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Abstract. With the wide application of mobile robots in industry, path planning has always been 

a difficult problem for mobile robots. Reinforcement learning algorithms such as Q-learning play 

a huge role in path planning. Traditional Q-learning algorithm mainly uses ε- greedy search 

policy. But for a fixed search factor ε-greedy. For example, the problems of slow convergence 

speed, time-consuming and many continuous action transformations (such as the number of turns 

during robot movement) are not conducive to the stability requirements of mobile robots in 

industrial transportation. Especially for the transportation of dangerous chemicals, continuous 

transformation of turns will increase the risk of objects toppling. This paper proposes a new 

method based on ε- greedy 's improved dynamic search strategy is used to improve the stability 

of mobile robots in motion planning. The experiment shows that the dynamic search strategy 

converges faster, consumes less time, has less continuous transformation times of action, and 

has higher motion stability in the test environment.  
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1. Introduction 

Mobile robots have been widely used in industry, agriculture, military and other industries [1], and path 

planning is just the key problem that mobile robots need to consider in the movement process. With the 

development of robot related technologies, such as robot control, automation, sensor, network 

technology, mobile robots are more and more widely used. Among them, for the transportation of 

dangerous goods in the chemical industry, mobile robot transportation has become an important way to 

solve this problem. For the transportation of dangerous goods in unknown complex environment, the 

path planning problem of mobile robot needs further exploration. According to the degree of the mobile 

robot's understanding of the environment, path planning methods can be divided into global path 

planning based on prior complete information [2] and local path planning based on sensors [3]. Global 

path planning requires the mobile robot to master all the environmental information, such as fences, 

obstacles, etc., to plan the path according to all the information on the environmental map, and then 

generate an optimal path. At present, the commonly used algorithms mainly include grid method [4], A 

* algorithm [5], particle swarm algorithm [6], ant colony algorithm [7], and reinforcement learning 

method [8]. Q-learning algorithm is a time series differential control algorithm under off orbit strategy 

in the reinforcement learning method proposed by Watkins in 1989. When the standard Q-learning 

algorithm is applied to path planning, there are problems such as slow convergence speed and long 

learning time.  
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However, global path planning has a large amount of computation and is not suitable for exploring 

unknown environments, while local path planning only needs to collect the surrounding environment 

information in real time through mobile robot sensors, understand the map information and local 

obstacle distribution, and then select the optimal path from the current node to the target node. For 

complex unknown environments, mobile robots still need to process a large number of sensor data, 

which consumes time and computing resources, making mobile robots move slowly. However, with the 

emergence of reinforcement learning, the problem of slow path planning for mobile robots in unknown 

environments has been alleviated. Reinforcement learning is a branch of machine learning, which is 

mainly used to solve decision-making problems. RL is essentially a Markov decision process [9] (MDP). 

The basic idea of RL is that in the continuous interaction with the environment, the agent learns an 

optimal strategy to maximize the rewards obtained from the environment. RL is independent of the 

environment, does not need a priori complete environment information, only needs to interact with the 

current surrounding environment, so RL is very suitable for path planning with unknown environments. 

Q-learning algorithm is one of the most important path planning algorithms based on reinforcement 

learning. It does not require the prior information of the environment model. For any limited MDP, Q-

learning will find an optimal strategy to maximize the expected value of the total reward in all the next 

consecutive steps, starting from the current state. The traditional Q-learning algorithm mainly uses ε- 

Greedy search strategy, which is a strategy of balanced utilization and exploration. In traditional 

methods, fixed factors are used. For complex unknown environments, there are problems such as slow 

convergence, long time consuming, and unstable movement. In order to speed up the search for paths 

and improve the stability of agent movement, this paper proposes a dynamic ε- Greedy search strategy, 

through the dynamic adjustment of factors, makes the path search speed faster, and reduces the number 

of turns, and enhances the stability of the robot's movement to transport goods. 

2. Standard Q-learning algorithm 

Q-learning algorithm is a temporal difference learning method under off orbit strategy. A key 

assumption about Q-learning is that the interaction between agent and environment is regarded as a 

Markov decision-making process. In Q-learning, the evaluation value of each status work pair (s, a) is 

Q (s, a). The evaluation value is defined as the total discount that will be returned if the current related 

actions are executed and a policy is followed. The optimal evaluation value can be defined as the sum 

of discount returns obtained by executing action a in the current state s and then executing according to 

policy π. 

