factor in 

the PID controller’s performance. A high Kp can lead to increased system oscillations, negatively 

affecting stability, while a low Kp can lead to slow response times and excessive damping. Ki is the 

integral gain, which eliminates steady-state error and improves zero steady-state error performance. 

Although it adjusts the control output by accumulating the error values over time, ensuring the system 

output eventually reaches the target value, the integral action is slow and always lags behind changes 

in the error signal. Kd is the derivative gain, which helps counter the slow response of the integral 

action and maintains a faster system response, reduces overshoot, minimizes oscillations, and 

improves dynamic performance. However, if this value is too high, it may amplify system noise. 

These gain values must be adjusted based on the specific application and system characteristics, as 
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different combinations of parameters directly impact the system’s performance. For instance, if the 

system exhibits a large steady-state error, it may be necessary to increase the integral gain Ki, while 

a large overshoot may require increasing the derivative gain Kd to improve the system's response 

characteristics.  

2.2. Parameter tuning method 

Traditional parameter tuning methods for PID controllers include the Ziegler-Nichols (ZN) and the 

Cohen-Coon (CC) methods. The ZN method relies on a closed-loop critical oscillation experiment. 

First, in the closed-loop control system, the integral (I) and derivative (D) actions are temporarily 

disabled, leaving only the proportional (P) control. Starting with a relatively low proportional gain 

Kp, the gain is gradually increased until the system output begins to exhibit continuous and stable 

oscillations. The gain at this point is called the critical gain 𝐾𝑢. When sustained oscillations occur in 

the system at Kp = Ku, the time interval between two consecutive peaks (or troughs) is measured, 

which corresponds to the critical oscillation period 𝑇𝑢. The PID parameters can then be determined 

according to the ZN empirical formulas: 

 Kp = 0.6Ku, Ti = 0.5Tu, Td = 0.125Tu (2) 

The CC method involves analyzing the process response curve to determine the system’s critical 

time constant 𝑇𝑐 and the proportional bandwidth 𝑅. Using these parameters, the CC rule is applied to 

calculate the proportional, integral, and derivative gains. 

The ZN method requires only a closed-loop experiment, gradually increasing the proportional gain 

to obtain Ku and Tu. It is suitable for situations where an accurate model is unavailable, but it requires 

the researcher to have extensive experience. This method often results in larger overshoot and 

oscillations due to tuning at the marginally stable state. In addition, the CC method is based on the 

step response curve. By identifying process gain, delay time, and time constant, this method 

represents the system’s dynamics well. For systems with delays, it typically offers smoother, more 

robust control, reducing overshoot. Based on the water level control system experimental platform, a 

closed-loop control system was built using Arduino and Matlab to compare the tuning effects of the 

ZN and CC methods, showing that after adding the Kalman filter, the CC-tuned PI controller has 

smoother rise and settling times, while the ZN-tuned PID controller responds faster [2]. 

2.3. Benefits and limitations of traditional PID 

The traditional PID controller is widely used in many fields due to its simple structure and intuitive 

design. Since it relies solely on system error and its derivatives, the PID controller does not require 

complex mathematical modeling, making it easy to implement. This makes the PID controller well-

suited for applications in fields like motion control, process control, power electronics, hydraulics, 

pneumatics, and manufacturing [3]. Its broad applicability and low implementation cost have kept 

the PID controller an essential tool in modern industrial applications like autonomous driving and 

drones [4]. For example, in the drone field, a nonlinear PID auto-tuning method based on deep 

reinforcement learning (PPO) enables seamless switching between manual and autonomous modes, 

improving flight control response and stability [5]. 

Despite its benefits like good real-time performance, stability, and cost-effectiveness, traditional 

PID controllers have certain limitations. Firstly, the PID parameters are fixed and difficult to adjust 

dynamically, making it unable to automatically adapt to changes in system parameters, leading to a 

decline in control accuracy. This is especially problematic when facing external disturbances, as the 

PID controller has limited adjustment capabilities, which challenges the requirements of high-

precision control systems. Moreover, the derivative component (D) of the PID controller helps reduce 
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overshoot and improve dynamic performance but is sensitive to high-frequency noise, which can 

amplify noise and cause instability. As the demand for precision and real-time performance grows in 

modern industries, the limitations of the traditional PID controller have become more apparent, 

making it inadequate for high-demand industrial control tasks. To meet more complex system 

requirements, recent research has focused on combining intelligent control algorithms with traditional 

PID controllers to optimize their performance. 

