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Abstract. The rapid growth of the intergraded circuit industry as predicted by Moore’s law has 

significantly increased the importance of efficient design processes. In addition, due to physical 

constraint, we will soon reach the limit of how small the size of the transistor can become, and 

the design processes will become more complex than ever. In order to cope with those challenges 

and introduce the product to the market within the time to market, the industry has been 

developing ways to apply machine learning to concurrent EDA tools. This paper will aim to 

introduce how machine learning is applied to varies processes of electronic design and how they 

improve the current EDA tools. We will also show the limitations and opportunities of ML based 

EDA tools and provide a rough idea of the potential future to those who are looking into this 

area. 
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1.  Introduction 

Electronic design automation (EDA), also known as electronic computer-aided design (ECAD), is a way 

of using computer software to design, test, or aid the design process of intergraded circuits. The goal 

was to help engineers produce faster and more reliable chip through computer software while meeting 

the time of marking each year. In the past few decades, the field of intergraded circuits has evolved 

rapidly. Die size has grown over twice the size every 10 years and the clock frequency has doubled 

every two years. According to Moore’s law the transistor size inside the chip is shrinking by roughly 7% 

every single year. This has been a consistent trend for decades and the industry is doing its best to follow 

it. However, this trend predicted by Gordon Moore has been slowing down with every shrinking size of 

the transistor. We are getting closer to the physical limit of the device and the term size of the transistor 

which originally refer to the physical length of the gate has lost its meaning around 45 nm. Therefore, 

in order to further improve our chip, we are tasked with further improving the complexity of the design. 

One way of achieving this is to increase the transistor count. The drawback is that the chip would 

consume more power, and the size of the chip would also increase. To counter these drawbacks new 

design becomes more complex than ever, and they require teams of engineer month to produce a reliable 

product. This could potentially be an issue for companies that want to maximize their profit, since a 

slight delay to market could lead to a huge difference in final sales. This is where EDA comes in. We 

will first explain the background of EDA and how it has evolved over the years. Then we will further 
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discuss how ML could be applied to traditional EDA tools to drastically reduce the time required for 

some of the trickier design processes. We will finish with a look into the future of electronic design 

automation which will include its potential and risks. 

2.  EDA background 

Electronic design automation is the process of using a collection of computer software to help engineers 

design electronic products. It started as a subarea in computer aiding design (CAD) tools which was 

originated in the 1960s to help engineers analyze circuit layouts [1]. Since then, different kinds of EDA 

tools have emerged to help designers in different area of the process. The modern chip design process 

starts with system specification and architectural design. This will create a library of standard modules 

such as NAND gates, OR, and XOR gates. This standard cell library would help the designer focus on 

higher-level design in the future without considering individual cells. Then the designers can move on 

to logic design and logic synthesis. Design capture tools, also called schematic editors, are created to 

help capture the schematic of the circuit and aid engineering in this logic design process. An example 

of this is the Verilog language, which is able to capture the behavior of the circuit in code form and 

generate a simulation for the logic. A physical design layout is required in order to be able to 

manufacture the actual circuit. Four main steps are needed in this area: “floorplanning, placement, clock 

insertion, and routing” [1]. Floorplanning considers the geometric constraints of the IC and places the 

RTL component in a suitable region of the layout. The placement step places all the logic gates in the 

correct location. Clock insertion and routing connect all the components and the clock via wires. Layout 

and synthesis tools are provided to engineers to transform their finished schematics into physical layouts, 

which allows this process to be a lot more time-efficient [2]. The above EDAs were created to help 

engineers design circuits, but with the help of machine learning, it is also possible to use artificial 

intelligence to design the entire integrated circuit. Many major tech companies are already using their 

existing AI technology to explore the possibility of replacing human designers with AI, and most of 

them have already seen promising results. Nvidia claims that their AI is capable of creating chips with 

minor helps from engineers in some more complex areas [3]. Recently, Google stated that their artificial 

intelligence is capable of designing computer chips better than humans [4]. 

 

Figure 1. IC design glow. [1] 

3.  Machine learning applications in EDA 

In this section, we will be looking at how machine learning is implemented in electronic design 

automation.  

3.1.  Placement 

Chip macro placement can be a very time-consuming process compared to other areas of chip design. 

At this stage, each gate must be mapped to the exact location in the layout to maximize the IC 

performance. The design is optimized by lowering the wire length and density while increasing the 

circuit speed. The state of the art none machine learning algorithm is analytical placement [5]. It consists 

of global placement, where we lower the constraints, making the problem easier to solve, legalization 

which recovers the constraints that we ignored, and detailed placement, which optimizes the solution 

that was acquired. Modern ICs have become a lot denser within similar sizes to maximize the increased 

demand for performance and the layout placement process becomes even more complicated with this 
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increase in density of the design. This section will introduce several implementations of ML in 

placement that helps increase the speed of the process.  