3. Results and discussion 

3.1. Environment and action space 

In order to ensure the complexity and randomness of the experimental environment, four different 

experimental environments were set up. The environment is represented by rectangles and circles of 

different sizes, which are limited to a 50 * 60 border. For the movement of the agent, the experiment 

sets four directions, namely up, down left and right, which are represented by arrays [0,1,2,3]. The 

moving distance of the agent is set to 1 each time, so that the agent can have full opportunities to explore 

the environment in the experimental environment.. 

3.2. Dynamic ε- Greedy search strategy 

• Specify an exploration rate "epsilon" and set it to 1 at the beginning. This is the step size we will 

use randomly. At the beginning, this rate should be at the maximum, because we do not know any 

value in Q-table. This means that we need to do a lot of exploration by randomly selecting actions. 

• Generate a random number. If this number is greater than epsilon, then we will "use" (which means 

that we use the information we already know to select actions at each step). Otherwise, we will 

continue to explore. 
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• At the beginning of training Q function, we must have a large epsilon. As the agent becomes more 

confident about the estimated Q value, we will gradually reduce epsilon. 

• To better set epsilon, reduce epsilon according to the number of iterations. 

4. Experiment and analysis 

The effectiveness and advancement of the algorithm are verified by simulation experiments. Because of 

the universality and practicality of grid modeling [10], the experimental environment in this paper uses 

grid modeling. 

4.1. Experiment 1 

 

Figure 1. Path planning diagram1. 

For the fixed epsilon experiment, we used factors of 0.95, 0.9 and 0.85 respectively, as shown in Figure 

1-3. The figure below shows the optimal junction of 0.9. It can be seen that for cost, the maximum cost 

is about 8000, and the results begin to converge after 3000 epides. For steps, the maximum step is around 

3600, and the convergence starts around epiode=3000. For the final Q-learning path result, the number 

of turns of the agent is 37, the shortest route=71, and the longest route=3689. The experiments were 

repeated for 10 times for different epsilons. For the fixed epsilon greedy q-learning algorithm, the 

average number of turns of the agent was 43.5, the shortest path was 71, and the average longest path 

was 2620. 
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Figure 2. Episode via cost with fixed episode. 

 

 

Figure 3. Episode via step with fixed episode. 

4.2. Experiment 2 
Through the dynamic epsilon experiment, we first set epsilon=0.95, 0.9, 0.85 to start the experiment. 

With the increase of the number of training iterations, epsilon gradually decreases. As shown in Figure 

3-4, the maximum cost for cost is about 9500. After 2000 epides, the results begin to converge. For steps, 

the maximum step is around 3300, and the convergence starts around epiode=1800. For the final Q-

learning path result, the number of agent turns is 15, the shortest route is 71, and the longest route is 

1359. Another experimental result is also shown in the figure below when the path action=21 is selected. 

10 experiments were conducted on different epsilons. For the dynamic epsilon greedy Q-learning 

algorithm, the average number of turns of the agent is 19.3, the shortest path is 71, and the longest path 

is 1593. 
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Figure 4. Episode via cost with fixed episode and Episode via step with fixed episode. 

 
 

Figure 5. Path planning diagram2. 

5. Conclusion 

In order to reduce and improve the efficiency of path planning, enable robots to adapt to autonomous 

planning in different environments, and have the same autonomous learning and decision-making 

capabilities as humans, this paper uses the Q-learning algorithm in reinforcement learning to plan the 

path in complex and unknown environments, based on the traditional ε- The fixed factor epsilon is 

adopted by the greedy search strategy. This paper proposes a dynamic ε- Greedy search strategy can 

accelerate the path planning speed of the mobile robot, reduce the number of turns of the robot, improve 

the stability of the robot, and can be better applied to the transportation of mobile robots in the field of 

hazardous chemicals. However, with the dynamic decrease of epsilon in the experiment, there may be 

an unstable problem of agent early search, which needs further research and exploration. 
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