3. Modern improvements of PID controllers 

3.1. PID parameter optimization based on the MZOA algorithm 

The Zebra Optimization Algorithm (ZOA) is a metaheuristic optimization algorithm based on zebra 

foraging and anti-predation behavior, characterized by few control parameters, simple structure, and 

ease of modification. However, ZOA tends to get stuck in local optima, converge slowly, and lacks 

strong global search capability, requiring improvements. Based on ZOA, a Multi-strategy Fusion-

based Improved ZOA (MZOA) was proposed, enhancing PID optimization with chaotic mapping, 

tangent flight strategy, and SCA oscillation search, improving convergence, global search, and local 

search precision. Its performance was validated in a second-order lag system [6]. And the improved 

system outperforms the ZOA algorithm in parameter optimization, achieving faster convergence, as 

shown in Figure 1. The optimized PID parameters enhance system stability and control accuracy, 

reducing the settling time by 55.3%. 

 G(s) =
ⅇ−0.5s

s2+2s+1
 (3) 

Table 1: Comparison of the performance of MZOA and ZOA algorithms 

Algorithm 𝑲𝒑 𝑲𝒊 𝑲𝒅 𝑴𝒑 𝑻𝒑 𝑻𝒓 𝑻𝒂 

MZOA 26.2 0.36 2.44 3.89% 470 215.2 845 

ZOA 17.4 0.14 46.9 3.92% 355 118.8 1890 

 

MZOA is an improvement upon ZOA, enhancing its global search capability and avoiding local 

optima, boosting PID parameter optimization. The specific improvements include initializing the 

population by combining Tent chaotic mapping and Householder mirror reflection learning to avoid 

issues of individual repetition or aggregation caused by traditional initialization methods, thereby 

increasing population diversity. The use of tangent flight strategy for position updating strengthens 

global search capability, preventing local optima. Additionally, the introduction of a hyperbolic 

cosine enhancement factor improves the oscillation capability of the SCA, allowing better switching 

between local and global searches and enhancing the ability to escape local optima. 

3.2. Adaptive PID control methods 

Traditional PID controllers, due to the fixed parameters, cannot adapt to environmental changes like 

external disturbances and system nonlinearity. To address this issue, the Adaptive PID (APID) was 

introduced to automatically adjust PID parameters based on system dynamics, maintaining optimal 

performance. APID control methods have been widely researched and applied in various fields. For 

instance, in autonomous vehicle trajectory tracking, the vehicle needs to frequently change lanes, 

avoid obstacles, and stay in sync with traffic flow in complex urban environments [7]. Traditional 

PID struggles to maintain stable trajectory tracking when vehicle speed varies significantly, while 

APID adjusts control parameters in real-time, significantly reducing path errors and enabling high-
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precision tracking at different speeds and steering angles. Compared to traditional PID, trajectory 

error is reduced from 1m to 0.5m, greatly improving control accuracy. 

However, conventional APID requires high computational resources for real-time adjustments, 

especially with optimization algorithms, making it challenging for high-real-time systems. As such, 

a novel APID controller, Seesaw APID, was proposed, boosting the adaptability of the traditional 

PID using the Seesaw Algorithm, and improving response speed and stability in dynamic systems [8]. 

It dynamically adjusts gain to reduce overshoot and oscillation. The core idea of this algorithm is to 

regulate the error derivative (𝑚𝑜𝑟𝑖𝑔 = 𝑒′(𝑡)) to control the system’s dynamic characteristics, allowing 

it to converge more quickly or approach the setpoint more smoothly. 

In comparison to conventional APID, Seesaw APID dynamically adjusts PID gains based on the 

calculation of both the error ⅇ(t) and its derivative ⅇ′(t), enabling the controller to adapt to varying 

control demands. Moreover, two algorithms, MS Seesaw and LS Seesaw, were designed to enhance 

the effectiveness of the APID controller. The control effects of traditional PID, APID-MS, and APID-

LS were compared using the typical transfer function G(s) and the IPC (Inverted Pendulum on a Cart) 

as test objects, with the results shown in Tables 2 and 3. 

 𝐺(𝑠) =
1

(𝑠+2)(𝑠+3)(𝑠+4)
 (3) 

Table 2: Performance comparison for transfer function 

Metric Traditional PID APID-MS APID-LS 

𝑻𝒓 1.545s 1.397s 1.433s 

𝑴𝒑 1.544 1.287 1.222 

𝑻𝒔 4.404s 2.881s 3.222s 

Table 3: Performance comparison for IPC system 

Metric Traditional PID APID-MS APID-LS 

𝑴𝒑 0.1195 0.1034 0.0624 

𝑻𝒔 5.924s 3.584s 1.883s 

 

It can be seen that Seesaw APID reduces rise time by 9.6%, overshoot by 20.9%, and settling time 

by 68.2%, improving the overall performance of the control system. APID-MS accelerates 

convergence, reducing rise time and increasing gain when the error is large, enhancing control and 

stability. APID-LS reduces overshoot to improve stability, decreases settling time, and lowers gain 

when the error is small, reducing oscillation and making the system more stable. Both algorithms 

effectively boost the PID controller’s adaptability, allowing dynamic parameter adjustment without 

complex modeling or training. APID-MS (MS Seesaw APID) is suitable for improving response 

speed, while APID-LS (LS Seesaw APID) is better for enhancing system stability. Thus, Seesaw 

APID is an efficient, low-computation adaptive control solution for dynamic systems. 