The first method, provided by Budak, A. F. et al [6], focuses on the macro placement improvement 

of the circuit. It uses reinforcement learning that sees locations as variables and utilizes an objective 

function to determine the performance of the result layout. Several constraints are also introduced to 

make sure that the chip still obeys the standard rules of circuit design. This turns the placement problem 

into an optimization problem which is applicable for RL. The method starts by placing the macros in 

the circuit individually. After placing all the macros, the reward function is called to determine the 

performance. Then it uses a policy-based method to change the parameters and repeat this training 

process, so it keeps improving. 

Another method introduced by Lu, Y. C. et al [7] offered to improve VLSI placement using a GNN 

that the authors called PL-GNN. The process starts with an unsupervised node representation learning 

which takes an undirected clique-based graph, transformed from the original VLSI netlist’s directed 

hypergraphs, and uses a variation of GNN called GraphSAGE to perform the learning and obtain the 

node representation. Then the author uses the weighted K-means clustering algorithm [8] to scatter the 

original design into clusters of placement groups. Finally, the cluster group is put into a commercial 

placer to get the final layout design. The result of this method is an improvement by “3.9% in wirelength, 

2.8% in power, and 85.7% in worst negative slack reduction” [7] which is a very promising result. 

 

Figure 2. PL-GNN process flow. [7] 

3.2.  Routing 

In this section we will show some machine learning applications regarding routing. This step takes all 

the placed components and wires them together. Additionally, all the switches need to be tested after 

the routing to make sure all the connections are working. This is another very time-consuming process 

and is categorized as an NP-hard or NP-complete problem. Machine learning is able to provide earlier 

estimations to speed up the routing process. 

In “Reinforcement Learning for Electronic Design Automation: Case Studies and Perspectives: 

(Invited Paper)” [6], a typical method of using an and-invertor graph (AIG) and perform graph 

optimization, is solved using reinforcement learning. Here, after the logic is turned into an AIG, one of 

five optimizations is chosen: “balance, rewrite, refactor, rewrite with zero-cost replacement, and refactor 

with zero-cost replacement” [6]. The reward for the training process is calculated by comparing the 

input and output nodes and logic depth. With enough training the RL method would outperform the 

traditional method. 

Machine learning can also be applied to predict routing congestion. A routing congesting is where 

an area has too many wires inside that it becomes congested, which hinders the performance of the 

device. In [9], the author employed a graph attention network that takes a simple undirected graph of 
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the circuit netlist. The cells of the circuit are treated as nodes, and the edge suggests that the cells are 

connected. The nodes are also embedded with the corresponding cell features, for example logic and 

size. Using this network, the author was able to detect almost all the routing congestion in the given 

tests. The results of this congestion prediction are presented in Figure 3. 

 

Figure 3. Actual Congestion vs Predicted Congestion. [9] 

3.3.  Data measuring 

Machine learning is also used in data measuring that is essential for IC optimization. In "MAVIREC: 

ML-Aided Vectored IR-Drop Estimation and Classification," [10], the team at Nvidia uses EDA to 

better estimate the IR drop and parasitics during the process of design. The IR drop is the electrical 

potential difference between the input and output during current flow. Traditionally, this would require 

an engineer to run a power simulation on the design, and the process using a non-machine learning CAD 

tool takes roughly 3 hours. However, since the acceptable specs of IR drop were already provided prior 

to the design, a machine learning network called the u-net can be implemented to drastically reduce the 

time. A u-network, originally created for biomedical image segmentation, is basically a convolutional 

neural network with a bottle neck concatenation section in the middle between the encoder section and 

the decoder section [11]. This machine learning network would take in power map input and convert it 

into an IR drop map output using semantic segmentation. The entire process takes around 18 minutes, 

which is a substantial improvement from the traditional method. The acquisition of the input power map 

can also be optimized via a graph neural network to estimate how often each node in the IC changes, 

which would give us a very accurate estimated power map with very little time compared to traditional 

methods.  
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Figure 4. Actual IR drop map vs predicted IR drop map. 

Parasitic prediction is another area that can be accelerated with artificial intelligence. Parasitic, for 

example, parasitic capacitance, is created when electrical components are too close to each other, 

creating an unwanted element between them that is not there by design. This can create unnecessary 

connections between components and hinder the performance of the circuit. Since the size of the IC is 

shrinking by roughly 7% every year, the gaps between components are getting smaller. Thus, it is 

important to know where these parasitics are, so we can either change the design or introduce dielectric 

material between the gaps to reduce the electron flow. Traditionally, this would require the layout 

designer to extract the parasitic from the planar schematic provided by the circuit designers, and the 

result would be sent back to the circuit designer for further improvement. This means that the circuit 

and layout designers would have to iterate through this design process repeatedly since the circuit 

designer would not be able to know the effect of the changes on the parasitic without the feedback of 

the layout designer. This creates a very repetitive and labor-intensive revision process. A technique 

proposed by Ren, H., Kokai el at [12] eliminates this problem by predicting the parasitics with only the 

circuit schematics before the layout design. They used a graphical neural network they called ParaGraph 

that map each component (resistor, transistor…) into nodes including net nodes and outputs the net 

parasitics and the device parasitics. This gives a very accurate prediction before even starting the layout 

design and reduces the workload created by unnecessary iterative testing. 