3.3. Integration of machine learning methods with PID 

There is a marked overlap between the fields of control and machine learning in terms of objectives, 

problem statements, and tools. As such, many machine learning algorithms share similarities with 

classical control methods. The combination of control theory and machine learning algorithms is 

being explored to achieve optimization improvements. Machine learning techniques like random 

forests and SGD, can be used to determine optimal PID parameters, reducing the need for manual 

tuning. Additionally, the integration of the PID controller into deep learning optimization has led to 
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the development of a PID-accelerated optimizer (PIDAO), which enhances the convergence speed 

and stability of gradient descent [9]. 

As a branch of machine learning, Q-Learning is a value iteration-based reinforcement learning 

algorithm. It is a model-free learning method that enables an agent to learn optimal policies through 

trial and error by interacting with a dynamic environment. In robotic control, while Q-Learning can 

determine optimal motion paths, it lacks fine-grained control over robot dynamics. Thus, combining 

the PID algorithm with the Q-Learning algorithm allows the PID controller to fine-tune the motion, 

ensuring that the robot accurately follows the path calculated by Q-Learning. Prior study explored 

how to combine Q-Learning with the traditional PID controller to optimize the trajectory tracking 

capability of mobile robots in unknown environments, demonstrating that the combined method of 

Q-Learning and PID outperforms the use of Q-Learning alone or traditional fuzzy control in terms of 

trajectory tracking, speed, and stability [10]. 

Table 4: Trajectory tracking experiment results 

Control Methods Trajectory Error (m) Obstacle Avoidance Success Rate Average Navigation Time (s) 

Q-Learning 0.52 87% 12.3 

Q-Learning+PID 0.29 95% 9.7 

Table 5: Velocity and stability experiment results 

Control Methods 
Maximum Angular 

Velocity(°/s) 
Average angular velocity(°/s) Athletic stability 

Q-Learning 89.6 45.2 The oscillation is noticeable 

Q-Learning+PID 67.4 38.1 More stable 

 

As shown in Tables 4 and 5, the Q-Learning + PID combination outperforms using Q-Learning 

alone. The robot movement is smoother, obstacle avoidance ability is improved, with an average 

trajectory error reduced by 44.2% and navigation time shortened by 21.1%.  

Furthermore, machine learning methods have been utilized to optimize PID parameter tuning for 

brushless DC (BLDC) motor systems. By using a data-driven approach, machine learning models can 

replace traditional PID tuning methods, significantly enhancing the system’s adaptability and control 

performance [11]. An experimental system incorporating a BLDC motor was built, and the motor’s 

transfer function was obtained in MATLAB. PID parameters were calculated using traditional 

methods to create an experimental dataset. Seven machine learning algorithms were then used for 

PID parameter estimation. The results showed that under step input, the PID parameters obtained by 

traditional methods and machine learning methods were similar, but the machine learning methods 

were more adaptive to noise and disturbances, with smoother PID parameter adjustments. Under sine 

input, the PID parameters from machine learning methods showed control effects similar to those of 

traditional methods. This demonstrates that machine learning methods can successfully estimate PID 

parameters, replacing the complex calculations of traditional methods. Of the algorithms, Stochastic 

Gradient Descent (SGD) achieved the highest accuracy at 99.988%, while Support Vector Regression 

(SVR) had the lowest accuracy at 75.551%. 

4. Conclusion 

This paper investigates the principles and limitations of traditional PID controllers, and explores 

modern improvements such as MZOA-based PID optimization, APID control, and the integration of 

machine learning with PID control. The results indicate that these methods effectively boost the 

adaptability, response speed, and stability of PID controllers. MZOA-based optimization greatly 
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reduces regulation time and improves system stability. Adaptive PID control dynamically adjusts 

parameters, allowing the system to adapt to nonlinear variations. Machine learning approaches (e.g., 

reinforcement learning and neural networks) further enhance the intelligence of PID control, thus 

making it suitable for complex automation systems. However, these methods still face challenges like 

high computational complexity and insufficient real-time performance. Future research could focus 

on reducing computational costs, improving online optimization capabilities, and integrating deep 

learning techniques to develop more efficient intelligent PID controllers. 
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