4.  Future 

In this section we will look into some of the advantages of EDA, its challenges and how it might develop 

in the future. 

4.1.  Benefits 

4.1.1.  Reduce workload and time. As we can see in previous examples, the most significant 

improvement for ML in EDA is how it can save time and work for the designer. For example, the 

parasitic prediction method introduced by Ren, H., Kokai el at [12] was able to reduce the process of 

multiple circuit revisions by providing a very accurate prediction prior to the layout design process. The 

U-net IR prediction method [10] was capable of cutting the time of the process from its original 3 hours 

to around 18 minutes. Clearly, when it comes to efficiency, machine learning is proven to be far superior 

than traditional methods. With further investment in all areas of the design process, we may see an even 

bigger jump in performance in chip design. 

4.1.2.  Existing resources. The field of machine learning is already well developed in some of the other 

areas. In a lot of the examples in this paper, the actual machine learning methods are implemented using 

some modification or combination of existing knowledge. In some cases, for example the RL routing 

method [6], we see a trend of converting electrical design problems into machine learning problems via 
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graph theory. This is a really good starting point for researcher who have existing knowledge in machine 

learning or those who have experience in machine learning implementation in other areas. This also 

opens up opportunities for collaboration between the electronic design community and the machine 

learning community.     

4.2.  Threats 

4.2.1.  Vulnerable to attacks. According to K. Liu el at [13], one of the major concerns of utilizing 

deep learning in EDA is its potential to be vulnerable to malicious attacks. This is mainly due to the 

nature of the vulnerability of DL and has been well acknowledged by the ML community. The two 

attacks that the author introduced [13] are adversarial perturbation attacks and backdooring attacks. 

Adversarial perturbation attacks allow the attacker to fool the DNN based detectors by manually 

introducing what the detector was looking for to get a false detection. Backdooring attack requires the 

attacker to gain access to the training dataset of the DNN and modify it so that the supposed to be 

detected data is ‘hided’ from the DNN. This will result in the trained detector being incapable of 

detecting the hidden hotspot and allow the attacker to pass through the DNN network when they are 

not supposed to. 

4.2.2.  High cost on materials. This is a potential issue for people with a limited amount of resources. 

The author in [6] suggests that the existing EDA tools, which are essential for evaluating the reward 

function, can have quite an expensive license fee. This can be a problem for those who are not working 

with existing EDA tools. However, most people who are working in IC design already have access to a 

number of EDA tools for their daily design. For them, starting research in ML implantation may not be 

as costly since the license fee already exists in their day-to-day work. For those who do not have access 

to EDA tools, a collaboration with an active IC designer with access to EDA could be a potential solution. 

This is also one of the benefits of the collaboration between the electronic design community and the 

machine learning community discussed in the previous paragraph. 

4.3.  Opportunities 

As discussed in the EDA background, the current trajectory of EDA tools is shifting from improving 

part of the design process to helping engineers design the entire thing. In 2021, researchers from Google 

(Mirhoseini et al) [4] claimed that their ML method is capable of solving the entire floorplanning 

problem in under six hours and that the result floorplan is superior or comparable to their human 

designed counterparts. If more of this design AI is introduced to the market for all the other design 

processes, this could essentially replace humans as chip designers and help save thousands of hours of 

workload. However, due to the native vulnerability of ML, researchers need to make sure that the new 

generation of EDA tools are well protected. This would require more money and resources for both the 

ML application and cybersecurity research, which could be a problem for those who lack sufficient 

funding. 

5.  Conclusion 

This paper gives a rough introduction to the machine learning implementations in electrical design 

automation. We conclude that though machine learning implementations can have some potential issues, 

many of them have their remedies and that the benefit of using machine learning in EDA significantly 

outweighs the risk that it carries. Unfortunately, this paper wasn’t able to cover ML in all the processes 

of the IC. We will be researching further into the field of ML in EDA and getting a broader 

understanding of how it is implemented. As circuit complexity keeps increasing, traditional EDA tools 

are slowly losing their magic. Machine learning has been transformational for the area of electrical 

design automation and has become an important part of the new generation of electrical design tools. 

We hope that this paper gives a good introduction to people who are looking into the field of machine 

learning in electrical design automation and provides some starting points in their future research.  
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